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Abstract 
 
In this paper, a new combined extended Conjugate-Gradient (CG) and Variable-Metric (VM) 
methods is proposed for solving unconstrained large-scale numerical optimization problems. The 
basic idea is to choose a combination of the current gradient and some pervious search directions 
as a new search direction updated by Al-Bayati's SCVM-method to fit a new step-size parameter 
using Armijo Inexact Line Searches (ILS). This method is based on the ILS and its numerical 
properties are discussed using different non-linear test functions with various dimensions. The 
global convergence property of the new algorithm is investigated under few weak conditions. 
Numerical experiments show that the new algorithm seems to converge faster and is superior to 
some other similar methods in many situations. 
 
Keywords:  Unconstrained Optimization, Gradient Related Method, Self-Scaling VM-Method, 
                        Inexact Line Searches 
 
MSC 2010: 49M07, 49M10, 90C06, 65K 

 



AAM: Intern. J., Vol. 7, Issue 1 (June 2012)                                                                                                            227                                
          

   

1. Introduction 
 

 Consider an unconstrained optimization problem: 
  

min n( ),f x x  ,                                                                                                               (1)  
 
where 1: nf  is a continuously differentiable function in n an n-dimensional Euclidean 
space; n may be very large in some sense. Most of the well-known iterative algorithms for 
solving (1) take the form: 
 

kkkk dxx 1   ,                                                                                                                 (2) 

  
where kd  is a search direction and k  is a positive step-size along the search direction. This 

class of methods is called a line search gradient method. If kx  is the current iterative point, then 

we denote )( kxf  by kg , )( kxf  by kf  and  )( xf  by f , respectively. If we take kk gd  , 

then the corresponding method is called the Steepest Descent (SD) method; one of the simpler 
gradient methods. That has wide applications in large scale optimization; see Nocedal and 
Wright (1999). Generally the CG-method is a useful technique for solving large-scale nonlinear 
problems because it avoids the computation and storage of some matrices associated with the 
Hessian of objective functions. The CG-method has the form: 
 

1 1

, if 0,

, if 0,
k

k
k k k

g k
d

g d k  

 
   

                                                                                            (3) 

 
where k  is a parameter that determines the different CG-methods; see for example the 

following references: Crowder & Wolfe (1972); Dai & Yuan (1996, 1999) and Fletcher-Reeves 
(1964). Well known choices of k  satisfy: 

 
2

PR HS1 1
k k2 2
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   ,                                 (4) 

 
which respectively, correspond to the FR (Fletcher-Reeves, 1964), PR (Polak-Ribiere, 1969) and 
HS (Hestenes Stiefel, 1952). CG-method with Exact Line Search (ELS) has finite convergence 
when they are used to minimize strictly convex quadratic function; see for example Al-Bayati 
and Al-Assady (1986). However, if the objective function is not quadratic or ELS is not used 
then a CG-method has no finite convergence. Also a CG-method has no global convergence if 
the objective function is non- quadratic. Similarly, Miele and Cantrell (1969) studied the 
memory gradient method for (1); namely, if 0x  is an initial point and 00 gd  ,  the method can 

be stated as follows: 
 

1k1            ,    kkkkk vgvvxx   ,                                                                            (5) 
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where   and   are scalars chosen at each step so as to yield the greatest decrease in the 
function f .Cantrell (1969) showed that the memory gradient method and the FR-CG method are 
identical in the particular case of a quadratic function. Cragg and Levy (1969) proposed a super-
memory gradient method whose search direction is defined by: 
 





k

i
iikk dgd

1
1  ,                                                                                                         (6) 

 
where 0x  is an initial point and  00 gd  . Wolfe and Viazminsky (1976) also investigated a 

super-memory descent method for (1) in which the objective takes the form: 
 

)(min)(
1

)(

,...,,
1
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1
ik

m
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k
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x
ik

m
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k
ikkk vpxfvpxf
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 ,                                       (7a) 

 
where  
 

ik

m

i

k
ikkk pv 


 

1

)( ,                                                                                                    (7b)       

 
m  is a fixed  positive  integer; with 
 

0
kk gp .                                                                                                                              (8)                         

 
Both the memory and super-memory gradient methods are more efficient than the CG and SD 
methods by considering the amount of computation and storages required in the latter. Shi-Shen 
(2004) combined the CG-method and supper-memory descent method to form a new gradient 
method that may be more effective than the standard CG-method for solving large scale 
optimization problems as follows:  
 

( ) ( ) ( )
1 1 1

2

min{ ( ,...,1 ) [ , ]( 2, , )}
2

im
k k k ik

k k k m k i k i k
i

g d i m
   

     


    ,                                        (9a) 

 
where 
 

),...,( )()(
11

k
k

k
mkkkkk dxx    .                                                                                        (9b) 

