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Abstract 
 
A collocation procedure is developed for the linear and nonlinear Volterra integral equations, 
using the globally defined Sinc and auxiliary basis functions. We analytically show the 
exponential convergence of the Sinc collocation method for approximate solution of Volterra 
integral equations. Numerical examples are included to confirm applicability and justify rapid 
convergence of our method. 
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1.  Introduction 
 
This paper describes a collocation procedure for solving Volterra integral equations of the form 
 

( ) ( ) ( , ) ( , ( )) , [ , ].
x

a

u x f x K x t g t u t dt x a b                                                                  (1) 

 
The known kernel ( , )K x t is continuous, the functions f and g  are given. In special case, if in (1) 

( , ( )) ( )g t u t u t  the integral equation (1) reduce to linear Volterra integral equation of the second 
kind 
 

( ) ( ) ( , ) ( ) , [ , ],
x

a

u x f x K x t u t dt x a b                                                                         (2) 

 
which has been studied in our earlier paper Rashidinia et al. (2007b). Also, if in (1), ( , ( ))g t u t  be 
nonlinear in ( )u t , then equation (1) is a nonlinear Volterra - Hammerstein integral equation. We 
assume that (1) has a unique solution u  to be determined. Several numerical methods for 
approximating the solution of the Volterra integral equations are existed in the literature. The 
numerical methods for linear integral equations of the second kind studied in Delves et al. 
(1995). These methods transform the integral equation to a linear or nonlinear system of 
algebraic equations that can be solved by direct or iterative methods.  
 
Reihani et al. (2007) applied rationalized Haar functions method for solving Fredholm and 
Volterra integral equations. In Blyth et al. (2002), an effective method to solve linear Volterra 
integral equations was introduced. Kumar et al. (1987) introduced a new collocation-type method 
for the solution of Fredholm- Hammerstein integral equations. Later on, Brunner (1992) applied 
this method to nonlinear Volterra integral and integro-differential equations and discussed its 
connection with the iterated collocation method. Moreover, Guoqiang (1993) studied the 
asymptotic error expansion of the method given in Kumar et al. (1987) for nonlinear Volterra 
integral equations at mesh points. The methods given in Kumar et al. (1987), transform a given 
integral equation into a system of nonlinear equations, which has to be solved with some kind of 
iterative method. But Kumar et al. (1987), considered the solution of the definite integrals that 
may be evaluated analytically only in favorable cases, while in Guoqiang (1993) the solution of 
the integrals have to be evaluated at each time step of the iteration.  
 
Chebyshev spectral method for the numerical solution of Equation (1) has been proposed by 
Elnagar et al. (1996). Sinc methods have increasingly been recognized as powerful tools for 
attacking problems in applied physics and engineering. The excellent overviews of methods 
based on Sinc functions for solving ordinary and partial differential equations are given in Lund 
et al. (1992), Stenger (1993). The Sinc-collocation procedures for the eigenvalue problems are 
presented in Eggert et al. (1987), Lund et al. (1984). The Sinc collocation method for the initial 
value problems using the globally defined Sinc basis functions was proposed by Carlson et al. 
(1997). The Sinc-Galerkin scheme has been developed to approximate solution for the 
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Korteweg-de Vries model equation in Al-Khaled (2001). The sinc-Galerkin method has been 
used to approximate solution of nonlinear fourth order boundary value problems with 
homogeneous and nonhomogeneous boundary conditions in El-Gamel et al. (2003). In Weber et 
al. (2004), an algorithm based on the Sinc function for the generation of adaptive radial grids 
used in density functional theory or quantum chemical calculations has been described. Their 
approach is general and can be applied for the integration over Slater or Gaussian type functions 
with only minor modifications and the relative error of the integration is fully controlled by the 
algorithm within a specified range of exponential parameters and for a given principal quantum 
number.  
 
