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Abstract

In this paper, a new combined extended Conjugate-Gradient (CG) and Variable-Metric (VM)
methods is proposed for solving unconstrained large-scale numerical optimization problems. The
basic idea is to choose a combination of the current gradient and some pervious search directions
as a new search direction updated by Al-Bayati's SCVM-method to fit a new step-size parameter
using Armijo Inexact Line Searches (ILS). This method is based on the ILS and its numerical
properties are discussed using different non-linear test functions with various dimensions. The
global convergence property of the new algorithm is investigated under few weak conditions.
Numerical experiments show that the new algorithm seems to converge faster and is superior to
some other similar methods in many situations.
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1. Introduction

Consider an unconstrained optimization problem:
min f(x), xeR", (1)

where f:R" — R' is a continuously differentiable function in R” an n-dimensional Euclidean

space; n may be very large in some sense. Most of the well-known iterative algorithms for
solving (1) take the form:

Xy =X, tagd, (2)

where d, is a search direction and «, is a positive step-size along the search direction. This
class of methods is called a line search gradient method. If x, is the current iterative point, then

we denote Vf(x,) by g,, f(x,) by f, and f(x*) by [, respectively. If we take d, =-g,,

then the corresponding method is called the Steepest Descent (SD) method; one of the simpler
gradient methods. That has wide applications in large scale optimization; see Nocedal and
Wright (1999). Generally the CG-method is a useful technique for solving large-scale nonlinear
problems because it avoids the computation and storage of some matrices associated with the
Hessian of objective functions. The CG-method has the form:

_gk’ lf k = 0,
= ' 3)
—g +Bd, .y, it k>0,

where [, is a parameter that determines the different CG-methods; see for example the

following references: Crowder & Wolfe (1972); Dai & Yuan (1996, 1999) and Fletcher-Reeves
(1964). Well known choices of S, satisfy:

FR _ ||gk||2 PR :g;(gk_gk-l) HS _ g (g —g) )
k 27 k 2 ’ k T ’
”gkfl ”gk—l ” d, 18

which respectively, correspond to the FR (Fletcher-Reeves, 1964), PR (Polak-Ribiere, 1969) and
HS (Hestenes Stiefel, 1952). CG-method with Exact Line Search (ELS) has finite convergence
when they are used to minimize strictly convex quadratic function; see for example Al-Bayati
and Al-Assady (1986). However, if the objective function is not quadratic or ELS is not used
then a CG-method has no finite convergence. Also a CG-method has no global convergence if
the objective function is non- quadratic. Similarly, Miele and Cantrell (1969) studied the
memory gradient method for (1); namely, if x, is an initial point and d, = g,, the method can

be stated as follows:

X1 =X TV s v =—ag,+t v, , (%)
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where o and f are scalars chosen at each step so as to yield the greatest decrease in the
function f .Cantrell (1969) showed that the memory gradient method and the FR-CG method are

identical in the particular case of a quadratic function. Cragg and Levy (1969) proposed a super-
memory gradient method whose search direction is defined by:

k
d, =-ag, + Zﬂfdm ) (6)
i1

where x, is an initial point and d, = g,. Wolfe and Viazminsky (1976) also investigated a
super-memory descent method for (1) in which the objective takes the form:

S —a,p, +Zﬂi(k)vk—i) = Vgninﬂ J(x, —ap + Zﬂi(k)vkﬁ‘) > (7a)
i1 oo P i1
where
Vi =0 P T Zﬂi(k)é‘k—i 5 (7b)

i=1

m is a fixed positive integer; with
pig #0. (8)

Both the memory and super-memory gradient methods are more efficient than the CG and SD
methods by considering the amount of computation and storages required in the latter. Shi-Shen
(2004) combined the CG-method and supper-memory descent method to form a new gradient
method that may be more effective than the standard CG-method for solving large scale
optimization problems as follows:

. m é‘i . )
mm{ngdk(ﬂ/EQn-w-"al_Zﬂéfzﬂ /ilil)ufl E[Ek’ak](l =2,--,m)}, (%a)
i=2
where
Xen =%+ d (B s B (9b)
We denote d,(BY) ... ") by d, throughout this paper, m is a fixed positive integer and «,

is a scalar chosen by a line search procedure. The theoretical and practical merits of the Quasi
Newton (QN) family of methods for unconstrained optimization have been systematically
explored since the classic paper of Fletcher and Powell analyzed by Davidon' VM method. In
1970 the self-scaling VM algorithms were introduced, showing significant improvement in
efficiency over earlier methods.
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Recently, Al-Bayati and Latif (2008) proposed a new three terms preconditioned gradient
memory method. Their method subsumes some other families of nonlinear preconditioned
gradient memory methods as its subfamilies with Powell's restart criterion and inexact Armijo
line searches. Their search direction was defined by:

