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 Abstract 

In this paper we have studied the stability of three typical species syn-ecosystem. The system 

comprises of one commensal 1S and two hosts 2S  and 3S . Both 2S  and 3S  benefit 1S without 

getting themselves affected either positively or adversely. Further 2S  is a commensal of 3S  and 

3S  is a host of both 1S and 2S . Limited resources have been considered for all the three species in 

this case. The model equations of the system constitute a set of three first order non-linear 

ordinary differential equations. The possible equilibrium points of the model are identified. We 

have also studied the local and global stabilities. We have analyzed the bionomic equilibrium 

and optimal harvesting strategy using Pontryagin’s maximum principle. We have investigated 

the inhabitant intensities of the fluctuations (variances) around the positive equilibrium due to 

noise and have investigated the stability. We have also checked the MATLAB numerical 

simulations for stability of the system.  
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1.  Introduction 
 

Ecology is the study of the inter-relationships between creatures and their surroundings. It is 

usual for two or more species living in a common territories to interact in dissimilar ways. 

Mathematical modeling has played an important role for the last half a century in explaining 

several phenomena concerned with individuals and groups of populations in Nature. Lotka 

(1925) and Volterra (1931) established theoretical ecology in a momentous way and opened new 

epochs in the field of life and biological sciences. The Ecological dealings can be broadly 

classified as Ammensalism, Competition, Commensalism, Neutralism, Mutualism, Predation and 

Parasitism.  

 

The general concept of modeling has been presented in the treatises of Meyer (1985), Cushing 

(1977) and Kapur (1985). Srinivas (1991) has studied the competitive ecosystems of two species 

and three species with limited and unlimited resources. Lakshmi Narayan and Pattabhi 

Ramacharyulu (2007) have studied prey-predator ecological model with partial cover for the 

prey and alternate food for the predator. Archana Reddy (2009) and Bhaskara Rama Sharma 

(2009) have investigated diverse problems related to two species competitive systems with time 

delay by employing analytical and numerical techniques. Phani Kumar (2010) studied some 

mathematical models of ecological commensalism, while Ravindra Reddy (2012) discussed the 

stability of two mutually interacting species with mortality rate for the second species. Further 

Srilatha et al. (2011) Shiva Reddy et al. (2011) studied stability analysis of three and four 

species. Hari Prasad et al. (2010, 2011) also discussed the stability of three and four species syn-

ecosystems.  

 

The present authors (2011, 2012) have investigated the stability of three species and four species 

with stage structure, optimal harvesting policy and stochasticity. Papa Rao et al. (2013) analyzed 

a three species ecological prey, predator and competitor model and discussed the stability and 

optimal harvesting factors. Hari Prasad et al. (2012) and Kar et al. (2006), Carletti (2006) have 

been the source of our inspirations to undertake the present investigation on the analytical and 

numerical approach of the  emblematical three species ( 1S , 2S , 3S ) syn-ecosystem.  

 

2. Mathematical Model 

Consider a conventional syn-ecosystem which consists of three species say 1S , 2S , 3S  (Figure 

2.1) where three species are living together with the following assumptions: (i) The system 

comprises of one commensal ( 1S ) and two hosts 2S  and 3S . Both 2S and 3S benefiting 1S  

without getting themselves affected either positively or adversely (ii) 2S  is a commensal of 3S  

(iii) 3S is a host of both 1S  and 2S  (iv) all the three species have limited resources.  
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Figure 2.1. Representation of a three species commensaling system 
 

Let ( )x t , ( )y t  and ( )z t  be the population densities of species 1S , 2S  and 3S  respectively at time 

instant ' 't . Let 1a , 2a  and 3a  be the natural growth rates of species 1S , 2S  and 3S  respectively. 

Keeping these in view and following Hari Prasad et al. (2012) and Tapan Kumar Kar et al. 

