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Abstract  

 

This article addresses the two-dimensional oblique stagnation point flow of non-Newtonian fluid 

in the presence of nanoparticles. Constitutive equations of Walter-B fluid are employed in the 

mathematical development of the relevant problems.  Mathematical formulation includes the 

Brownian motion and thermophoresis effects. The resulting nonlinear system of equations are 

analyzed through Chebyshev Spectral Newton Iterative Scheme (CSNIS). A comparative study 

of present results through tabular values has been made with the previous results in a limiting 

sense and an excellent agreement is noted. It is also found that in near stagnation point region, 

the heat transfer rate and mass diffusion flux decrease due to increase of thermophoresis effect. 

However, the heat transfer rate increases and mass diffusion flux decreases as the Brownian 

motion of the particles increases. The streamlines are drawn to capture the fluid motion. 
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1. Introduction 

 
There is an increasing interest of recent in the investigation of the dynamics of nanofluids. Such 

interest, in fact, stems from novel properties of such fluids, which make them potentially useful 

in heat transfer including pharmaceutical and food processes, hyperthermia, fuel cells, 

microelectronics, hybrid-powered engines and many others. It is well known that ordinary 

liquids like water, engine oil and ethylene glycol have poor heat transfer characteristics. On the 

other hand, most solids especially metals have thermal conductivity one to three times higher 

than liquids. Thus, nanofluids (fluids that contain nano-sized materials) are considered more 

adequate to enhance the thermal conductivity of ordinary liquids. Nanoparticles in nano-

materials are made of metals (Al, Cu, Ag, Au, Fe), metal carbides (SiC) nonmetals (graphite 

carbon nanotubes), oxides (Al2O3, CuO, TiO2), nitrides (AIN, SiN) etc. Having such in mind, 

there is extensive literature available on the topic through different aspects. Few representative 

studies on the topic may be seen in the references Buongiorno and Hu (2005) to Nadeem and 

Haq (2015). 

 

A literature survey revealed that much attention in the past has been accorded to the flow of 

viscous nanofluids. However, in real situations the base fluids in the nano-materials are not 

viscous. Mention may be made of some viscoelastic nanofluids like ethylene glycol-CuO, 

ethylene glycol-Al2O3, and ethylene glycol-ZnO. Keeping such preference in view, viscoelastic 

nanofluid is considered in this paper. Many viscoelastic fluids models have been proposed but 

here constitutive equations of Walter-B fluid (Hayat et al. (2014), Hussain (2011), Beard and 

Walters (1964)) are employed in the mathematical formulation. Our intention here is to compute 

the oblique stagnation point flow (Javed et al. (2015) and Javed and Ghaffari (2015)) of 

viscoelastic nanofluid. To our knowledge, such a problem has not been attempted before. An 

efficient approach, namely the CSNIS (Majeed et al. (2015)) is implemented for the numerical 

solution. The graphical results are interpreted with respect to various parameters of interest. A 

comparison with the previously published results in limiting sense is given. Heat transfer rate 

and mass diffusion flux are also analyzed.  

 

 

 
 

        Figure 1: Physical Model 
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2. Problem formulation 

 
We considered the two-dimensional flow of Walter-B nanofluid. Oblique stagnation point flow 

is taken. The fluid is impinging obliquely to the stretching sheet at y=0. An incompressible fluid 

fills the space y ≥ 0. The governing equations are   
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 In the above equations, ( , )u x y  and ( , )v x y  are the velocity components in x and y-directions, 

( , )C x y  and ( , )T x y  are the concentration and temperature of the fluid, ( , )p x y
 is the pressure, 

α is the thermal diffusivity, ν is the kinematic viscosity, ρ is the density and k0 is elasticity of 

fluid. DT and DB are the Brownian motion coefficient and Thermophoretic diffusion coefficient, 

respectively. τ (= (ρd)p/(ρd)f ) is the ratio of effective heat capacity of nanoparticles materials to 

heat capacity of the fluid. It is assumed that the fluid away from the surface is moving with free 

stream velocity ( , )eU x y ax by  . The boundary conditions can be put into the form 

 

 0 : , 0, , ,

: , , .

w wy u cx v T T C C

y u ax by T T C C 

    
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in which a, b and c are the positive constant having dimension inverse of time. Here, T∞ is the 

ambient temperature of the fluid and Tw is the surface temperature with Tw>T∞. Setting 
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we obtain the resulting problems as follows: 
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where We=k0c/ρν is the Weissenberg number, Pr=ν/α is the Prandtl number, Sc= ν/DB is the 

Schmidt number Nt=DT τ(Tw-T∞)/T∞ν is the thermophoresis parameter and Nb=DBτ(Cw-C∞)/ν is 

the Brownian motion parameter. Incompressibility condition is satisfied by considering stream 

function ψ by  
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Equations (9) – (14), through eliminating pressure, yield  
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with γ =b/c which represents shear in the stream. We write the solution of Equations (15) – (18) 

as follows:  
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where the functions ( )f y  and ( )g y  are assumed normal and oblique component of the flows. 