 
We denote ),...,( )()(

1
k

k
k

mkkd    by kd  throughout this paper, m  is a fixed positive integer and k  

is a scalar chosen by a line search procedure. The theoretical and practical merits of the Quasi 
Newton (QN) family of methods for unconstrained optimization have been systematically 
explored since the classic paper of Fletcher and Powell analyzed by Davidon ُ VM method. In 
1970 the self-scaling VM algorithms were introduced, showing significant improvement in 
efficiency over earlier methods. 
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Recently, Al-Bayati and Latif (2008) proposed a new three terms preconditioned gradient 
memory method. Their method subsumes some other families of nonlinear preconditioned 
gradient memory methods as its subfamilies with Powell's restart criterion and inexact Armijo 
line searches. Their search direction was defined by: 
 

&

1 1

, if 0

, if 0,

k kB L
k

k k k k k

H g k
d

g H d H d k   

  
   

                                                       (10) 

 
where    is a step-size defined by inexact Armijo line search procedure and   is the conjugacy 
parameter. Al-Bayati et al. (2009) introduced two versions CG-algorithm. Their search directions 
are defined by: 
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where (11) has been proved to be a sufficiently descent directions. 
 
Also, Zhang, et al. in (2009) had modified Dai-Liao DL-CG method with three terms search 
directions as follows: 
 

 
0

1 1 1

,                                              if  0,

,     if  0,
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                                                         (12a) 

 
where 111  k

T
kk

T
kk yddg  and DL

k  is defined by: 
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k
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T
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They show that the sufficient descent condition also holds true if no line search is used, that is, 
 

.
2

11   kk
T
k gdg                                                                                                                  (13) 

 
In order to achieve the global convergence result, Grippo and Lucidi (1997) proposed the 
following new line search: for given constants 0 , 0 , and  1 ,0 , let   
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 ,                                                                                     (14) 

 
which satisfy 
 

    2

1
2

1   kkkk dxfxf  .                                                                                               (15) 

 
This line search will be preferred to the classical Armijo one for the sake of a greater reduction 
of objective function. Introducing this line search rule. This may be taken as an open problem. 
 
In this paper, a new gradient related algorithm combined with VM-update used for solving large 
scale unconstrained optimization problems, is proposed. The new algorithm is a kind of ILS 
method modified with VM-algorithm. The basic idea is to choose a combination of the current 
gradient and some previous search directions with Al-Bayati self-scaling VM-update which is 
based on two-parameter family of rank-two updating formulae. The algorithm is compared with 
similar published algorithms, which may be more effective than the standard conjugate related 
algorithm; namely, Nazareth (1977) and other VM-algorithm. The global rate of convergence is 
investigated under a diverse weak condition. Numerical experiment shows that the new 
algorithm seems to converge more stably and is superior to other similar methods. 

 
2. Shi-Shen Algorithm 
 
Shi-Shen (2004) proposed the following assumptions: 
 

1S :  The objective function f has lower bound on the level set )}()({ 00 xfxfxL n  , 

where  0x  is an available initial point. 

  

2S : The gradient )(xg of )(xf  is Lipschitz continuous in an open convex set B  which 

contains 0L  i.e., there exist a constant 0L such that: 

 
Byx,   , )()(  yxLygxg .  

                                                                               

3S : The gradient )(xg  is uniformly continuous in an open convex set B containing 0L .  

Obviously Assumption ( 2S ) implies ( 3S ). 

 
As we know, a key to devise an algorithm for unconstrained optimization problems is to choose 
an available search direction kd and a suitable step-size k at each iteration. Certainly if we 

choose a search direction kd  satisfying: 

 
0 

kk dg ,                                                                                                                          (16) 
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then we can devise a descent direction generally, we demand that:  
 

2

kkk gdg   ,                                                                                                              (17a) 

 
which is called sufficient descent condition where 0 . 
 
Furthermore, if 
 

kkkk dgdg .  ,                                                                                                          (17b) 

 
then many descent algorithms have their convergence under the above condition. It is called an 
angle condition or a gradient–related conception. 
 
Definition 2.1.  Berstsekas (1982) 
 
Let }{ kx  be a sequence generated by the gradient method (2). We say that the sequence }{ kd  is 

uniformly gradient related to }{ kx  if for every convergent subsequence }{ kx for which 

 




k 

0lim
Kk

kg  ,                                                                                                                        (18a) 

 
we have 
 






kK  k
k

k  

k dsup lim,     ginf lim0
Kk

kd .                                                                             (18b) 

 
Equivalently, }{ kd is uniformly gradient related if whenever a subsequence }{ kg  tends to a non-

zero vector, the corresponding subsequence of direction kd  is bounded and does not tend to be 

orthogonal to kg . Moreover, we must choose a line search rule to find the step-size a long search 

direction at each iteration. 
 
Lemma 2.1.  Berstsekas (1982) 

 
Let }{ kx be a sequence generated by a gradient method and assume that }{ kd is uniformly 

gradient related and k  is chosen by the minimization rule or the limited minimization rule, then 

every limited point of }{ kx is a critical point *x , i.e. 0)( * xg .  As to the parameters in the 

algorithm, we seem to choose ),...,2](,
2

[)(
1 mii

k

i
kk

ik  


 for solving large scale optimization 

problems as defined in (9). To get the algorithm to converge more quickly, we take: 
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Now, it is easy to prove that: 
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The details may be found in Crowder & Wolfe (1972). 
 