“H,g,, if k=0
d,f&L:{ S (10)

_gk +ﬂdek _akaldk—U lf k > 0,

where « is a step-size defined by inexact Armijo line search procedure and f# is the conjugacy

parameter. Al-Bayati et al. (2009) introduced two versions CG-algorithm. Their search directions
are defined by:

-2, ifk=0 r r

dli = gk . ' and /:1 :(l_S];yk)(gk;lyk) (lla)
-g, +Bd, if k>0, VeV SiVie
—g, ifk=0 T T T

ar={ _ and f? = (1 62k (8eade) | 58 (11b)
g +h5.d if k>0, Wy dyy d,y,

where (11) has been proved to be a sufficiently descent directions.

Also, Zhang, et al. in (2009) had modified Dai-Liao DL-CG method with three terms search
directions as follows:

_goa lf k = 0,
d, = oL . (12a)
g +Bdi =&, (J’k,l —l‘Sk,l), if k>0,
where &, =g/d, /d[ y,, and B is defined by:
T J—
DL _& W =) s (125)

dkT—lyk—l
They show that the sufficient descent condition also holds true if no line search is used, that is,
2
glf—ldk =_||gk—1|| . (13)

In order to achieve the global convergence result, Grippo and Lucidi (1997) proposed the
following new line search: for given constants >0, §>0, and 1€ (0,1), let
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ld
a, =max{/1j T‘gk zk‘;j =0, l,..}, (14)
e
which satisfy
£l = £l )= d, [ (15)

This line search will be preferred to the classical Armijo one for the sake of a greater reduction
of objective function. Introducing this line search rule. This may be taken as an open problem.

In this paper, a new gradient related algorithm combined with VM-update used for solving large
scale unconstrained optimization problems, is proposed. The new algorithm is a kind of ILS
method modified with VM-algorithm. The basic idea is to choose a combination of the current
gradient and some previous search directions with Al-Bayati self-scaling VM-update which is
based on two-parameter family of rank-two updating formulae. The algorithm is compared with
similar published algorithms, which may be more effective than the standard conjugate related
algorithm; namely, Nazareth (1977) and other VM-algorithm. The global rate of convergence is
investigated under a diverse weak condition. Numerical experiment shows that the new
algorithm seems to converge more stably and is superior to other similar methods.

2. Shi-Shen Algorithm

Shi-Shen (2004) proposed the following assumptions:

S,: The objective function f has lower bound on the level set L, = {x € R"

J) < f(x)

where x, is an available initial point.

S, : The gradient g(x) of f(x) is Lipschitz continuous in an open convex set B which
contains L, i.e., there exist a constant L > 0 such that:

lg(x) - g < L|x-»], ¥x,yeB.

S, : The gradient g(x) is uniformly continuous in an open convex set B containing L, .

Obviously Assumption (S, ) implies (.S;).

As we know, a key to devise an algorithm for unconstrained optimization problems is to choose
an available search direction d, and a suitable step-size ¢, at each iteration. Certainly if we

choose a search direction d, satisfying:

—gld, <0, (16)
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then we can devise a descent direction generally, we demand that:

2

—gid, 2n|g,| (17a)
which is called sufficient descent condition where 77 > 0.
Furthermore, if

—gid, 21|g.|d.] (17b)

then many descent algorithms have their convergence under the above condition. It is called an
angle condition or a gradient—related conception.

Definition 2.1. Berstsekas (1982)

Let {x,} be a sequence generated by the gradient method (2). We say that the sequence {d,} is
uniformly gradient related to {x, } if for every convergent subsequence {x,} for which

limg, #0, (18a)
keK k—o
we have
0<liminflg{d,| limsup|d,|<-+e. (18b)
keK k—w keK k-

Equivalently, {d, } is uniformly gradient related if whenever a subsequence {g,} tends to a non-
zero vector, the corresponding subsequence of direction d, is bounded and does not tend to be
orthogonal to g, . Moreover, we must choose a line search rule to find the step-size a long search
direction at each iteration.