(2006), the dynamics of the system may be governed by the following first order nonlinear 

ordinary differential equations: 

2

1 11 12 13 1 1

dx
a x a x a xy a xz q E x

dt
     ,            (2.1) 

2

2 22 23

dy
a y a y a yz

dt
   ,             (2.2) 

2

3 33 2 2

dz
a z a z q E z

dt
   .             (2.3) 

 

In the above model , 1,2,3,iia i 
 
are self-inhibition coefficients of species , 1,2,3,iS i 

 
respectively, 12a  is the interaction coefficient of 1S due to 2S , 13a  is interaction coefficient of  1S  

due to 3S , 23a  is the interaction coefficient of 2S  due to 3S , / , 1,2,3,i i iiK a a i 
 
are the 

carrying capacities of species , 1,2,3,iS i 
 
respectively, 1q

 
and 2q  are the catch ability 

coefficients of species 1S and 3S , respectively, 1E and 2E  are the efforts applied to harvest the 

species 1S and 3S , respectively.  

Throughout our analysis, we assume that  

1 1 1 0a q E  , 3 2 2 0a q E  .                                            (2.4) 

 

3.  Steady States 
 

In this section we present the basic outcomes on the non-negative equilibriums. It can be checked 

that the model (2.1)-(2.3) has only three nonnegative equilibriums namely 0(0,0,0)T , 1( , ,0)T x y

and 
2( , , )T x y z   which are attained by solving 0x y z   .  

Case (i): 0(0,0,0)T : The population is extinct but this always exists. 
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Case (ii): 1( , ,0)T x y : Here x and y are positive solutions of 0x  and 0y  . We get,   

2 22/y a a ,                 (3.1) 

 11 1 1 1 12 2 22(1/ ) ( ) /x a a q E a a a     .                                          (3.2) 

 

Clearly, x  is positive due to (2.4). 

 

Case (iii):  2 , ,T x y z  
   (The interior equilibrium): Here, ,x y   and z  are positive solutions of 

the following equations: 

 1 11 12 13 1 1 0a a x a y a z q E     , 2 22 23 0a a y a z   , 3 33 2 2 0a a z q E   .                 (3.3) 

 

From (3.3), we get  

 33 3 2 2(1/ )z a a q E   ,                             

 22 2 23 33 3 2 2(1/ ) ( / )y a a a a a q E      ,                

      1 1 1 12 22 2 23 33 3 2 2 13 33 3 2 2

11

1
( / ) ( / ) ( / )x a q E a a a a a a q E a a a q E

a

          .      

We clearly see that ,x y   and z  are positive due to inequalities (2.4). 

 

4.  Local Stability 
 

We first consider the local stability of the interior steady state. The Variational matrix of the 

system (2.1)-(2.3) is 

1 11 12 13 1 1 12 13

2 22 23 23

3 33 2 2

2

0 2

0 0 2

a a x a y a z q E a x a x

J a a y a z a y

a a z q E

    
 

  
 
   

.                (4.1) 

At the interior equilibrium  2 , ,T x y z  
, the characteristic equation of (4.1) is in the form of    

3 2 0A B C      ,                                 (4.2) 

where  

11 22 33A a x a y a z     ,
11 22 22 33 11 33B a a x y a a y z a a x z        ,

11 22 33C a a a x y z   . 
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The system is locally asymptotically stable if all the eigenvalues of the above characteristic 

equation have negative real parts. By Routh- Hurwitz criteria, it follows that all eigenvalues of 

the above characteristic equation have negative real parts if and only if 0, 0, 0A C AB C    . 

Obviously 0A , 0C  and  

 11 11 22 11 33AB C a x a a x y a a x z      

 

                                  

  22 33 11 22 22 33 11 33 0a y a z a a x y a a y z a a x z            .
 

 

5.  Global Stability  

We now discuss the global stability of the equilibrium points   1 , ,0T x y  and  2 , ,T x y z  
of the 

system (2.1)-(2.3). 

 

Theorem 5.1. 

 

The equilibrium point  1 , ,0T x y  is globally asymptotically stable. 