Putting Equation (19) into Equations (15) – (18), and then comparing the coefficients of 0x and 
1x , one arrives at 
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Here, prime signifies the differentiation with respect to y . Integration of Equations (20) and (21) 

and gives  
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where the constant A  accounts for boundary layer displacement. It arises since when y  , 
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( )f y  behaves as  ( ) /f y a c y A  . For simplicity, introducing a new variable, '( ) ( )g y h y  

then Equation (26) with boundary conditions can be expressed in the forms 
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Dimensionless components of velocity are  
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The skin friction coefficient Cf, the local Nusselt number Nux and the local Sherwood number 

Shx, are 
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where τW is shear stress at the wall and qw and qm indicating local heat flux and local mass 

diffusion flux are 
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The skin friction coefficient Cf, the local Nusselt number Nux and the local Sherwood number 

Shx, after using Equations (7), (14) and (19) are 
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3. Numerical method 

 
For the solution of Equations (29) – (33), Chebyshev Spectral Newton Iterative Scheme (CSNIS) 
is used. Here, we convert the system of nonlinear differential equation into a linear form by using 

Newton iterative scheme as a first step. For (i+1)th iterates we write 
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Equation (40) is now linear and is solved using the Chebyshev Spectral Collocation Method 

(Motsa et al. (2014), Motsa (2013)). For this purpose, the physical domain [0, ∞] is truncated to 

finite domain [0, L], where L is chosen sufficiently large to achieve the accuracy.  The reduced 

domain is transformed to [-1, 1] by using transformation ξ=2η∕L −1. Nodes from –1 to 1 are 

defined as ξj=cos(πj/N), j=0, 1, 2, … N, which are known as Gauss-Lobatto collocation points. In 

the present problem we choose the value of N = 120. The Chebyshev Spectral Collocation 

Method is based on differentiation matrix D, which can be computed in different ways. Here, we 

used D as suggested by Trefethen (2000). For i=0, Equations (39) and ( 40) become 

 

                       
1 0 0

0,0 0 1,0 0 2,0 0 3,0 0 4,0 0 0

,

''' '' ' ,iv

f f f

c f c f c f c f c f R



    

 

    
                                

(43) 
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where f0 is used as an initial guess and we found δf0 for first iteration. Similarly for i =1, 

Equation (39) and  (40) become 

                                   
2 1 1

0,1 1 1,1 1 2,1 1 3,1 1 4,1 1 1

,

''' '' ' ,iv

f f f

c f c f c f c f c f R



    

 

    
                        

(44) 

 

where  f1 = f0+ δf0 is known function and we found δf1 for second iteration from Equation (44). 

We continue this procedure until fi+1− fi ≈ 0. Thus, the Equation (29) subject to the boundary 

condition (33) has been solved and the solution  f  is obtained. Now Equation (30) becomes 

linear and it is solved by using the Chebyshev Spectral Collocation Method. It should be noted 

that the energy equation defined in Equation (31) is still non-linear which can be solved by 

following similar steps as explained for Equation (30). Hence, the system through Equations (30) 

and (32) becomes linear which is solved by using the Chebyshev Spectral Collocation Method 

directly without employing the Newton iterative scheme. Matlab (R2010a) is utilized to develop 

the algorithm for this purpose. 

 

4. Results and discussion 

 
The non-linear differential Equations (29) – (32) with boundary conditions (33) are solved 

numerically for the different values of the pertinent parameters. Chebyshev Spectral Newton 

Iterative Scheme (CSNIS) is implemented for the solution. A comparative study is also 

performed with limiting existing studies.  In Tables 1 and 2, the comparison of obtained results 

with Hussain et al. (2011), Ishak et al. (2007) and Mahapatra and Gupta (2000) is made. These 

limiting results are in very good agreement with the results proposed by Hussain et al. (2011) 

and Ishak et al. (2007). Table 1 is evidence that ''(0)f  acts as an increasing function of the ratio 

of straining to stretching velocities a/c and decreasing function of Weissenberg number We. 

Table 2 shows with the increase in a/c and Pr, the absolute value of '(0)
 increases; this is in 

good agreement with the results proposed by Mahapatra and Gupta (2000). In Table 3, the values 

of local Nusselt (
1/2

xRe xNu
) and the local Sherwood (

1/2

xRe xSh
) numbers are shown for some 

important values of different parameters. 
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Table 1. Comparison of  ''(0)f  for the various values of a/c and We. 