Lemma 2.1. Berstsekas (1982)

Let {x,}be a sequence generated by a gradient method and assume that {d,}is uniformly
gradient related and «, is chosen by the minimization rule or the limited minimization rule, then

every limited point of {x,}is a critical point x", i.e. g(x")=0. As to the parameters in the

(k)

. S, . T
algorithm, we seem to choose f,",, € [?",5,2](1' =2,...,m)for solving large scale optimization

problems as defined in (9). To get the algorithm to converge more quickly, we take:
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S
® _J 9

k—i+1

if 2_ Td
I el g (19)

51:5 if ||gk||2 < g;dk_,-ﬂ-

Now, it is easy to prove that:

0<3 g0, <36 < p<i
i=2 =2

and
1> 40 =1-> ", 21->'6] 21-p>0.
i=2 i=2

The details may be found in Crowder & Wolfe (1972).

Algorithm 2.1. Shi-Shen

Let 0<p<l,O0<py <)<u,<l1, a fixed integer m>2, x, eR", k=1and & is a small
parameter, then:

Step 1. If ||gk || < &, then stop.

Step 2. Set x,,, = x, +a,d, (B, ... B), where
—&> if k=m-1,

dk(ﬂ,fk) e ,Ek)) = m

B (k) (k) .

" ~Px gk_Zﬂk—Hldk—Hl’ it k>m,
i=2

S
k k ,
" e 7,5,2] Jd=2,.,m,

s, . I
O if > oTd

w 150 i el e,
5129 if ||gk||2 < g;dkfma

and
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i p ||gk||2 - ® N )
5 = ’ (1 = 29-~-~7m)9 /8 ZI_ZIB =i+l »
g eld CoET

scalar ¢, in Step (2) is chosen by a cubic line search; Bunday (1984).

Step 3. If the available storage is exceeded, then employ a restart option [Zoutendijk (1970)]
either with

_ T T
k=nor g, g, >8.8-

Step 4. Set k =k +1, go to Stepl.

3. A New Proposed Algorithm for Solving Problem (1)

In this section we want to choose a line search rule to find the best step-size parameter along the
search direction at each iteration. In fact, we can use the generalized Armijo line search rule
implemented in Luenberger (1989):

Set scalar S, and g, with g, €(0,1) , f€(0,1) and §>0. Let ¢, be the largest & in
{S, S, Sﬂz,...} such that:

Je—f(x, +ad,) 2 _ﬂlagzdk . (20)

Choosing the parameter £ is important for the implementation of the line search method. If £ is
too large then the line search process may be too slow while if f is too small then the line

search process may be too fast so as to lose the available step size we should choose a suitable
step size at each iteration.

4. New Method
In order to increase the efficiency of Algorithm 2.1, an extended Armijo line search rule given in
Cantrell (1969) is used to find the best value of the step-size in order to locate the new hybrid

line search which combines the search direction of Shi-Shen Algorithm 2.1 with Al-Bayati
(1991) self-scaling update and as shown below:

Let 0<p<l1, )<y <1, a fixed integer m>2 ,x, €eR" k=1 and H, is any positive
definite matrix usually 4, =/ and & a small parameter.

Algorithm 4.1.

Step 1. If ||gk || =0, then stop.
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Step 2. Set x,,, =x, +a,d, (BL).,.... ), where

—-Hg,, if k<m-1,

d e .. A= 4
Pimars P20 igmg _S 0 g s kzm,
i=2

k—i+1

Qaelhal =2,

5

[/ 2 T
) =12 i ”gk” > 8 i fori=12,..,.m,
s if e <gld i
and
p e, f
S = ‘ , (i=2,...m), Y =1-Yp% .
=l eld, =12 A

Scalar ¢, in Step (2) is chosen by Armijo line search rule defined in (20) and /, is defined by
Al-Bayati (1991) VM-update defined in Step (3).

Hkykylek

Step 3. Update H, by H, =(Hk— -
Vel y,

+ Wkng+ Hy (vkvlz/vlzyk)
with
Vi T X Xk Yo T 8kt — 8o
Wi = (ylekyk)A[vk/V:yk _Hkyk/ylekyk]ﬂ
T T
M = kakyk/kak .
Step 4: If available storage is exceeded, then employ a restart option either with £ =»n or
g;+lgk+l > glzﬁ-lgk'
Step 5. Set k =k +1 and go to Step 2.