 

Proof:  
 

Let us consider the following Lyapunov function  

 

   1( , ) ( ) ln( / ) ( ) ln( / )L x y x x x x x l y y y y y      , 

  

where 1l is the positive constant. 

 

1( ) /( ) [( ) / ]( ) /( ) [( ) / ]( ) /( )dL dt x x x dx dt l y y y dy dt    ,

     
         11 12 1 22( ) /( )dL dt x x a x x a y y l y y a y y               

. 

 

By choosing 1 221/l a ,
 
we get  

 

      
2 2

11 12( ) /( )dL dt a x x a x x y y y y        
 

,  

 

which is in the form 
TY PY , where 

 

 TY x x y y   , 
11 12

12

/ 2

/ 2 1

a a
P

a

 
  

 
.  
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The equilibrium point  1 , ,0T x y   is globally asymptotically stable if 0
dL

dt
 . This is possible 

only when the matrix P  is positive definite. We observe clearly that this is the case since all the 

principal minors of P are positive. 

Theorem 5.2. 

The interior equilibrium point 
2( , , )T x y z    is globally asymptotically stable if 2

22 234a a , 
2

11 134a a  and 2

11 22 124a a a  hold. 

 

Proof:  
 

To find the condition for global stability at
2( , , )T x y z   , we construct the Lyapunov function 

 

       * * * * * * * * *

1 2( , , ) ( ) ln( / ) ( ) ln( / ) ( ) ln( / ) ,L x y z x x x x x l y y y y y l z z z z z                  
 

  

where 1l  and 2l are positive constants. 

 
* * *

1 2( ) /( ) [( ) / ]( ) /( ) [( ) / ]( ) /( ) [( ) / ]( ) /( )dL dt x x x dx dt l y y y dy dt l z z z dz dt      ,

     

       * * * *

11 12 13( ) /( )dL dt x x a x x a y y a z z        
 

 
                                            * * * * *

1 22 23 2 33l y y a y y a z z l z z a z z            
   

, 

       

      

2
* * * * *

11 12 13

2 2
* * * *

1 22 23 2 33

( ) /( )

a x x a x x y y a x x z z

dL dt

l a y y a y y z z l a z z

        
   

 
          
       

. 

 

By choosing
1 2 331, 1/l l a  we get  

 

       

      

2
* * * * *

11 12 13

2 2
* * * *

22 23

( ) /( )

a x x a x x y y a x x z z

dL dt

a y y a y y z z z z

        
   

  
        
   

, 

 

which is in the form of  
TX MX , where  

 

 TX x x y y z z       

 

and  
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11 12 13

12 22 23

13 23

/ 2 / 2

/ 2 / 2

/ 2 / 2 1

a a a

M a a a

a a

  
 

   
   

.  

The interior equilibrium point 
2( , , )T x y z    is globally asymptotically stable if 0

dL

dt
 . This is 

possible only when M  is positive definite. We observe clearly that M  is positive definite if the 

hypotheses of the theorem are satisfied. 

 

6.  Bionomic Equilibrium 
 

This is the combination of biological equilibrium and economic equilibrium. In section (3) we 

have discussed the biological equilibrium which is given by 0x y z   . When the total 

revenue obtained by selling the harvested biomass equals the total cost utilized in harvesting it, 

we say that the bionomic equilibrium is achieved. Let 1c
 
be the constant fishing cost of species 

1S
 
per unit effort and 2c

 
be the constant fishing cost of species 3S

 
per unit effort. Let 1p  be the 

constant price of species 1S per unit biomass and 2p  be the constant price of species 3S
 
per unit 

biomass. Then the revenue at any time is given by 

 

     1 2 1 1 1 1 2 2 2 2, , , ,A x y z E E p q x c E p q z c E      .
                                             

      (6.1) 

 

If 1 1 1c p q x  and 2 2 2c p q z  then the economic rent obtained from the fishery becomes negative 

and the fishery will be closed.  Hence for the existence of bionomic equilibrium, it is assumed 

that 

 