A block matrix formulation has been presented for the Sinc-Galerkin technique applied to the 
wind-driven current problem from oceanography in Koonprasert et al. (2004). In Rashidinia et al. 
(2005), we used a Sinc-collocation procedure for numerical solution of linear Fredholm integral 
equations of the second kind and also in Rashidinia et al. (2007a) we applied Sinc method for 
solving system of linear Fredholm integral equations. The paper is organized into five sections. 
Section 2 outlines some of the main properties of Sinc function and Sinc method that are 
necessary for the formulation of the discrete system. In sections 3 and 4, we illustrate how the 
Sinc collocation method may be used to replace (1) by an explicit system of linear or nonlinear 
algebraic equations. Also, in sections 3 and 4 the convergence analysis of the method has been 
discussed for linear and nonlinear Volterra integral equations generally. Finally we report our 
numerical results and demonstrate the efficiency and accuracy of the proposed numerical scheme 
by considering some numerical examples in section 5. 
 
 
2.  Sinc Basis Functions for the Collocation Method  
 
 
In this section, we will review Sinc function properties. These are discussed thoroughly in 
Stenger (1993) and Lund et al. (1992). The Sinc function is defined on the whole real line, 

x    , by 
 

sin
, 0,

( )

1, 0.

x
x

xSinc x

x




  
 

                                                                                            (3) 

 
For any 0h  , the translated Sinc functions with evenly spaced nodes are given as 
 

( , )( ) , 0, 1, 2, .
x jh

S j h x Sinc j
h

     
 

                                                                    (4) 

 
The Sinc function for the interpolating points kx kh  is given by 

 

(0) 1, ,
( , )( )

0, .jk

k j
S j h kh

k j



   

                                                                                              (5) 
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Let  
 

( 1)

0

1 sin ( )
.

2

k j

kj

t
dt

t





                                                                                                            (6)           

 
If u is defined on the real line, then for 0h   the series 
 

( , )( ) ( ) ( )
j

x jh
C u h x u jh Sinc

h






                                                                                         (7) 

 
is called the Whittaker cardinal expansion of u , whenever this series converges. They are based 
in the infinite strip sD in the complex plane 

 

 : / 2 .sD w u iv v d                                                                                                  (8) 

 
To construct approximation on the interval[ , ]a b , we consider the conformal map 
 

( ) ln( ).
z a

z
b z

 



                                                                                                                     (9) 

 
The map   carries the eye-shaped region 
 

: arg .
2E

z a
D z x iy d

b z

          
                                                                             (10) 

 
The basis functions for Ez D are derived from the composite translated Sinc functions, 

 
( )

( , ) ( ) .
x jh

S j h x Sinc
h

    
 

                                                                                         (11) 

 
The function 
 

1( )
w

w

a be
z w

e
 

 
1

                                                                                                            (12) 

 
is an inverse mapping of ( )w z . We define the range of 1 on the real line as 
 

 1( ) ( ) : .Eu u D u                                                                                        (13) 
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The Sinc grid points ( , )kz a b in ED  will be denoted by kx  because they are real. For the evenly 

spaced nodes { }kkh 
 on the real line, the image which corresponds to these nodes is denoted by 

 

1( ) , 0, 1, , 2 .
1

kh

k kh

a be
x kh k

e
 

    


                                                                      (14) 

 
 
Definition 1:  
 
Let ( )EL D be the set of all analytic functions, such that 

 

2

( )
( )     z , 0 1,

1 ( )
E

z
u z C D

z









    

   
                                                              (15) 

 
where ( )( ) zz e   and C  is a constant.  
 
 
Theorem 1:  
 
Let ( )Eu L D ,  let N  be a positive integer, and let h  be selected by the formula 

 

 
1

2/ .h d N                                                                                                                     (16) 

 
Then, there exists positive constant 1C , independent of  N , such that 

 

 
1

2( )
1| ( ) ( , ) ( ) | .

N
d N

j
x j N

sup u z u z S j h o z C e   

 

                                                                   (17) 

 
 
Theorem 2:  
 

Let ( / ) ( )Eu L D  , ( 1)
kj   be defined as (6), and  

1

2/h d N  . Then, there exists a constant, 

2C , which is independent of N , such that 

 
1

2( 1) ( )
2

( )
| ( ) | .