We a/c Present Results  Hussain et al. (2011)  Ishak et al. (2007) 

0 0.01 −0.9981  −  −0.9980 

0.1 −0.9694  −0.9693  −0.9694 

0.2 −0.9181  −  −0.9181 

0.5 −0.6673  −0.6672  −0.6673 

1.1 0.1643  0.1642  − 

1.2 0.3377  0.3377  − 

2.0 2.0175  −  2.0175 

3.0 4.7293  −  4.7294 

10.0 36.2574  −  36.2603 

0.1 

 

0.1 −1.0273  −1.0271  − 

0.5 −0.7300  −0.7299  − 

1.1 0.1918  0.19177  − 

1.2 0.3993  0.3992  − 

0.2 0.1 −1.0956  −1.0955  − 

0.5 −0.8102  −0.8101  − 

1.1 0.2393  0.2392  − 

1.2 0.5140  0.5139  − 

0.3 0.1 −1.1778  −1.1777  − 

0.5 −0.9142  −0.9141  − 

1.1 0.3520  0.35198  − 

1.2 0.9103  0.8499  − 

 

Table 2. Comparison of '(0)  for various values of a/c and Pr when thermophoresis effects and Brownian 

motion of nanoparticles are absent 

a/c Present 

Results 

Mahapatra and Gupta 

(2000) 

 Present 

Results 

Mahapatra and Gupta 

(2000) 

Pr = 1  Pr = 1.5 

0.1 −0.6022 −0.603  −0.7768 −0.777 

0.2 −0.6245 −0.625  −0.7971 −0.797 

0.5 −0.6924 −0.692  −0.8648 −0.863 

1.0 −0.7979 −0.796  −0.9772 −0.974 

2.0 −0.9787 −0.974  −1.1781 −1.171 

3.0 −1.1321 −1.124  −1.3519 −1.341 

 

 

Table 3. Numerical values of physical quantities for different values of We, a/c, Nt, Nb, Sc and Pr. 

We a/c Nt Nb Sc Pr -Rex
-1/2 

Nux -Rex
-1/2 

Sh 

0 0.1 0.1 0.1 1 1 0.5552 0.2575 

0 0.1 0.1 0.2 1 7 1.2561 0.1482 

0.1 0.1 0.1 0.5 1 10 0.6868 0.5161 

0.1 0.2 0.5 0.1 5 1 0.4605 0.8795 

0.2 0.2 0.5 0.2 5 7 0.3395 1.7338 

0.3 0.2 0.5 0.5 5 10 0.0391 1.7854 
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Figure 2. Variation of heat flux and mass 

diffusion flux against a/c for 

different values of Sc and Pr 

Figure 3. Variation of heat flux and mass 

diffusion flux against a/c for 

different values of We 
 

  
Figure 4. Variation of heat flux and mass 

diffusion flux against a/c for 

different values of Nt. 

Figure 5. Variation of heat flux and mass 

diffusion flux against a/c for 

different values of Nb 

  
Figure 6. Orthogonal velocity profile for 

different values of We when a/c is 

equal to 0.1 and 1.2 

Figure 7. Non-orthogonal velocity profile for 

different values of We when a/c is 

equal to 0.1 and 1.2 
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Figure 8. Orthogonal and non-orthogonal 

velocity profile for different values 

of a/c when We =0.2 

Figure 9. Variations of θ(y) and ϕ(y) for 

different values of a/c 

 

  
Figure 10. Variations of θ(y) and ϕ(y) for 

different values of Nt 
Figure 11. Variations of θ(y) and ϕ(y) for 

different values of Nb 
 

  
Figure 12. Variations of θ(y) and ϕ(y) for 

different values of Sc 
Figure 13. Variations of θ(y) and ϕ(y) for 

different values of We 
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Figure 14.   Stream lines for different values 

of γ 
Figure 15.  Stream lines for different values of 

a/c 

  
 

Figure 2 represents the local Nusselt number and local Sherwood number against the ratio 

parameter a/c for the various values of Prandtl number (Pr) and Schmidt number (Sc), when 

We=0.1, Nt= Nb=0.1 and Pr=1(for reduced Nusselt), Sc=1(for Sherwood number). It is observed 

that both the local Nuesselt and local Sherwood numbers are increasing functions of Prandtl and 

Schmidt numbers, respectively. In addition, the heat transfer rate and mass diffusion flux are 

enhanced for larger a/c. In Figure 3 the variations of local Nusselt and local Sherwood numbers 

are plotted against the velocities ratio parameter a/c. Here, different values of We are taken when 

Nt = Nb = 0.1 and Pr = Sc = 1. It is noted that larger We leads to a decrease in both local Nusselt 

and local Sherwood numbers. Inverted boundary layer structure in flow occurs when stretching 

velocity becomes higher than the free stream velocity i.e., a/c<1. As expected, no boundary layer 

exits for a/c=1. Figure 3 shows that for a/c=1 the local Nusselt and local Sherwood numbers 

remain unchanged against Weissenberg number We. For a/c>1 (when free steam velocity is 

higher than the stretching velocity), the local Nusselt and local Sherwood numbers are increasing 

functions of We.  