1 1 1c p q x , 2 2 2c p q z .                                        (6.2) 

 

The bionomic equilibrium  1 2( ) , ( ) , ( ) , ( ) , ( )x y z E E      is the positive solution of    

         

0x y z A    .                                (6.3) 

 

By solving (6.3) we get  

  

1 1 1( ) /( )x c p q  , 2 2 2( ) /( )z c p q  ,                                                                 

   22 2 23 22 2 23 2 2 2( ) (1/ ) ( ) (1/ ) [( ) /( )]y a a a z a a a c p q     ,            

 1 1 11 1 1 1 12 2 22 12 23 2 22 2 2 13 2 2 2

1

1
( ) ( ) /( ) ( ) / ( ) /( ) ( ) /E a a c p q a a a a a c a p q a c p q

q
      , 

   2 2 3 33 2 2 2(1/ ) ( / )E q a a c p q

  ,       

1( ) 0E    when 1 11( ) ( / )x a a  and 2( ) 0E     when 3 33( ) ( / )z a a  .   
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If 1 1( ) ( )E E  and 2 2( ) ( ) ,E E   then the total cost utilized in harvesting the fish population 

would exceed the total revenues obtained from the fishery. Thus, some of the fishermen would 

face a loss and naturally they would withdraw their participation from the fishery. Hence, 

1 1( ) ( )E E   and 2 2( ) ( )E E  cannot be maintained indefinitely. If 1 1( ) ( )E E  and

2 2( ) ( ) ,E E   then the fishery is more profitable and, hence, in an open access fishery, it would 

attract more and more fishermen. This will have an increasing effect on the harvesting effort. 

Hence, 1 1( ) ( )E E  and 2 2( ) ( )E E   cannot be continued indefinitely. 

 

7.  Optimal Harvesting Strategy  
 

Our objective now is to select a harvesting strategy that maximizes the present value 

 

    1 1 1 1 2 2 2 2

0

( ) ( )tQ e p q x c E t p q z c E t dt


       ,                  (7.1)         

 

of a continuous time stream of revenues. Here  is the instantaneous annual discount rate. The 

problem (7.1) subject to population equations (2.1)-(2.3) and control constraints 1 1 max0 ( )E E 

and 2 2 max0 ( )E E   can be explained by applying Pontryagin’s maximum principle. The 

Hamiltonian is given by 

 

    2

1 1 1 1 2 2 2 2 1 1 11 12 13 1 1

tH e p q x c E p q z c E a x a x a xy a xz q E x                  

                                               
2 2

2 2 22 23 3 3 33 2 2a y a y a yz a z a z q E z             ,    (7.2) 

where 1 2,  and 3 are adjoint variables and the switching functions are 

 

 1 1 1 1 1 1( ) tt e p q x c q x    ,                     (7.3) 

 2 2 2 2 3 2( ) tt e p q z c q z    .                                                                            (7.4) 

 

Since the Hamiltonian H is linear in the control variable, the optimal control will be an 

amalgamation of the extreme controls and the singular control. The Optimal controls 1( )E t and 

2 ( )E t that maximize H must satisfy the subsequent conditions: 

 

1 1 max( ) ( ) ,E E where 1( ) 0t 
’ 

i.e., 1 1 1 1( ) [ ( / )]tt e p c q x   ,                                  

2 2 max( ) ( ) ,E E where 2( ) 0t  , i.e., 
3 2 2 2( ) [ ( / )]tt e p c q z   .            

 

( ) t

i t e , 1,3i  , is the shadow price and 1 1 1( / )p c q x is the net economic income on a unit 

harvest of species 1S , 2 2 2( / )p c q z is the net economic income on a unit harvest of species 3S . 
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This shows that max( ) ( ) , 1,2i iE E i  , or zero, according to the shadow price is not more than or 

superior to the net economic revenue on a unit harvest. Economically, the first condition implies 

that if the profit, after paying all the expenses is positive then it is beneficial to harvest up to the 

limit of the available effort. The second condition implies that when the shadow price exceeds 

the fisherman’s net economic revenue on a unit harvest then the fisherman will not exert any 

effort. When ( ) 0, 1,2i t i   , i.e., when the shadow price equals the net economic revenue on a 

unit harvest then the Hamiltonian H becomes self-governing of the control variable ( )iE t , i.e.,  

0
i

H

E





.  