( )

kz N
j d N

kj
j N ja

u z
u t dt h C e

z
 


 



 
                                                                            (18) 
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3.  Linear Volterra Integral Equation of the Second Kind 
 
 
3.1.  
 
If in Equation (1), ( , ) ( )g t u u t , then the problem reduce to develop the approximate solution of 
linear Volterra integral equation of the second kind 
 

( ) ( ) ( , ) ( ) , [ , ],
x

a

u x f x K x t u t dt x a b                                                                       (19) 

 
where the known kernel ( , )K x t  is continuous, the function ( )f x  and the parameter   are 
given, and ( )u x  is the solution to be determined Delves et al. (1985). In earlier paper Rashidinia 
et al. (2007b), we studied this type of linear Volterra integral equation. However, here we 
developed our method in more general case which is necessary for convergence analysis of 
equation (1).  
 
We assume ( )u x  be the exact solution of the integral equation (19) and let ( ) ( )Eu x L D . We 

approximate the solution of (19) by the following linear combinations of the Sinc functions and 
auxiliary functions: 
 

( ) ( ) ( ), [ , ],
N

j j
j N

u x u x x x a b


                                                                                   (20) 

 
where 
 

( ), ,

( ) ( , ) ( ), 1, , 1,

( ), .

a

i

b

x j N

x S j h o x j N N

x j N


 



 
    
 

                                                                  (21) 

 
In the above relation, auxiliary basis functions ( )a x  and ( )b x  are defined by 

 
1 ( )

( ) , ( ) ,
1 ( ) 1 ( )a b

x
x x

x x

 
 

 
 

                                                                             (22) 

 
and satisfied the following conditions: 
 

lim ( ) 1, lim ( ) 0, lim ( ) 0, lim ( ) 1.
a b a b

a a b b
x x x x

x x x x   
   

                              (23) 
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Lemma 1:  
 

( ) ( )Eu x L D , let N  be a positive integer and  
1

2/h d N   . Then  

 
1

2( )
3sup | ( ) ( ) ( ) | ,

N
d N

j j
x j N

u x u x x C e   

 

                                                                              (24) 

 
where ( )j x  is defined in (21) and 3C is a positive constant, independent of N . 

 
 
Proof:  
 
By theorem 1, we have: 
 

0 1 2sup | ( ) ( ) ( ) | ,
N

j j
x j N

u x u x x S S S
 

                                                                               (25) 

 
where 
 

1

0 1 2
1

sup | ( ) ( ) ( , ) ( ) |, sup | ( ) ( ) |, sup | ( ) ( ) | .
N

j N a N b
x x xj N

S u x u x S j h o x S u x x S u x x  



   

        

    (26) 
 
By assumption ( ) ( )Eu x L D  and Theorem 1, and also by using the relation (15) we obtain 

 

 

 
1

2

0

( )
4 5 6

sup | ( ) ( ) ( , ) ( ) | sup | ( ) ( , ) |

sup | ( ) ( , ) | ,

N

j N
x xj N

d N Nh Nh
N

x

S u x u x S j h o x u x S N h o x

u x S N h o x C e C e C e   

 




 

  



   

   


                               (27) 

 
where 4C , 5C  and 6C  are constants. Similarly, by considering the relations (15) and (22), we 

obtain the following bounds for 1S and 2S . 

 

1 7 2 8S , S .Nh NhC e C e                                                                                                (28) 

 
By using the relations (27), (28), and taking h as in (16), we conclude that the relation (24) is 
hold. This completes the proof.         
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Lemma 2:  
 
For ( )u x  defined in (20), let ( / ) ( ) ( )j EK x L D   , and let h  be selected from (16) then 

 
1

( 1) ( 1)

1

1
( 1) 2

( , ) ( , )
( , ) ( ) ( ) ( ) ( )

( ) ( )

( , )
( ) ( ) (exp( ( ) )).