 
Algorithm 2.1. Shi-Shen 
 
Let 10  ,  10 22

1
1   , a fixed integer 12 , x , 1nm k   and   is a small 

parameter, then: 
 
Step 1.  If kg , then stop. 

 
Step 2.  Set ),...,( )()(

11
k
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scalar k  in Step (2) is chosen by a cubic line search; Bunday (1984). 

 
Step 3.  If the available storage is exceeded, then employ a restart option [Zoutendijk (1970)] 
either with  
 

nk   or kkkk gggg 



  111 . 

 
Step 4.  Set 1 kk  , go to Step1. 

 
 

3. A New Proposed Algorithm for Solving Problem (1) 
 

In this section we want to choose a line search rule to find the best step-size parameter along the 
search direction at each iteration. In fact, we can use the generalized Armijo ُ line search rule 
implemented in Luenberger (1989):  
 
 Set scalar ,S  and 1  with (0,1)  ,  )1,0(1    and 0S . Let  k  be the largest   in 

 ,...,, 2 SSS  such that:  
                                                    

kkkkk dgdxff   1)(  .                                                                                          (20) 

 
Choosing the parameter   is important for the implementation of the line search method. If   is 
too large then the line search process may be too slow while if   is too small then the line 
search process may be too fast so as to lose the available step size we should choose a suitable 
step size at each iteration.  
 
4.   New Method 
 
In order to increase the efficiency of Algorithm 2.1, an extended Armijo line search rule given in 
Cantrell (1969) is used to find the best value of the step-size in order to locate the new hybrid 
line search which combines the search direction of Shi-Shen Algorithm 2.1 with Al-Bayati 
(1991) self-scaling update and as shown below:  
         
Let 1  ,  10 12

1   , a fixed integer 1k, x,   2 1  nm  and 1H  is any positive 

definite matrix usually  1 IH  and   a small parameter. 
 
Algorithm 4.1. 
 
Step 1.  If 0kg , then stop. 
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Step 2.  Set ),...,( )()(
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Scalar k  in Step (2) is chosen by Armijo line search rule defined in (20) and kH  is defined by 

Al-Bayati (1991) VM-update defined in Step (3). 
 

Step 3.   Update kH   by  )(1 kkkkkkk
kkk

kkkk
kk yvvvww

yHy

HyyH
HH 





 







   

with  
 

kkkkk ggxxv   1k1 y     , ,          

 

   kkkkkkkkkkkk yHyyHyvvyHyw   2
1

, 

 

kkkkkk yvyHy  . 

 
Step 4:  If available storage is exceeded, then employ a restart option either with nk   or 

 

kkkk gggg 



  111 . 

 
Step 5.  Set 1 kk  and go to Step 2. 
 
Now to ensure that the new algorithm has a super-linear convergence, let us consider the 
following theorems: 
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Theorem 4.1. 
 
If )( 1S  and )( 2S  hold and if the new Algorithm 4.1 generates an infinite sequence }{ kx , then 

 




mk k

kg



4

,                                                                                                                  (21a) 

 
where 
 

),(max
2

1

2

2


 ikk
mi

k dg .                                                                                                 (21b) 

 
Proof: 
 
Since }{ kf is a decreasing sequence and has a lower bound on the level set 0L  , it is a convergent 

sequence. Moreover, since 1kH is also has a global rate of convergence, see Al-Bayati (1991) for 

the details; therefore Lemma 2.1 shows that (21) holds and hence the new algorithm has a super 
linear convergence and hence the proof is complete.  
 
Theorem 4.2. 
 
If conditions in Theorem 4.1 hold, then either lim 0k

k

g


  or }{ kx  has no bound.  

 
Proof:  
 
If 0lim 

k
kg , then there exists an infinite subset ,...}1,{0  mmK  and 0 such that: 

 

0Kk,      kg                                                                                                                (22) 

 
Thus 
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                                                                                               (23) 

 
By Theorem 4.1 and for 1k , we obtain  
 

}{max
2

1

2

i
i

k gd


                                                                                                               (24) 

 
Now if  mk  , then the conclusion is obvious. However, if mk  , then by induction process we 
obtain the conclusion; we have:  
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Then there exists at least one mii  00 2:  such that: 

  





kKk
ikd

,
1

0

lim                                                                                                                    (26) 

 
and hence }{ kx  has no bound. 

 
 
5.  Numerical Results. 
 
Comparative tests are performed with seventy eight well-known test functions (Twenty six with 
three different versions) which are specified in the Appendix. All the results shown in Table 1 
are obtained with newly-programmed Fortran routines which employ double precision. The 
Comparative performances of the algorithms are in the usual way by considering both the total 
number of function evaluations (NOF) and the total number of iterations (NOI). In each case the 
convergence criterion is that the value of 5101 kg . The cubic fitting technique, published in 

its original form by Bunday (1984) is used as the common linear search subprogram for Shi-
Shen algorithm while Armijo line search procedure defined in (21) is used for our new proposed 
algorithm. 
 