This is, an obligatory condition for the singular control ( )iE t  to be optimal over the control set 

max0 ( ) ( )i iE t E  . Thus, the optimal harvesting strategy is  

 

max( ) , ( ) 0,

( ) 0, ( ) 0,

( ) , ( ) 0,

i i

i i

i i

E t

E t t

E t







 


 




                      (7.5) 

 

when ( ) 0, 1,2i t i   , it follows that 

  

 1 1 1 1 1 1( ) /( )t tq x e p q x c A E e        ,                                                                (7.6) 

 3 2 2 2 2 2( ) /( )t tq z e p q z c A E e        .                                                                (7.7) 

 

This implies that the user’s cost of harvest per unit of effort equals the concession value of the 

future marginal profit of the effort at the steady state level. Now the adjoint equations are  

 

 1 1 1 1 1 1 11 12 13 1 1( ) /( ) ( ) /( ) 2td dt H x e p q E a a x a y a z q E              ,            (7.8) 

   2 1 12 2 2 22 23( ) /( ) ( ) /( ) 2d dt H y a x a a y a z             ,                (7.9) 

 3 2 2 2 1 13( ) /( ) ( ) /( ) td dt H z e p q E a x           2 23 3 3 33 2 22a y a a z q E     .  (7.10)   

                                                     

We now seek to find the optimal equilibrium solution of the problem so that 1, , ,x y z E and 2E can 

be treated as constants.  

 

From (7.9),  

 2 2 2 22 23 1 1 1 12( ) /( ) 2 [ ( / )]td dt a a y a z e p c q x a x        ,  
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which is in the form of 

 

2 1 2 2( ) /( ) td dt M M e      ,  

 

where 

 

1 2 22 23 2 1 1 1 122 , [ ( / )]M a a y a z M p c q x a x       ,  

 

and its solution is given by  

 

2 2 1[ /( )] tM M e     .                                                    (7.11) 

 

From (7.8), 

 

 1 1 1 11 12 13 1 1 1 1 1( ) /( ) 2 td dt a a x a y a z q E e p q E         ,  

 

which is in the form of 

 

1 3 1 4( ) /( ) td dt M M e      ,  

 

where 

 

3 1 11 12 13 1 12M a a x a y a z q E       , 4 1 1 1M p q E ,  

 

and its solution is given by  

 

1 4 3[ /( )] tM M e     .                                                    (7.12) 

 

From (7.10), (7.11) and (7.12),  

 

3 5 3 6( ) /( ) td dt M M e      ,  

 

where  

 

5 3 33 2 22M a a z q E   ,
 

6 2 2 2 4 13 3 2 23 1[( ) /( )] [( ) /( )]M p q E M a x M M a y M       ,  

 

and its solution is given by   

 

3 6 5[ /( )] tM M e     .                                                    (7.13) 
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From (7.6) and (7.12) we get the singular path 

 

 *

1 1 1 4 3( / ) [ /( )]p c q x M M     .                                 (7.14) 

 

From (7.7) and (7.13) we get the singular path  

 
*

2 2 2 6 5[ /( )] [ /( )]p c q z M M     .                       (7.15) 

 

At the point 
2( , , )T x y z   , , 1,2,...,6iM i  , can be written as follows 

 

1 2 23 33 3 2 2( / )( )M a a a a q E    , 

     23 131 12 12 1 12
2 1 1 1 2 3 2 2 3 2 2

11 22 33 33 1

a ap a a c a
M a q E a a q E a q E

a a a a q

  
         

   
, 

     23 1312
3 1 1 1 2 3 2 2 3 2 2

22 33 33

a aa
M a q E a a q E a q E

a a a

 
        

 
, 

4 1 1 1M p q E ,  5 3 2 2M a q E   , 

 
     4 13 23 1312

6 1 1 1 2 3 2 2 3 2 2

3 11 22 33 33

M a a aa
M a q E a a q E a q E

M a a a a

  
        

    
 

                                                            
 

 2 23 23
2 2 2 2 3 2 2

1 22 33

M a a
p q E a a q E

M a a

 
    

  
. 