Now to ensure that the new algorithm has a super-linear convergence, let us consider the
following theorems:
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Theorem 4.1.
If (S,) and (S,) hold and if the new Algorithm 4.1 generates an infinite sequence {x, } , then
S
D < oo, (21a)
k=m 7]{

where

2
5

2

di ) 21b)

Vi = maX(”gk

2<i<m
Proof:

Since {f, }is a decreasing sequence and has a lower bound on the level set L, , it is a convergent
sequence. Moreover, since H,,,1s also has a global rate of convergence, see Al-Bayati (1991) for

the details; therefore Lemma 2.1 shows that (21) holds and hence the new algorithm has a super
linear convergence and hence the proof is complete.

Theorem 4.2.

If conditions in Theorem 4.1 hold, then either lim || gk” =0 or {x,} has no bound.

k—
Proof:

If lim”gk || # 0, then there exists an infinite subset K, — {m,m +1,...} and ¢ > 0 such that:

k—ow0
led>e keK, (22)
Thus
4 4
o ol e K, (23)
Vi Vi

By Theorem 4.1 and for £ >1, we obtain

||dk ||2 < max{

<li<

s (24)

Now if & < m, then the conclusion is obvious. However, if k& > m , then by induction process we
obtain the conclusion; we have:



236 Abbas Y. Al-Bayati and Ivan S. Latif

+00

v z_|gk” <400 | 25)

keko Ve kem Vi

Then there exists at least one i, : 2 <i, < m such that:

lim||d, ., || =+ (26)

keKy,k—o

and hence {x, } has no bound.

5. Numerical Results.

Comparative tests are performed with seventy eight well-known test functions (Twenty six with
three different versions) which are specified in the Appendix. All the results shown in Table 1
are obtained with newly-programmed Fortran routines which employ double precision. The
Comparative performances of the algorithms are in the usual way by considering both the total
number of function evaluations (NOF) and the total number of iterations (NOI). In each case the

convergence criterion is that the value of || g || <1x107. The cubic fitting technique, published in

its original form by Bunday (1984) is used as the common linear search subprogram for Shi-
Shen algorithm while Armijo line search procedure defined in (21) is used for our new proposed
algorithm.

Each test function was solved using the following two algorithms:
(1) The original algorithm published by Shi-Shen call it (Shi-Shen, Algorithm 2.1).
(2) The new proposed algorithm call it (New algorithm, Algorithm 4.1).

The numerical results in Table 1 give the comparison between the New and the Shi-Shen
algorithms for different dimensions of test functions, while Table 2 gives the total overall the
tools. The details of the percentage of improvements of NOI and NOF was given in Table 3. The
important thing is that the new algorithm needs less iteration, fewer evaluations of f(x) and

g(x)than the standard Shi-Shen algorithm in many situations especially for large-scale

unconstrained optimization problems, when the iterative process reaches the same precision. The
new proposed algorithm uses less CPU time than Shi-Shen method even we have not mention it.
However, we can see that Shi-Shen algorithm may fail in some cases while the new method
always converges for the minimum points. Moreover, the new algorithm seems to be suitable to
solve ill-conditioned problems and suitable to solve large-scale minimization problems.
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Table 1. Comparison between the New (4.1) and Shi-Shen Algorithms (3.1) using three different cases for n and m.