Each test function was solved using the following two algorithms: 
 
(1) The original algorithm published by Shi-Shen call it (Shi-Shen, Algorithm 2.1). 
 
(2) The new proposed algorithm call it (New algorithm, Algorithm 4.1). 
 
The numerical results in Table 1 give the comparison between the New and the Shi-Shen 
algorithms for different dimensions of test functions, while Table 2 gives the total overall the 
tools.  The details of the percentage of improvements of NOI and NOF was given in Table 3. The 
important thing is that the new algorithm needs less iteration, fewer evaluations of  )(xf  and 

)(xg than the standard Shi-Shen algorithm in many situations especially for large-scale 
unconstrained optimization problems, when the iterative process reaches the same precision. The 
new proposed algorithm uses less CPU time than Shi-Shen method even we have not mention it. 
However, we can see that Shi-Shen algorithm may fail in some cases while the new method 
always converges for the minimum points. Moreover, the new algorithm seems to be suitable to 
solve ill-conditioned problems and suitable to solve large-scale minimization problems.   
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Table 1. Comparison between the New (4.1) and Shi-Shen Algorithms (3.1) using three different cases for n and m. 
N0. 
OF   

TEST 

TEST 
FUNCTION 

 SHI-SHEN (3.1)       NOI(NOF) NEW (4.1)      NOI(NOF) 

n 12 36 360 1080 4320 12 36 360 1080 4320 

 
 

1 

 
EX-

Tridiagonal-1 

m<n 57 
142 

54 
118 

58 
118 

58 
118 

59 
120 

16 
31 

16 
19 

16 
20 

15 
19 

16 
20 

m=n 
 

53 
113 

54 
112 

54 
112 

58 
118 

58 
118 

16 
28 

16 
19 

16 
20 

15 
19 

16 
20 

m>n 53 
109 

54 
111 

58 
118 

58 
118 

58 
118 

15 
19 

16 
19 

16 
20 

15 
19 

16 
20 

 
 

2 

 
EX-Three 

exponential 

m<n 26 
61 

22 
59 

22 
45 

22 
45 

21 
43 

4 
7 

5 
8 

5 
8 

5 
8 

5 
8 

m=n 26 
55 

21 
43 

22 
45 

22 
45 

21 
43 

4 
7 

5 
8 

5 
8 

5 
8 

5 
8 

m>n 26 
53 

21 
43 

22 
45 

22 
45 

21 
43 

4 
7 

5 
8 

5 
8 

5 
8 

5 
8 

 
 

3 

 
 

Matrix Rom 

m<n 2 
7 

2 
7 

2 
7 

2 
7 

2 
7 

3 
5 

4 
6 

4 
6 

4 
6 

4 
6 

m=n 2 
7 

2 
7 

2 
7 

2 
7 

2 
7 

3 
5 

4 
6 

4 
6 

4 
6 

4 
6 

m>n 2 
7 

2 
7 

2 
7 

2 
7 

2 
7 

3 
5 

4 
6 

4 
6 

4 
6 

4 
6 

 
 

4 

 
EX-Freud  

& Roth 

m<n 6645 
13735 

311 
707 

1940 
5341 

1956 
5745 

2040 
6086 

20 
26 

21 
27 

21 
27 

21 
27 

21 
27 

m=n 512 
1455 

9265 
18877 

10504 
21132 

10882 
21869 

11324 
22743 

20 
26 

21 
27 

21 
27 

21 
27 

21 
27 

m>n 9440 
718975 

9792 
19697 

10528 
21151 

10880 
21855 

11324 
22743 

20 
26 

21 
27 

21 
27 

21 
27 

21 
27 

 
 
 

5 

 
GEN-

Tridiagon
al-1 

m<n 58 
145 

71 
230 

58 
127 

58 
139 

52 
135 

16 
39 

17 
29 

16 
20 

15 
19 

16 
20 

m=n 58 
123 

56 
115 

58 
127 

58 
127 

52 
135 

16 
28 

16 
19 

16 
20 

15 
19 

16 
20 

m>n 48 
99 

26 
75 

58 
127 

58 
127 

52 
135 

15 
19 

16 
19 

16 
20 

15 
19 

16 
20 

 
 

6 

 
 

Diagonal4 

m<n 7 
15 

7 
15 

9 
19 

9 
19 

9 
19 

8 
12 

8 
12 

8 
12 

8 
12 

8 
12 

m=n 7 
15 

7 
15 

9 
19 

9 
19 

9 
19 

8 
12 

8 
12 

8 
12 

8 
12 

8 
12 

m>n 7 
15 

7 
15 

9 
19 

9 
19 

9 
19 

8 
12 

8 
12 

8 
12 

8 
12 

8 
12 

 
 

7 

 
 