( )

kx N N
k j k j

k N kj a j kj j
j N j Nj ja

N
k j

N kj b j
j N j

K x t K x t
K x t u t dt hu t t h u t

t t

K x t
hu t t O d N

t

  
 

   



 


  





 
 

  


 


            (29) 

 
Proof:  
 
Applying Theorem 2 and ( / ) ( ) ( )j EK x L D   , we have 

 
1

( 1) 2
( , )

( , ) ( ) ( ) (exp( ( ) )).
( )

kx N
k l

k kl l
l N la

K x t
K x t u t dt h u t O d N

t
  






  
                                       (30) 

 
By using (20), we get the collocation result 
 

( 1)

1
( 1)

1

1
( 1) 2

( , )
( , ) ( ) ( ) ( )

( )

( , )
( ){ ( , ) ( )}

( )

( , )
( ) ( ) (exp( ( ) )).

( )

kx N
k l

k N kl a l
l N la

N N
k l

j kl l
j N l N l

N
k l

N kl b l
l N l

K x t
K x t u t dt hu t t

t

K x t
h u t S j h o t

t

K x t
hu t t O d N

t

 


 


   










  











  




 



          (31) 

 
By using Sinc function properties and setting l j , we obtain the relation (29), which completes 
the proof.     
 
 
Now, let ( )u x  be the exact solution of (19) that is approximated by following expansion 
 

( ) ( ), [ , ].
N

N j j
j N

u x u x x a b


                                                                                      (32) 

 
Upon replacing ( )u x  in the Volterra integral equation (19) by ( )Nu x , applying Lemma 1 and 

Lemma 2, setting Sinc collocation points kx  and then considering (0) (0)
kj jk  , we obtain the 

following system 
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( 1) ( 1)

( 1)

( , ) ( , )
{ ( ) ( )} { ( , ) ( ) }

( ) ( )

( , )
{ ( ) ( )} ( ), , , .

( )

N N
k j k j

N a k kj a j k kj j
j N j Nj j

N
k j

N b k kj b j k
j N j

K x t K x t
u x h t S j h o x h u

t t

K x t
u x h t f x k N N

t

      
 

   



 


  





  
 

    


 

 

1

1
    (33) 

 
We write the above system of equations in the matrix form as: 
 

1 ( 2) 1[ | | ] , 2 1,n n n nAU B C D U P n N                                                                       (34) 

 
where 

( ) ( )

( ) ( )

( )

( , ) ( , )
[ ( ) ( ), , ( ) ( )] ,

( ) ( )

( , )
[ ] , , , , , , ,

( )

( , )
[ ( ) (

( )

N N
N j N j T

a N Nj a j a N Nj a j
j N j Nj j

k j
kj kj

j

N
N j

b N Nj b j
j N j

K x t K x t
B x h t x h t

t t

K x t
C h k N N j N N

t

K x t
D x h t

t

       
 

  


   


 
 

 




 



  
 

       


 


 







 

1 1

1

1

1 1

( ) ( , )
), , ( ) ( )] ,

( )

[ ( ), ( ), , ( ), ( )] , [ , , , , ] .

N
N j T

b N Nj b j
j N j

T T
N N N N N N N N

K x t
x h t

t

P f x f x f x f x U u u u u

   






       




 



 

1

1 1 1 1

 

  
 
By solving the above system, we can the unknown vector U. Then, by using such solution we 
can obtain the approximate solution NU  as 

 
( ) ... ( )

( ) ( )

. , .

( ) ( )

( ) ( )

a N b N

a N b N

N u u

a N b N

a N b N

x x

x x

U T U T

x x

x x

 
 

 
 

 

   

 



 
 
 
  
 
 
 
 


    




1 1

1 1

1

0 0

1 0

0 1

0 0

                                       (35)  

 
 
 
3.2.  Convergence Analysis 
 
We discuss the convergence of the method for the Volterra integral equation (19).  
 