 

Thus, (7.14) and (7.15) can be written as  

 
*

1 1 1 4 3( ) [ ( / )] [ /( )] 0F x p c q x M M       ,                        (7.16) 

*

2 2 2 7 5( ) [ ( / )] [ /( )] 0G z p c q z M M       .                                                         (7.17) 

There exists a unique positive root x x
  of ( )F x =0 in the interval 10 ( )x K  , if the 

following inequalities hold:   10 0, ( ) 0, ( ) 0F F K F x   for 0x  , where 1 1 11/K a a . 

 

There exists a unique positive root z z
  of ( )G z = 0 in the interval 20 ( )z K   , if the 

following inequalities hold:   20 0, ( ) 0, ( ) 0G G K G z   for 0z   , where 2 3 33/K a a . 

 

For x x
  , we get 

 

 22 2 23 33 3 2 2(1/ ) ( / )y a a a a a q E      , 
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 33 3 2 2(1/ )z a a q E   , 

 1 1 1 11 12 13( ) (1/ )E q a a x a y a z       ,  

 2 2 3 33( ) (1/ )E q a a z   . 

 

Here, 1( ) 0E   if 1x K   and 2( ) 0E   ,
 
if 2z K  .  

 

From (7.11), (7.12) and (7.13), we observe that ( ) , 1,2,3t

i t e i  , is independent of time and is 

the best possible equilibrium. Hence, they satisfy the transversality condition at , i.e., they 

remain bounded as .t   

 

From (7.16) and (7.17), we also have  

 

1 1 1 4 3[ /( )] 0p q x c M M       , as   , 

2 2 2 7 5[ /( )] 0p q z c M M        , as   . 

 

Thus, the net economic revenue  

 

 1 2( ) ,( ) ,( ) ,( ) ,( ) 0A x y z E E      . 

 

This implies that an infinite concession rate pilots to the net economic revenue tending to zero 

and the fishery would remain closed. 

 

8.  The Stochastic Model 
 

In this paper we assume the presence of randomly fluctuating driving forces on the deterministic 

growth of the species , 1,2,3,iS i   at time ' 't  so that the system (2.1)-(2.3) results in the 

stochastic system with ‘additive noise’. 

  
The main assumption that leads us to extend the deterministic model (2.1)-(2.3) to a stochastic 

counterpart is that, it is reasonable to conceive the open sea as a noisy environment. There are 

many ways in which environmental noise may be incorporated in system (2.1)-(2.3). Note that 

environmental noise should be distinguished from demographic or internal noise for which the 

variation over time is due. External noise may arise either from random fluctuations of one or 

more model parameters around some known mean values or from stochastic fluctuations of the 

population densities around some constant values.    

 

In this section we compute the population intensities of fluctuations (variances) around the 

positive equilibrium  2 , ,T x y z  
due to noise according to the method introduced by Nisbet et 

al. (1982). Such a method was also successfully applied by Tapaswi et al. (1999). Now we 

assume the presence of randomly fluctuating driving forces on the deterministic growth of the 
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species , 1,2,3,iS i   at time ' 't  so that the system (2.1)-(2.3) results in the stochastic system with 

‘additive noise’:  

 

2

1 11 12 13 1 1 1 1( )
dx

a x a x a xy a xz q E x t
dt

       ,                    (8.1) 

2

2 22 23 2 2 ( )
dy

a y a y a yz t
dt

     ,                     (8.2) 

2

3 33 2 2 3 3( )
dz

a z a z q E z t
dt

     ,                     (8.3) 

where ( )x t , ( )y t  and ( )z t  be the population densities of species 1S , 2S  and 3S , respectively, at 

time instant ' 't . 1 2 3, ,    are real constants and    1 2 3( ), ( ), ( )t t t t     is a three dimensional 

Gaussian white noise process satisfying  

 

  0, 1,2,3iE t i     ,                       (8.4) 

     , , 1,2,3i j ijE t t t t i j          ,                    (8.5) 

where 
ij  is the Kronecker symbol and   is the  -Dirac function.  