NO. TEST SHI-SHEN (3.1)  NOI(NOF) NEW (4.1) NOI(NOF)
OF | FUNCTION n 12 36 360 1080 | 4320 12 36 | 360 | 1080 | 4320
TEST
m<n 57 54 58 58 59 16 16 16 15 16
EX- 142 118 118 118 120 31 19 | 20 19 20
1 Tridiagonal-1 m=n 53 54 54 58 58 16 16 16 15 16
113 112 112 118 118 28 19 | 20 19 20
m>n 53 54 58 58 58 15 16 16 15 16
109 111 118 118 118 19 19 | 20 19 20
m<n 26 22 22 22 21 4 5 5 5 5
EX-Three 61 59 45 45 43 7 8 8 8 8
2 exponential | m=n 26 21 22 22 21 4 5 5 5 5
55 43 45 45 43 7 8 8 8 8
m>n 26 21 22 22 21 4 5 5 5 5
53 43 45 45 43 7 8 8 8 8
m<n 2 2 2 2 2 3 4 4 4 4
7 7 7 7 7 5 6 6 6 6
3 Matrix Rom | =" 2 2 2 2 2 3 4 4 4 4
7 7 7 7 7 5 6 6 6 6
m>n 2 2 2 2 2 3 4 4 4 4
7 7 7 7 7 5 6 6 6 6
m<n 6645 311 1940 | 1956 | 2040 | 20 21 21 21 21
EX-Freud 13735 707 5341 | 5745 | 6086 | 26 27 | 27 | 27 27
4 & Roth m=n 512 9265 | 10504 | 10882 | 11324 | 20 21 21 21 21
1455 18877 | 21132 | 21869 | 22743 | 26 27 | 27 | 27 27
m>n 9440 9792 | 10528 | 10880 | 11324 | 20 21 21 | 21 21
718975 | 19697 | 21151 | 21855 | 22743 | 26 27 | 27 | 27 27
m<n 58 71 58 58 52 16 17 16 15 16
GEN- 145 230 127 139 135 39 29 | 20 19 20
5 Tridiagon | "~ 58 56 58 58 52 16 16 16 15 16
123 115 127 127 135 28 19 | 20 19 20
al-1 o 48 26 58 58 52 | 15 6 | 16 | 15 | 16
99 75 127 127 135 19 19 | 20 19 20
m<n 7 7 9 9 9 8 8 8 8 8
15 15 19 19 19 12 12 12 12 12
6 Diagonal4 | "= 7 7 9 9 9 8 8 8 8 8
15 15 19 19 19 12 12 12 12 12
m>n 7 7 9 9 9 8 8 8 8 8
15 15 19 19 19 12 12 12 12 12
m<n 1260 1371 925 1025 | 1305 | 20 16 12 12 13
3036 3807 | 2509 | 2987 | 3827 | 25 21 17 17 18
7 Dqdrtic m=n 1260 1371 925 1025 | 1305 | 20 16 12 12 13
2626 2781 1853 | 2051 | 2611 | 25 21 17 17 18
m>n 2521 1371 925 1025 | 1305 | 20 16 12 12 13
1260 2743 | 1851 | 2051 | 2611 | 25 21 17 17 18
m<n 11 12 13 13 14 8 9 8 8 8
28 31 29 29 31 20 18 11 11 11
8 m=n 11 12 13 13 14 7 8 8 8 8
Denschnb 25 27 29 29 3] 10 1| 11| 1 1
m>n 11 12 13 13 14 7 8 8 8 8
25 27 29 29 31 10 11 11 11 11
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NO. TEST SHI-SHEN (3.1)  NOI(NOF) NEW (4.1) NOI(NOF)
OF FUNCTION n 12 36 360 1080 | 4320 12 36 360 1080 | 4320
TEST
m<n 11 11 11 11 11 9 12 14 14 14
27 27 24 24 24 12 15 17 17 17
9 GEN- m=n 11 11 11 11 11 9 12 14 14 14
Quartic GQ1 24 27 24 24 24 12 15 17 17 17
m>n 11 11 11 11 11 9 12 14 14 14
24 27 24 24 24 12 15 17 17 17
m<n 4 4 4 4 4 4 4 5 5 5
10 10 10 10 10 7 7 8 8 8
10 Diagonal 7 m=n 4 4 4 4 4 4 4 5 5 5
10 10 10 10 10 7 7 8 8 8
m>n 4 4 4 4 4 4 4 5 5 5
10 10 10 10 10 7 7 8 8 8
m<n 25 31 17 15 21 4 3 3 3 3
76 160 78 75 121 8 7 8 9 9
11 Full Hessian m=n 25 31 17 15 21 4 3 3 3 3
68 93 78 75 121 8 7 8 9 9
m>n 25 31 17 15 21 4 3 3 3 3
64 93 78 75 121 8 7 8 9 9
m<n 85 88 104 119 125 50 50 50 50 50
208 252 307 239 251 56 56 56 56 56
12 GEN-Powell m=n 109 107 115 119 125 50 50 50 50 50
229 217 231 239 521 56 56 56 56 56
m>n 101 107 115 119 125 50 50 50 50 50
203 215 231 239 251 56 56 56 56 56
m<n 48 37 39 39 41 52 53 54 54 54
117 130 138 138 145 66 67 68 68 68
13 GEN-Rosen m=n 830 864 954 998 1052 52 53 54 54 54
1757 1779 1937 2023 | 2131 66 67 68 68 68
m>n 820 864 954 998 1052 52 53 54 54 54
1667 1755 1935 2023 2131 66 67 68 68 68
m<n 23 44 73 23 23 11 11 11 11 11
63 138 222 63 63 15 15 15 15 15
14 Non- m=n | 469 | 129 | 373 [ 385 [ 385 | 11 | 11 | 11 | 11 | 11
Diagonal 1024 | 302 | 803 | 826 | 826 | 15 | 15 | 15 | 15 | 15
m>n | 407 | 359 | 373 | 385 [ 385 | 11 | 11 | 11 | 11 | 11
902 | 777 | 802 | 826 | 826 | 15 | 15 | 15 | 15 | 15
m<n | 102 | 197 | 206 | 212 [ 216 | 14 | 16 | 15| 15 | 16
s | eenwer 440 | 544 | 530 | 540 | 560 | 17 | 26 | 18 | 18 | 19
R U m=n | 182 | 197 | 206 [ 212 [ 216 | 14 | 16 | 15 | 15 | 16
388 | 400 | 413 | 425 | 433 | 17 | 26 | 18 | 18 | 19
m>n | 102 | 197 | 206 | 212|216 | 14 | 16 | 15 | 15 | 16
365 | 395 | 413 | 425 | 433 | 17 | 26 | 18 | 18 | 19
m<n | 9 9 11 1|11 [ 10| 10| 10] 10] 10
6 | censia 20 20 23 23 | 23 | 15 | 15 | 15 | 15 | 15
S = |9 9 11 11 [ 111010 ] 10] 107 10
19 19 23 23 | 23 | 15 | 15 | 15 | 15 | 15
m>n 9 9 11 11 11 10 10 10 10 10
19 19 23 23 23 15 15 15 15 15
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NO. TEST SHI-SHEN (3.1)  NOI(NOF) NEW (4.1) NOI(NOF)