Dqdrtic 

m<n 1260 
3036 

1371 
3807 

925 
2509 

1025 
2987 

1305 
3827 

20 
25 

16 
21 

12 
17 

12 
17 

13 
18 

m=n 1260 
2626 

1371 
2781 

925 
1853 

1025 
2051 

1305 
2611 

20 
25 

16 
21 

12 
17 

12 
17 

13 
18 

m>n 2521 
1260 

1371 
2743 

925 
1851 

1025 
2051 

1305 
2611 

20 
25 

16 
21 

12 
17 

12 
17 

13 
18 

 
 

8 

 
 

Denschnb 

m<n 11 
28 

12 
31 

13 
29 

13 
29 

14 
31 

8 
20 

9 
18 

8 
11 

8 
11 

8 
11 

m=n 11 
25 

12 
27 

13 
29 

13 
29 

14 
31 

7 
10 

8 
11 

8 
11 

8 
11 

8 
11 

m>n 11 
25 

12 
27 

13 
29 

13 
29 

14 
31 

7 
10 

8 
11 

8 
11 

8 
11 

8 
11 
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N0. 
OF   

TEST 

TEST 
FUNCTION 

 SHI-SHEN (3.1)       NOI(NOF) NEW (4.1)      NOI(NOF) 
n 12 36 360 1080 4320 12 36 360 1080 4320 

 
 

9 

 
 

GEN-
Quartic GQ1 

m<n 11 
27 

11 
27 

11 
24 

11 
24 

11 
24 

9 
12 

12 
15 

14 
17 

14 
17 

14 
17 

m=n 11 
24 

11 
27 

11 
24 

11 
24 

11 
24 

9 
12 

12 
15 

14 
17 

14 
17 

14 
17 

m>n 11 
24 

11 
27 

11 
24 

11 
24 

11 
24 

9 
12 

12 
15 

14 
17 

14 
17 

14 
17 

 
 

10 

 
 

Diagonal 7 

m<n 4 
10 

4 
10 

4 
10 

4 
10 

4 
10 

4 
7 

4 
7 

5 
8 

5 
8 

5 
8 

m=n 4 
10 

4 
10 

4 
10 

4 
10 

4 
10 

4 
7 

4 
7 

5 
8 

5 
8 

5 
8 

m>n 4 
10 

4 
10 

4 
10 

4 
10 

4 
10 

4 
7 

4 
7 

5 
8 

5 
8 

5 
8 

 
 

11 

 
 

Full Hessian 

m<n 25 
76 

31 
160 

17 
78 

15 
75 

21 
121 

4 
8 

3 
7 

3 
8 

3 
9 

3 
9 

m=n 25 
68 

31 
93 

17 
78 

15 
75 

21 
121 

4 
8 

3 
7 

3 
8 

3 
9 

3 
9 

m>n 25 
64 

31 
93 

17 
78 

15 
75 

21 
121 

4 
8 

3 
7 

3 
8 

3 
9 

3 
9 

 
 

12 

 
 

GEN-Powell 

m<n 85 
208 

88 
252 

104 
307 

119 
239 

125 
251 

50 
56 

50 
56 

50 
56 

50 
56 

50 
56 

m=n 109 
229 

107 
217 

115 
231 

119 
239 

125 
521 

50 
56 

50 
56 

50 
56 

50 
56 

50 
56 

m>n 101 
203 

107 
215 

115 
231 

119 
239 

125 
251 

50 
56 

50 
56 

50 
56 

50 
56 

50 
56 

 
 

13 

 
 

GEN-Rosen  

m<n 48 
117 

37 
130 

39 
138 

39 
138 

41 
145 

52 
66 

53 
67 

54 
68 

54 
68 

54 
68 

m=n 830 
1757 

864 
1779 

954 
1937 

998 
2023 

1052 
2131 

52 
66 

53 
67 

54 
68 

54 
68 

54 
68 

m>n 820 
1667 

864 
1755 

954 
1935 

998 
2023 

1052 
2131 

52 
66 

53 
67 

54 
68 

54 
68 

54 
68 

 
 

14 

 
 

Non-
Diagonal 

m<n 23 
63 

44 
138 

73 
222 

23 
63 

23 
63 

11 
15 

11 
15 

11 
15 

11 
15 

11 
15 

m=n 469 
1024 

129 
302 

373 
803 

385 
826 

385 
826 

11 
15 

11 
15 

11 
15 

11 
15 

11 
15 

m>n 407 
902 

359 
777 

373 
802 

385 
826 

385 
826 

11 
15 

11 
15 

11 
15 

11 
15 

11 
15 

 
 

15 

 
 

GEN-Wolf 

m<n 102 
440 

197 
544 

206 
530 

212 
540 

216 
560 

14 
17 

16 
26 

15 
18 

15 
18 

16 
19 

m=n 182 
388 

197 
400 

206 
413 

212 
425 

216 
433 

14 
17 

16 
26 

15 
18 

15 
18 

16 
19 

m>n 102 
365 

197 
395 

206 
413 

212 
425 

216 
433 

14 
17 

16 
26 

15 
18 

15 
18 

16 
19 

 
 

16 

 
 