 

Let us consider the technique of perturbations as 

 
*

1( ) ( ) ,x t u t S  *

2( ) ( ) ,y t u t P   
*

3( ) ( ) ,z t u t T                                (8.6)  

1( )du tdx

dt dt
 ,  2 ( )du tdy

dt dt
 ,  3( )du tdz

dt dt
 .                    (8.7) 

 

Using equations (8.6) and (8.7), equation (8.1) becomes  

 

 * 2 * 2 *1
1 1 1 11 1 11 11 1 12 1 2

( )
( ) ( ) ( ) 2 ( ) ( ) ( )

du t
a u t a S a u t a S a u t S a u t u t

dt
       

                           * * * * * *

12 1 12 2 12 13 1 3 13 1 13 3( ) ( ) ( ) ( ) ( ) ( )a u t P a u t S a S P a u t u t a u t T a u t S       

                            * * *

13 1 1 1 1 1 1 1( ) ( )a S T q E u t q E S t    .                    (8.8) 

 

The linear part of (8.8) is   

 

* * *1
11 1 12 2 13 3 1 1

( )
( ) ( ) ( ) ( )

du t
a u t S a u t S a u t S t

dt
      .                   (8.9) 

 

Using equations (8.6) and (8.7), equation (8.2) becomes 
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* 2 * 2 *2
2 2 2 22 2 22 22 2

( )
( ) ( ) ( ) 2 ( )

du t
a u t a P a u t a P a u t P

dt
      

                              * * * *

23 2 3 23 2 23 3 23 2 2( ) ( ) ( ) ( ) ( )a u t u t a u t T a u t P a P T t      .  (8.10) 

 

The linear part of (8.10) is 

 

 * *2
22 2 23 3 2 2

( )
( ) ( ) ( )

du t
a u t P a u t P t

dt
     .                 (8.11) 

  

Using equations (8.6) and (8.7), equation (8.3) becomes 

 

* 2 * 2 *3
3 3 3 33 3 33 33 3

( )
( ) ( ) ( ) 2 ( )

du t
a u t a T a u t a T a u t T

dt
      

                                              *

2 2 3 2 2 3 3( ) ( )q E u t q E T t    .    (8.12) 

 

The linear part of (8.12) is 

 

  *3
33 3 3 3

( )
( ) ( )

du t
a u t T t

dt
    .                  (8.13) 

 

Taking the Fourier transform on both sides of (8.9), (8.11) and (8.13), we get 

  

 * * *

1 1 11 1 12 2 13 3( ) ( ) ( ) ( )i a S u a S u a S u          ,               (8.14) 

 * *

2 2 22 2 23 3( ) ( ) ( )i a P u a P u        ,               (8.15) 

 *

3 3 33 3( ) ( )i a T u      .                     (8.16) 

 

The matrix form of (8.14), (8.15) and (8.16) is 

 

      M u    ,                                                                                       (8.17) 

 

where  

  

 
11 12 13

21 22 23

31 32 33

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

A A A

M A A A

A A A

  

   

  

 
 

  
 
 

 ,   
1

2

3

( )

( )

( )

u

u u

u



 



 
 


 
  

 ,    
 
 
 

1 1

2 2

3 3

  

    

  

 
 

  
 
 

, 

*

11 11( )A i a S   , *

12 12( )A a S   , *

13 13( )A a S   , 

21( ) 0A   , *

22 22( )A i a P   , *

23 23( )A a P   ,  
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31( ) 0A   , 32( ) 0A   ,
*