  
Lemma 3:  
 

Let ( )u x  be the exact solution of the integral equation (19) and let  
1

2/ ,h d N  and 

( / ) ( ) ( )j EK x L D   then there exists a constant 9C  independent of N  such that 
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1 1

2 2
2 9|| || exp{ ( ) },AU P C N d N                                                                                     (36) 

 
where ( ( ), ( ), , ( ), ( )) ,T

N N N NU u x u x u x u x    1 1  and the components ( )ju x  for (1)j N N  are 

the values of the exact solution of the integral equation (19) at the Sinc points jx  .  

 
 
Proof:  
 
Using the Lemma 1 and 2 we have: 
 

1 ( 2) 1

1
( 1) ( 1)

1

| | | ( ) | | ([ | | ] ) | | ( ) ( ) ( ) |

( , ) ( , )
| ( , ) ( ) ( ( ) ( ) ( )

( ) ( )

k

N

K k n n n n k k j j k
j N

x N N
k j k j

k N kj a j kj j
j N j Nj ja

v AU P B C D U P u x u x x

K x t K x t
K x t u t dt hu x w t h u t

t t



    
 

   



 


  

     

  
 



 

 

 

 
1 1

2 2
10 11

( , )
( ) ( )) | exp{ ( ) } | | exp{ ( ) }.

( )

N
k j

N b i
j N j

K x t
hu x w t C d N C d N

t
     



    
      

 
By setting 12 10 11max{ ,| | }C C C , we get 

 
1

2
12| | exp{ ( ) }.kv C d N                                                                                                    (37) 

 
Finally, by using Euclidean norm, we have 
 

1 1

2 2
1

2 2
2 9|| || ( | | ) exp{ ( ) }.

N

K
k N

AU P v C N d N 


                    

         
 

Now, we show that the collocation method converges at the rate of  ( )k NO e , where 0k  . 
 
 
Theorem 3: 
 
Let us consider all assumptions of lemma 1 and let ( )Nu x  be the approximate solution of integral 

equation (19) given by (33) then there exists a constant 13C , independent of N , such that 

 
1 1

2 2
13| ( ) ( ) | exp{ ( ) }.N

x
sup u x u x C N d N 


                                                                         (38) 



208                                                                                                             Zarebnia and Rashidinia 
 

 
 
Proof: 
 
Let the analytic solution of equation (19) at the Sinc points jx  be denoted by N  and defined by 

 

( ) ( ) ( ),
N

N j j
j N

x u x x 


                                                                                                        (39) 

 
where ( )j x  is defined by (21). By triangle inequality, we get 

 
| ( ) ( ) | | ( ) ( ) | | ( ) ( ) | .N N N Nu x u x u x x x u x                                                                     (40) 

 
By using Lemma 1 and assumption ( ) ( )Eu x L D , we obtain 

1 1

2 2
14| ( ) ( ) | exp{ ( ) }n

x
sup u x x C N d N  


   ,                                                                      (41) 

 
where 14C  is a constant independent of N . For the second term on the right-hand side of (40), 

we have 
 

| ( ) ( ) | | { ( ) } ( ) | | ( ) | | ( ) | .
N N

N N j j j j j j
j N j N

x u x u x u x u x u x E  
 

         

 
We know that 
 

1

2
2

15| ( ) | ,
N

j
j N

x C


 
 

 
                                                                                                          (42) 

 
where 15C  is independent of N . By using Schwarz inequality, we obtain 

 
1 1

2 22 2
15 2( | ( ) | ) ( | | ) || || .

N N

j j j
j N j N

E u x u C U U
 

                                                              (43)       

 
Following Lemma 3 and using (34) and (43), we have 
 

1 1
1 1 1 2 2

2 2 2 2 2 9|| || || ( ) || || || || || || || exp{ ( ) }.U U A AU AU A AU P A C N d N                    (44) 

 
Therefore, we get 
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1 1
1 2 2

9 15 2| ( ) ( ) | || || exp{ ( ) }.N Nx u x C C A N d N                                                             (45) 

 
 
Now, from (41), (45) and assumption 1

13 14 9 15 2max{ , || || }C C C C A , we conclude that the 

relation (38) is hold. This will complete the proof.      
 
 
4.  Nonlinear Volterra integral Equation 
 
4.1.  
 