GEN-Strait 

m<n 9 
20 

9 
20 

11 
23 

11 
23 

11 
23 

10 
15 

10 
15 

10 
15 

10 
15 

10 
15 

m=n 9 
19 

9 
19 

11 
23 

11 
23 

11 
23 

10 
15 

10 
15 

10 
15 

10 
15 

10 
15 

m>n 9 
19 

9 
19 

11 
23 

11 
23 

11 
23 

10 
15 

10 
15 

10 
15 

10 
15 

10 
15 
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N0. 
OF   

TEST 

TEST 
FUNCTION 

 SHI-SHEN (3.1)       NOI(NOF) NEW (4.1)      NOI(NOF) 

  n 12 36 360 1080 4320 12 36 360 1080 4320 
 
 

17 

 
 

GEN-Recipe 

m<n 69 
204 

73 
267 

81 
203 

85 
213 

89 
223 

11 
14 

11 
14 

12 
15 

12 
15 

13 
16 

m=n 69 
183 

73 
187 

81 
203 

85 
213 

89 
223 

11 
14 

11 
14 

12 
15 

12 
15 

13 
16 

m>n 69 
173 

73 
183 

81 
203 

85 
213 

89 
223 

11 
14 

11 
14 

12 
15 

12 
15 

13 
16 

 
 

18 

 
 

Non-
diagonal 

(Shanno-78) 

m<n 30 
71 

10 
24 

102 
219 

292 
789 

946 
2751 

34 
44 

13 
19 

17 
24 

17 
25 

17 
25 

m=n 30 
65 

10 
22 

102 
206 

292 
586 

946 
2751 

34 
44 

13 
19 

17 
24 

17 
25 

17 
25 

m>n 30 
65 

10 
22 

102 
206 

292 
586 

946 
2751 

34 
44 

13 
19 

17 
24 

17 
25 

17 
25 

 
 

19 

 
EX- 

Tridigonal-2  

m<n 83 
194 

102 
203 

102 
218 

103 
221 

99 
212 

13 
26 

19 
22 

19 
22 

19 
22 

19 
22 

m=n 83 
173 

102 
207 

102 
205 

105 
211 

98 
198 

13 
25 

19 
22 

19 
22 

19 
22 

19 
22 

m>n 83 
167 

102 
205 

102 
205 

105 
211 

98 
198 

13 
16 

19 
22 

19 
22 

19 
22 

19 
22 

 
 

20 

 
 

GEN-Beale 

m<n 656 
1597 

586 
1625 

509 
1350 

535 
1517 

565 
1607 

20 
23 

20 
23 

22 
25 

22 
25 

22 
25 

m=n 503 
1049 

459 
931 

509 
1020 

535 
1071 

565 
1131 

20 
23 

20 
23 

22 
25 

22 
25 

22 
25 

m>n 433 
867 

457 
915 

509 
1019 

535 
1071 

565 
1131 

20 
23 

20 
23 

22 
25 

22 
25 

22 
25 

 
 

21 

 
 

EX-Block-
Diagonal 

BD2 

m<n 16 
39 

18 
48 

18 
38 

20 
42 

20 
42 

37 
120 

69 
79 

72 
76 

75 
79 

78 
82 

m=n 16 
35 

18 
48 

18 
38 

20 
42 

20 
42 

90 
145 

69 
79 

72 
76 

75 
79 

78 
82 

m>n 16 
34 

18 
38 

18 
38 

20 
42 

20 
42 

64 
68 

66 
70 

72 
76 

75 
79 

78 
82 

 
 

22 

 
 

Diagonal 7 

m<n 4 
11 

5 
13 

5 
13 

5 
13 

5 
13 

8 
23 

7 
12 

8 
13 

8 
13 

8 
13 

m=n 4 
11 

5 
13 

5 
13 

5 
13 

5 
13 

7 
12 

7 
12 

8 
13 

8 
13 

8 
13 

m>n 4 
11 

5 
13 

5 
13 

5 
13 

5 
13 

7 
12 

7 
12 

8 
13 

8 
13 

8 
13 

 
 

23 

 
 

Cosine 
(cute) 

m<n 9 
21 

10 
24 

10 
27 

11 
28 

13 
31 

22 
46 

13 
25 

22 
27 

75 
87 

12 
16 

m=n 9 
20 

10 
22 

10 
27 

11 
28 

13 
31 

20 
26 

13 
17 

22 
27 

75 
87 

12 
16 

m>n 9 
20 

10 
22 

10 
27 

11 
28 

13 
31 

20 
26 

13 
17 

22 
27 

75 
87 

12 
16 

 
 

24 

 
 

EX-
Himmelblau 

m<n 3 
7 

4 
9 

4 
9 

4 
9 

4 
9 

8 
17 

9 
18 

9 
18 

9 
18 

9 
18 

m=n 3 
7 

4 
9 

4 
9 

4 
9 

4 
9 

8 
17 

9 
18 

9 
18 

9 
18 

9 
18 

m>n 3 
7 

4 
9 

4 
9 

4 
9 

4 
9 

8 
17 

9 
18 

9 
18 

9 
18 

9 
18 
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N0. 
OF   

TEST 

TEST 
FUNCTION 

 SHI-SHEN (3.1)       NOI(NOF) NEW (4.1)      NOI(NOF) 

  n 12 36 360 1080 4320 12 36 360 1080 4320 
 
 