OF | FUNCTION
TEST

n 12 36 360 1080 | 4320 12 36 360 | 1080 | 4320

m<n 69 73 81 85 89 11 11 12 12 13

204 | 267 203 213 223 14 14 15 15 16

17 | GEN-Recipe m=n 69 73 81 85 89 11 11 12 12 13

183 187 203 213 223 14 14 15 15 16

m>n 69 73 81 85 89 11 11 12 12 13

173 183 203 213 223 14 14 15 15 16

m<n 30 10 102 292 946 34 13 17 17 17

71 24 219 789 | 2751 44 19 24 25 25

18 Non- m=n 30 10 102 292 946 34 13 17 17 17

diagonal 65 22 206 586 | 2751 44 19 24 25 25

(Shanno-78) m>n 30 10 102 292 946 34 13 17 17 17

65 22 206 586 | 2751 44 19 24 25 25

m<n 83 102 102 103 99 13 19 19 19 19

EX- 194 | 203 218 221 212 26 22 22 22 22

19 | Tridigonal-2 m=n 83 102 102 105 98 13 19 19 19 19

173 207 205 211 198 25 22 22 22 22

m>n 83 102 102 105 98 13 19 19 19 19

167 | 205 205 211 198 16 22 22 22 22

m<n 656 | 586 509 535 565 20 20 22 22 22

1597 | 1625 | 1350 | 1517 | 1607 23 23 25 25 25

20 GEN-Beale m=n 503 459 509 535 565 20 20 22 22 22

1049 | 931 1020 | 1071 | 1131 23 23 25 25 25

m>n 433 457 509 535 565 20 20 22 22 22

867 | 915 1019 | 1071 | 1131 23 23 25 25 25

m<n 16 18 18 20 20 37 69 72 75 78

39 48 38 42 42 120 79 76 79 82

21 EX-Block- m=n 16 18 18 20 20 90 69 72 75 78

Diagonal 35 48 38 42 42 145 79 76 79 82

BD2 m>n 16 18 18 20 20 64 66 72 75 78

34 38 38 42 42 68 70 76 79 82

m<n 4 5 5 5 5 8 7 8 8 8

11 13 13 13 13 23 12 13 13 13

22 Diagonal 7 m=n 4 5 5 5 5 7 7 8 8 8

11 13 13 13 13 12 12 13 13 13

m>n 4 5 5 5 5 7 7 8 8 8

11 13 13 13 13 12 12 13 13 13

m<n 9 10 10 11 13 22 13 22 75 12

21 24 27 28 31 46 25 27 87 16

23 Cosine m=n 9 10 10 11 13 20 13 22 75 12

(cute) 20 22 27 28 31 26 17 27 87 16

m>n 9 10 10 11 13 20 13 22 75 12

20 22 27 28 31 26 17 27 87 16

m<n 3 4 4 4 4 8 9 9 9 9

7 9 9 9 9 17 18 18 18 18

24 EX- m=n 3 4 4 4 4 8 9 9 9 9

Himmelblau 7 9 9 9 9 17 18 18 18 18

m>n 3 4 4 4 4 8 9 9 9 9

7 9 9 9 9 17 18 18 18 18
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NO. TEST SHI-SHEN (3.1)  NOI(NOF) NEW (4.1) NOI(NOF)
OF | FUNCTION
TEST
n 12 36 360 1080 | 4320 12 36 360 1080 | 4320
m<n 2 2 2 2 2 5 5 6 6 6
5 5 5 5 5 7 7 8 8 8
25 Raydan2 m=n 2 2 2 2 2 5 5 6 6 6
5 5 5 5 5 7 7 8 8 8
m>n 2 2 2 2 2 5 5 6 6 6
5 5 5 5 5 7 7 8 8 8
m<n 2 2 2 2 2 5 5 6 6 6
7 7 7 7 7 7 7 8 8 8
26 Diagonal6 m=n 2 2 2 2 2 5 5 6 6 6
7 7 7 7 7 7 7 8 8 8
m>n 2 2 2 2 2 5 5 6 6 6
7 7 7 7 7 7 7 8 8 8
Table 2. Comparison between the New (4.1) and Shi-Shen (3.1) algorithms using the total of tools for each test
function.
SHI-SHEN  NOI(NOF) NEW  NOI(NOF)
n 12 36 360 1080 4320 12 36 360 1080 | 4320
Total of m<n | 9243 3083 4327 4636 5699 | 412 | 426 447 | 499 | 444
each function 20286 8480 11616 13045 16365 686 563 573 626 562
m=n 4289 12825 14113 14885 16354 461 426 447 499 444
9493 26275 28576 30095 34206 657 549 562 625 562