In this section, we consider the nonlinear Volterra-Hammerstein integral equation of the form 
 

( ) ( ) ( ( ))( ), [ , ], ( ( ))( ) ( , ) ( , ( )) ,
x

a

u x f x KGu t x x a b KGu t x K x t g t u t dt                (46) 

 
In Equation (46), f , g  and the kernel K  are continuous functions, and ( , )g t u  is nonlinear in 
u . Now, in this case the problem is to approximate the solution of nonlinear Volterra-
Hammerstein integral equation of the second kind. We assume that ( )u x  be the exact solution of 

(46) which is approximated by (20). Let ( ) ( )Eu x L D , and furthermore let ( / ) ( )EK u L D  . 

By replacing ( )Nu x  in the Equation (46), setting , ,...,kx x k N N   , then by applying the 

Theorem 2, we get the following collocation solution 
 

1
( 1)

1

( ( ))( )
( ) ( , ) ( ) ( ) ( ).

( )

N N
N j k

N a k j k N b k kj k
j N j N j

KGu t x
u x u S j h o x u x h f x

t
   







  

   
            (47) 

 
We then rewrite these equations in matrix form which are the nonlinear system 
 

( 1) 1
( ( )) .WU h I D K


  


                                                                                                 (48) 

 
The notation “ ” denotes the Hadamard matrix multiplication. ( 1) ( 1)[ ]kjI   , 

[( ( ))( )]N j kK KGu t x  and (1/ ) (1/ ( ),...,1/ ( )),N ND diag x x       
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1 1

1 1

1

( ) 0 ... 0 ( )

( ) 1 0 ( )

, [ , , ] , , , .

( ) 0 1 ( )

( ) 0 0 ( )

a N b N

a N b N
TT

N N N N

a N b N

a N b N

x x

x x

W U u u f f

x x

x x

 
 

 
 

 

   

 

 



 
 
 
    
 
 
 
 


      




           (49) 

 
The above nonlinear system consists of 2 1N  equations of the 2 1N   unknown, namely, 
{ }N

j j Nu  . Solving this nonlinear system by Newton’s method, we can obtain an approximate 

solution of (46). 
 
 
4.2. Convergence Analysis  
 
In this section, we consider the convergence analysis of nonlinear Volterra- Hammerstein 
integral equation. 
 
 
Lemma 4: 
 
Let u be the exact solution of the nonlinear integral equation 
 

( ),u f KG u                                                                                                                      (50) 
 

where the nonlinear operator K  is defined by (46). Let ( )Eu L D , ( ) /G u G u    , and 
2 2( ) /G u G u     be well defined and bounded on the ball 0( , )B u r . Also, let 1( '( ))I KG u   and 

0 1 0 0( '( )) ( ( ) )I KG u KG u f u   be bounded on 0( , )B u r . Assume that 
 

0 0

0 0 1
0 1 2

( , ) ( , )

( ) , sup ( '( )) , sup ( ) .
u B u r u B u r

KG u f u H I KG u H KG u H

 

               (51) 

 
If 
 

2
1 2 0 2h H H H                                                                                                                    (52) 

 
and 
 

2 1
0 1

0

( / 2) ,
k

k

r H H h






                                                                                                            (53) 

 
then the sequence 
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1 1( ( )) ( ( ) )n n n n nu u I KG u KG u f u                                                                            (54) 
 
is well defined. Furthermore 1 ( )n

Eu L D
  for every positive integer n  and the sequence 

nu converges to *u . Furthermore, 
 

 
 

2 1

1 0 2

/ 2
* .

1 / 2

n

n

n
h

u u H H
h




 






                                                                                           (55) 

 
 
Proof:  
 
By applying Kantorovich’s theorem in Kantorovich et al. (1964), we can conclude the existence 
of the sequence 0{ }n

nu   and the relation (55) is held.  

   

From Lemma 4, we can show that the Sinc-collocation method converges at rate of ( )k NO e , 
0k  . 