 

In Figures 4 and 5, the effect of thermophoresis (thermodiffusion) Nt and Brownian motion Nb 

parameters on local Nusselt number Rex
-1/2

Nux and local Sherwood number Rex
-1/2

Shx are 

discussed. In Figure 4, it is noted that the heat transfer rate and mass diffusion start decreasing 

near the stagnation point when Nt increases. In Figure 5, the local Nusselt number decreases by 

increasing the Brownian motion of the particle but the mass diffusion flux increases through an 

increase in Brownian motion parameter. From Figures 4 and 5 it is also noted that with the 

increase of free stream velocity (i.e., ax) both quantities (i.e., local Nusselt and Sherwood 

numbers) increase but, on the other hand, as the stretching velocity increases, these quantities 

start decreasing. In Figures 6 and 7, both orthogonal and non-orthogonal velocity profiles are 

drawn against y for different values of viscoelastic parameter (We), respectively. In these figures 

both cases of boundary layer (a/c > 1) and inverted boundary layer (a/c < 1) are discussed. When 

a/c < 1, the boundary layer thickness decreases by increasing viscoelastic parameter. For a/c > 1, 

the velocity of fluid increases near the wall for larger We but away from the wall it starts 

fluctuating in the main stream for non-zero values of We. 

 

In Figure 8, orthogonal (γ=0) and non-orthogonal (γ=0.5) velocity profiles are drawn against y 



AAM: Intern. J., Vol. 11, Issue 1 (June 2016)      263 

 

for the various values of velocities ratio parameter a/c. In case of non-orthogonal flow, the 

velocity of the fluid is much greater than orthogonal flow for all values of a/c > 0. It is also 

noted that the velocity of the fluid increases for larger a/c in both cases of orthogonal and non-

orthogonal stagnation point flow. The velocity of fluid becomes constant for a/c = 1 (when both 

stretching and straining velocities become equal). The variation of temperature and concentration 

profiles are analyzed in the Figures 9-13. In Figure 9, it is observed that both the temperature and 

concentration of the fluid decreases when the free stream velocity rapidly increases more than 

the stretching velocity. Figures 10 and 11 indicate that the temperature and concentration are 

increasing functions of thermophoresis (thermodiffusion) Nt and random motion of the particles 

(Brownian motion) Nb. Figure 12 shows that with the increase of Pr and Sc, the heat transfer rate 

and diffusion flux are enhanced. The thermal and concentration boundary layer thickness 

decrease. The viscoelastic effect on temperature and concentration profiles is shown in Figure 

13. It is found that both the temperature and concentration profiles are increasing functions of 

We.  

 

Figures 14 and 15 show that the effect of γ and the velocity ratio parameters a/c on the stream 

lines. In Figure 14 the streamlines become closer to the plate and the boundary layer thickness 

reduces when γ enhances. The streamlines are drawn for the values of ψ=1, 0.5, 0.1, 0, -0.1, -0.5, 

-1 and the fixed values of a/c = 0.5, W e= 0.2. At ψ = 0, a straight line is formed which is known 

as dividing streamline. In Figure 15, by increasing the velocity ratio parameter a/c, the 

streamlines look like those for the orthogonal stagnation point flow. The streamlines are drawn 

for a/c = 0.5 (dashed lines) and a/c = 3 (solid lines) and clearly the solid lines are less oblique 

than the dashed lines. 

 

5. Concluding remarks 
 

The study on oblique stagnation point flow of non-Newtonian nanofluid over a stretching surface 

is presented in the present study. The solution of the problem is obtained by Chebyshev Spectral 

Newton Iteration Scheme (CSNIS). The method is presented in detail and results are compared 

with previous studies through tables. The results are found in good agreement. It is also observed 

that CSNIS is efficient, less time consuming, stable and with rapid convergence. It is found near 

the stagnation point that for larger thermophoresis effect, the heat transfer rate and mass 

diffusion flux decrease; however the  temperature and concentration of the fluid increase. With 

the increase in Brownian motion of the particles, the heat transfer rate increases and mass 

diffusion flux decreases. The present study also reveals that for a/c < 1, the heat transfer rate as 

well as shear wood number decrease with the increase in the value of Wiesenberger number and 

an opposite behavior has been observed for a/c  >1. 
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