m>n 14238 13550 14141 14883 16354 433 423 447 499 444
725153 27428 28595 30081 33936 553 540 562 633 562
Total of 27770 29458 32581 34404 38407 1306 1275 1341 1497 | 1332
26x3=78 test 754932 62183 68787 73221 84507 1896 1663 1686 1875 | 1686
functions
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Table 3. Percentage performance of the new (4.1) proposed algorithm against Shi-Shen (3.1) algorithm for 100% in

both NOI and NOF.
n Cost NEW n Cost NEW
NOI m<n 955 NOI m<n 80,24
NOF 96.62 NOF 95.2
NOI m=n 89.25 NOI m=n 96.65
12 NOF 93.08 10801 NoF 97.92
NOI s 96.96 NOI m>n 96.65
NOF 99.92 NOF 97.89
NOI Total 953 NOI Total 95.65
NOF 99.75 NOF 97.44
NOI m<n 86.18 NOI m<n 0221
NOF 93.36 NOF 96.57
NOI m=n 96.68 NOI m=n 97.29
36 NOF 97.91 4320 | NoF 98.36
NOI s 96.88 NOI mon 97.29
NOF 98.03 NOF 98.34
NOI Total 95.67 NOI Total 96.53
NOF 97.33 NOF 98.01
NOI m<n 89.67
NOF 95.07
NOI m=n 96.83
360 NOF 98.03
NOI m>n 96.83
NOF 98.03
NOI Total 95.88
NOF 97.55

5. Conclusions and Discussions.

In this Paper, a new combined gradient related and VM-algorithm for solving large-scale
unconstrained optimization problems is proposed. The new algorithm is a kind of Armijo line
search method. The basic idea is to choose a combination of the current gradient and some
previous search directions which are updated by Al-Bayati's self scaling (1991) VM as a new
search direction and to find a step-size by using Armijo ILS. Using more information at the
current iterative step may improve the performance of the algorithm and accelerate the gradient
relates which need a few iterations. The new algorithm concept is useful to analyze its global
convergence property. Numerical experiments show that the new algorithm converges faster and
is more efficient than the standard Shi-Shen algorithm in many situations. The new algorithm is
expected to solve ill-conditioned problems. Clearly there are large ranges of the improving
percentages against the standard Shi-Shen algorithm; namely, the new algorithm has about
(53)% NOI and (75)%NOF improvements against Shi-Shen algorithm taking n=12. These
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improvements are very clear for n=36; n = 360, 1080 and finally, for n» = 4320 the new algorithm
has about (64)% NOI and (80)% NOF improvements against Shi-Shen (2004) CG-algorithm.
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APPENDIX

All the test functions used in this paper are from general literature Nocedal (1980 , 2005).

1. Extended Tridigonal-1Function:

n/2

f(x) = z(x%% T Xy _3)2 + (x2i—1 X+ 1)4 >
i=I

X, =[2.2,...2].

2. Extended Three Exponential Terms Function:

n/2

F(x) = (exp(x,,, +3x, —0.1) + exp(x,,_, —3x,, —0.1) + exp(—x,,_, —0.1)),

i=1
x, =[0.1,0.1,...,0.1].