25 

 
 

Raydan2 

m<n 2 
5 

2 
5 

2 
5 

2 
5 

2 
5 

5 
7 

5 
7 

6 
8 

6 
8 

6 
8 

m=n 2 
5 

2 
5 

2 
5 

2 
5 

2 
5 

5 
7 

5 
7 

6 
8 

6 
8 

6 
8 

m>n 2 
5 

2 
5 

2 
5 

2 
5 

2 
5 

5 
7 

5 
7 

6 
8 

6 
8 

6 
8 

 
 

26 

 
 

Diagonal6 

m<n 2 
7 

2 
7 

2 
7 

2 
7 

2 
7 

5 
7 

5 
7 

6 
8 

6 
8 

6 
8 

m=n 2 
7 

2 
7 

2 
7 

2 
7 

2 
7 

5 
7 

5 
7 

6 
8 

6 
8 

6 
8 

m>n 2 
7 

2 
7 

2 
7 

2 
7 

2 
7 

5 
7 

5 
7 

6 
8 

6 
8 

6 
8 

 
 
 
 
 
 
 
 
Table 2. Comparison between the New (4.1) and Shi-Shen (3.1) algorithms using the total of tools for each test 

function. 
 
 

Total of 
each function 

 
n 

SHI-SHEN       NOI(NOF) NEW      NOI(NOF) 

12 36 360 1080 4320 12 36 360 1080 4320 
m<n 9243 

20286 
3083 
8480 

4327 
11616 

4636 
13045 

5699 
16365 

412 
686 

426 
563 

447 
573 

499 
626 

444 
562 

m=n 4289 
9493 

12825 
26275 

14113 
28576 

14885 
30095 

16354 
34206 

461 
657 

426 
549 

447 
562 

499 
625 

444 
562 

m>n 14238 
725153 

13550 
27428 

14141 
28595 

14883 
30081 

16354 
33936 

433 
553 

423 
540 

447 
562 

499 
633 

444 
562 

          Total of  
26x3=78 test 

functions 

 27770 
754932 

29458 
62183 

32581 
68787 

34404 
73221 

38407 
84507 

1306 
1896 

1275 
1663 

1341 
1686 

 

1497 
1875 

1332 
1686 

 



AAM: Intern. J., Vol. 7, Issue 1 (June 2012)                                                                                                            241                                
          

   

Table 3. Percentage performance of the new (4.1) proposed algorithm against Shi-Shen (3.1) algorithm  for 100% in 
both NOI and NOF. 

 
             
 
 
 
 
 
 
 

 
 
5.   Conclusions and Discussions. 

  
In this Paper, a new combined gradient related and VM-algorithm for solving large-scale 
unconstrained optimization problems is proposed. The new algorithm is a kind of Armijo line 
search method. The basic idea is to choose a combination of the current gradient and some 
previous search directions which are updated by Al-Bayati's self scaling (1991) VM as a new 
search direction and to find a step-size by using Armijo ILS. Using more information at the 
current iterative step may improve the performance of the algorithm and accelerate the gradient 
relates which need a few iterations. The new algorithm concept is useful to analyze its global 
convergence property. Numerical experiments show that the new algorithm converges faster and 
is more efficient than the standard Shi-Shen algorithm in many situations. The new algorithm is 
expected to solve ill-conditioned problems. Clearly there are large ranges of the improving 
percentages against  the standard Shi-Shen algorithm; namely, the new algorithm has about 
(53)% NOI and (75)%NOF improvements against Shi-Shen algorithm taking n=12. These 

 
n 

 
Cost 

 

 
 
 

 
NEW    

 
 
 

1080 

NOI 
NOF 

m<n 89.24 
95.2 

NOI 
NOF 

m=n 96.65 
97.92 

NOI 
  NOF 

m>n 96.65 
97.89 

NOI 
NOF 

Total 95.65 
97.44 

 
 
 

4320 

NOI 
NOF 

m<n 92.21 
96.57 

NOI 
NOF 

m=n 97.29 
98.36 

NOI 
  NOF 

m>n 97.29 
98.34 

NOI 
NOF 

Total 96.53 
98.01 

 
n 

 
Cost 

 

 
 
 

 
NEW    

 
 
 

12 

NOI 
NOF 

m<n 95.5 
96.62 

NOI 
NOF 

m=n 89.25 
93.08 

NOI 
  NOF 

m>n 96.96 
99.92 

NOI 
NOF 

Total 95.3 
99.75 

 
 
 

36 

NOI 
NOF 

m<n 86.18 
93.36 

NOI 
NOF 

m=n 96.68 
97.91 

NOI 
  NOF 

m>n 96.88 
98.03 

NOI 
NOF 

Total 95.67 
97.33 

 
 
 

360 

NOI 
NOF 

m<n 89.67 
95.07 

NOI 
NOF 

m=n 96.83 
98.03 

NOI 
  NOF 

m>n 96.83 
98.03 

NOI 
NOF 

Total 95.88 
97.55 
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improvements are very clear for n=36; n = 360, 1080 and finally, for n = 4320 the new algorithm 
has about (64)% NOI and (80)% NOF improvements against Shi-Shen (2004) CG-algorithm. 
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APPENDIX 
 
All the test functions used in this paper are from general literature Nocedal (1980 , 2005). 
 