 
 
Theorem 5: 
 
Let us consider all assumptions in Lemma 4 and let, the discrete equivalent of ( )KG u and 

( )KG u  be well defined and bounded on the ball 0( , )B u r , and also the discrete equivalent of 
1( '( ))I KG u  be bounded on 0( , )B u r . Let the sequence n

Nv  be the discrete equivalent of (54). 

Then, 
 
(a) 0{ }n

N nv   converges to *
Nv and the *n

N Nv v  has a bound as define in (55). 

 
(b) There exists a constant 16C  independent of N  such that 

 

 
1

2
1

* * 2
16sup | | exp{ ( ) }.N

x
v u C N d N 


                                                                                 (56) 

 
 
 
Proof:  
 
(a): Let 0{ }n

N nv   be the discrete sequence by the Sinc-collocation method that defined by the 

discrete equivalent of (54). Similarly, by using Lemma 4, the sequence 0{ }n
N nv   exists and 

converges to *
Nv  and moreover we have 
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                                                                                          (57) 

 

where 0H , 1H  and  h  are defined in (51) and (52). 

 
 
(b): Let the sequence nu  defined by (54). By using Lemma 4, we know that the sequence nu  
exists and converges to *u  and also 
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                                                                                           (58) 

 
By considering bounded inverse of 1( '( ))I KG u   on the ball 0( , )B u r  and Theorem 3, we have 

 
1 1

2 2
17sup | | exp{ ( ) }.n n

N
x

v u C N d N 


                                                                                 (59) 

 
Now, we consider the following inequality 
 

* * * *| | | | | | | | .n n n n
N N N Nv u v v v u u u                                                                                (60) 

 
 
By considering assumptions in Lemma 4, for n  large enough, the given bounds (57) and (58) 
can be made as small as you possible, 
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                                                                      (61) 

 
Having applied the relations (57)-(59) and (61), and also by having considered the maximum 
norm bounds for * n

N Nv v , n n
Nv u  and *nu u , we obtain 

 
1 1

* * 2 2
16sup | | exp{ ( ) }.N

x
v u C N d N 


                                                                                (62) 
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5.  Numerical Examples 
 
In order to illustrate the performance of the Sinc method in solving linear and nonlinear Volterra 
integral equations and justify the accuracy and efficiency of the presented method, we consider 
the following examples. The examples have been solved by presented method with different 
values of N  and , 0 1  . The errors are reported on the set of Sinc grid points 
 

0{ ,..., ,..., }, , ,..., .
1

kh

N N k kh

a be
S x x x x k N N

e 


   


                                                  (63) 

 
The maximum error on the Sinc grid points is 
 

|| ( ) || max | ( ) ( ) | .S j N j
N j N

E h u x u x   
                                                                                      (64) 

 
 
We stopped the numbers of iteration in the Newton method when we achieved the 
accuracy 410  . Examples were given for different values of , 1, / 2N d    and  

1/ 2(1/ 2 )h N .   
 
 
Example 1:  
 
We consider the integral equation 
 

2 2 2

( ) 2 1 ( ) , 0 1,
x

x t xu x x e e u t dt x      


 

 
with exact solution ( ) 2u x x . The maximum of absolute error on the Sinc grid S  is tabulated in 
Table 1. The graph of the exact and approximate solutions is shown in Figure 1. 

 
Table 1. Results for Example 1 
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Figure 1. Exact and approximate solutions for Example 1, ( 1,5N  ) 

 
 
Example 2:  
 
Consider the following nonlinear Volterra-Hammerstein integral equation with exact solution 

2( ) .u x x x   
 

8 7 6 5 2 3

0

15 13 11 9
( ) ( )[ ( )] , 0 1.

56 14 10 20

x

u x x x x x x x x t u t dt x          
 

 
 
 
The maximum absolute error on the Sinc grid S  is tabulated in Table 2. This Table indicates that 
as N increases the error is decreased more rapidly. In Figure 2 for large values of N  the 
approximate solutions are indistinguishable from the exact solutions for the given scale. 
 

 
Table 2. Results for Example 2 
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Figure 2. Exact and approximate solutions for Example 2, ( 1, 4N  ) 
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