3. Diagonal 5 Function (Matrix Rom):
S (x) = log(exp(x,) +exp(-x,)),
i=1

x, =[L1,....1] .

4. Extended Freud & Roth Function:
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n/2
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S(x)= Z (_ 1343, +((5—x5)x, —2)x,, )2 + (_ 29+ x5, + ((xy + Dxy —14)x,, )2 )

x, =[0.5.,-2.,0.5,-2.,...,0.5,-2.].

5. Generalized Tridiagonal-1 Function:
n—1
)= Z(XZH T Xy~ 3)2 +(x2i—1 Xy Tt 1)4 )
i=1

x, =[2,2,...2].

6. Diagonal 4 Function:

n/2

f@ =240 v o),

i=l1
x, =[11,...,]], ¢=100.

7. Dqudrtic Function (CUTE):
n-2
f(x)= Z ()c,.2 + cxiz+1 + dxiz+2 ),
i=1

Xy =[33,...3] , ¢=100,d =100.

8. Extended Denschnb Function (CUTE):

n/2

S(x)= Z('xzi—l -2)" + (%X — 2)2x225 +(x,; + ?,

x, =[0.1,0.1,...,0.1].

9. Generalized quartic Function GQ1
n-1
)= 0+ (x +x7)7,
i=1

x, =[1.,1.,...1.].

10. Diagonal 8 Function:



AAM: Intern. J., Vol. 7, Issue 1 (June 2012) 245

S(x)= zxi exp(x,) —2x, — xiz >
i=1

X, =[11,...1.1].

11. Full Hessian Function:
n 2 n
f(x)= (Zx,j + > (x, exp(x;) = 2x, - x}),
i=1 i=1

x, =[1.,1.,...1.].

12. Generalized Powell function:

n/3

f)= 2{3—[ L] sin(F) -exp[-( 7 - 2)° ]}

(3=
x, =[0.,1.,2.,...0.,1.,2.]

13. Generalized Rosen Brock Banana function:

n/2

S(x) = Zloo(xzi _x22i71)2 +(1- x2i—l)2 >

x, =[-1.21.,...~1.2,1]
14. Generalized Non-diagonal function:
f(x) =2 [100(x, —x7)* +(1-x,)",
i=2
x, =[-1.,...-L].

15. Generalized Wolfe Function:

n—1
f)=(x,G=x/2)+2x, - 1)" + > (x_, —x,3-x,/2+2x,, - D) +(x,, -x,3-x,/2)-1),

i=1

x, =[-1.,..-L].
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16. Generalized Strait Function:

n/2

S(x)= Z(xzzi—l —x,,)7 +100(1 - x,,,)*,

Xy =[2.72.].

17. Generalized Recipe Function:

n/3 5

2 2 i
1@ =Sl =57 458, ]

X, =[2.5.1.,..2.5.1].

18. Non-diagonal (Shanno-78) Function (Cute):
S = (x, =17+ 2100(x, - x7,)*,
i=2
x, =[-1.,-1.,...,-1.].
19. Extended Tridiagonal-2 Function:

n-1

S(x) = Z(xixiH - 1)2 +e(x; +D(x,, +1),
i=1

x, =[1.1.,...1.] ,c=0.1.

20. Generalized Beale Function:

nl2

Sy =Y [15-x, +(-x,)F +[2.25 —x, (- x2)]f

i=1
Xy =[-1,~1....~1.-1].

21. Extended Block-Diagonal BD2 Function:

n/2

F() =D (x5, +x5 =207 +(exp(x,, —1) +x5, —2.)%,
i=1

x, =[1.52.,..,1.52.].
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+[2.625 —x,,  a-x3T >
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22. Diagonal 7 Function:
C 2
S(x) =D (exp(x;) = 2x, = x7),
i=1

Xy =Ll 1L,

23. Cosine Function (CUTE):
n—1
f(x) =) cos(=0.5x,,, +x7),
i=1

Xy =Ll 1L,

24. Extended Himmelblau Function:

n/2

f(x)= Z(xzzi—l +xy =1 1)2 + (x2i—1 + x22i - 7)2 >
i=1

x, =[1.1L1.1...,L.LL1].

25. Raydan 2 Function:
S(x) = Z(exp(xl.) - xi)’
i=1

xy =[1.1.,...1.1].

26. Diagonal 6 Function:
f(x)= (exp(x)~(1+x,)),
i=1

X =Ll 1L,