1. Extended Tridigonal-1Function: 

 




 
2/

1

4
212

2
212 )1()3()(

n

i
iiii xxxxxf , 

 
]2,...,2,2[0 x . 

 
2. Extended Three Exponential Terms Function: 
 

 


 
2/

1
12212212 )1.0exp()1.03exp()1.03exp()(

n

i
iiiii xxxxxxf , 

 
]1.0,...,1.0,1.0[0 x . 

 
3. Diagonal 5 Function (Matrix Rom): 

 





n

i
ii xxxf

1

))exp()log(exp()( , 

 
 ]1.1,...,1.1[0 x . 

 
4. Extended Freud & Roth Function: 
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2/

1

2
22212

2
22212 )14)1((29)2)5((13)(

n

i
iiiiiiii xxxxxxxxxf , 

.]2,5.0.,...,2,5.0.,2.,5.0[0 x . 

 
5. Generalized Tridiagonal-1 Function: 

 

   4
212

1

1

2
212 13)(  




 ii

n

i
ii xxxxxf , 

 
]2,...,2,2[0 x . 

 
6. Diagonal 4 Function: 

 

 


 
2/

1

2
2

2
122

1)(
n

i
ii cxxxf , 

 
100c  ,  ]1,...,1,1[0 x . 

 
7. Dqudrtic Function (CUTE): 

 

 



 

2

1

2
2

2
1

2)(
n

i
iii dxcxxxf , 

 
100d100,c  ,  ]3,...,3,3[0 x . 

 
8. Extended Denschnb Function (CUTE): 

 




 
2/

1

2
2

2
2

2
12

2
12 )1()2()2()(

n

i
iiii xxxxxf , 

 
]1.0,...,1.0,1.0[0 x . 

 
9. Generalized quartic Function GQ1 

 





 

1

1

22
1

2 )()(
n

i
iii xxxxf , 

 
.]1.,...,1.,1[0 x . 

 
 
10. Diagonal 8 Function: 
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n

i
iiii xxxxxf

1

22)exp()(  , 

 
.]1.,1.,...,1.,1[0 x . 

 
11. Full Hessian Function: 

 














n

i
iiii

n

i
i xxxxxxf

1

2

2

1

)2)exp(()( , 

 
.]1.,...,1.,1[0 x . 

 
12. Generalized Powell function: 

 

]})2exp[-(- )sin(][3{)( 2x
3/

1
2)(1

1
2

3i32
2

2
 


 i

iii

ii
x

x
n

i

xx

xx
xf 

, 

 
.]2.,1.,0.,...,2.,1.,0[0 x . 

 
13. Generalized Rosen Brock Banana function:    

 




 
2/

1

2
12

22
122 )1()(100)(

n

i
iii xxxxf , 

 
]1,2.1.,...,1,2.1[0 x  

 
14. Generalized Non-diagonal function: 
 





n

i
ii xxxxf

2

222
1 )1()(100[)( ,  

.].1.,...,1[0 x  

 
15. Generalized Wolfe Function: 

 

    ,1)2/3()122/3()12)2/3(()(
1

1

2
1

2
11

2
211 




 

n

i
nnniiii xxxxxxxxxxxf

 
.]1.,...,1[0 x . 
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16. Generalized Strait Function:  
 




 
2/

1

2
12

2
2

2
12 )1(100)()(

n

i
iii xxxxf , 

 
.]2.,...,2[0 x . 

 
17. Generalized Recipe Function: 
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1
)2(

2
19

2
13 2

313

2
3)5()(

n

i
xx

x
ii

ii

ixxxf , 

 
.]1.,5.,2.,...,1.,5.,2[0 x . 

 
18. Non-diagonal (Shanno-78) Function (Cute): 

 

22
11

2

2 )(100)1()( 


  i

n

i
i xxxxf , 

 
.]1.,...,1.,1[0 x . 

 
19. Extended Tridiagonal-2 Function: 
 





 

1

1
1

2
1 )1)(1()1()(

n

i
iiii xxcxxxf , 

1.0c ,  .]1.,...,1.,1[0 x . 

 
20. Generalized Beale Function:  

 

     


 
2/

1

22
212
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21. Extended Block-Diagonal BD2 Function: 
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22. Diagonal 7 Function: 
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23. Cosine Function (CUTE): 
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24. Extended Himmelblau Function: 
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25. Raydan 2 Function: 
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26. Diagonal 6 Function: 
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