33 33( )A i a T   .                                      (8.18) 

 

Equation (8.17) can also be written as 

 

   ( )u K    ,                                                                                                   (8.19) 

 

where  

 

 
 

 

1

( )
Adj M

K M
M


 





     .                   (8.20) 

 

If the function ( )Y t  has a zero mean value, then the fluctuation intensity (variance) of its 

components in the frequency interval  , d    is ( )YS d  , where ( )YS  is the spectral 

density of Y  and is defined as  

 

 
2

( ) limY
T

Y
S

T





 .                            (8.21) 

 

If  Y  has a zero mean value then the inverse transform of ( )YS  is the auto covariance function  

 

 
1

( )
2

i

Y YC S e d  






  .                      (8.22) 

 

The corresponding variance of fluctuations in ( )Y t  is given by 

  

2 1
(0) ( )

2
Y Y YC S d  







   .                  (8.23) 

 

The auto correlation function is the normalized auto covariance 

 

( )
( )

(0)

Y
Y

Y

C
P

C


  .                                              (8.24) 

 

For a Gaussian white noise process, it is  
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ˆ
lim

ˆi j

i j

T

E
S

T
 

   




 
 


 

                         

ˆ ˆ

2 2
( )

ˆ
ˆ ˆ

2 2

1
lim

ˆ

T T

i t t

i j
T

T T

E t t e dt dt
T

 
 



 

         
ij .                                           (8.25) 

 

From (8.19) we have 

 

     
3

1

, 1,2,3i ij j

j

u K i   


  .                                                     (8.26) 

 

From (8.21) we have 

 

   
3

2

1

, 1,2,3
iu j ij

j

S K i  


  .                                          (8.27) 

 

Hence by (8.23) and (8.27), the intensities of fluctuations in , 1,2,3iu i   are given by   

 
3

2
2

1

1
( ) , 1,2,3

2iu j ij

j

K d i   




 

   .                              (8.28) 

 

From (8.20) we obtain 

   

1

2 2 2

2

1 2 3

1 (1) (2) (3)

2 ( ) ( ) ( )
u

Adj Adj Adj
d d d

M M M
      

   

  

  

 
 

   
  
   , 

2

2 2 2

2

1 2 3

1 (4) (5) (6)

2 ( ) ( ) ( )
u

Adj Adj Adj
d d d

M M M
      

   

  

  

 
 

   
  
   , 

3

2 2 2

2

1 2 3

1 (7) (8) (9)

2 ( ) ( ) ( )
u

Adj Adj Adj
d d d

M M M
      

   

  

  

 
 

   
  
   ,             (8.29) 

 

where  ( ) ( ) ( )M R iI    , 

 

   2 * * * * * *

11 22 33 11 22 33R a S a P a T a a a S P T      ,                                                    (8.30) 



688                                                                                                                                                  M.N. Srinivas et al.                                                       

                                                                                                                                                            

 

   3 * * * * * *

11 22 22 33 11 33I a a S P a a P T a a S T       ,                                                 (8.31) 

2 2 2

1 1(1)Adj X Y  , 
2 2 2

2 2(2)Adj X Y  ,
2 2 2

3 3(3)Adj X Y  , 

2 2 2

4 4(4)Adj X Y  ,
2 2 2

5 5(5)Adj X Y  ,
2 2 2

6 6(6)Adj X Y  , 

2 2 2

7 7(7)Adj X Y  ,
2 2 2

8 8(8)Adj X Y  ,
2 2 2

9 9(9)Adj X Y  , 

 

where  

 
2 * *

1 22 23X a a P T   ,  * *

1 22 33Y a P a T  , * *

2 12 33X a a S T , *

2 12Y a S ,  

  * *

3 12 23 13 22X a a a a S P  , *

3 13Y a S , 4 0X  , 4 0Y  , 2 * *

5 11 33X a a S T   ,

 * *

5 11 33Y a S a T  , * *

6 11 23X a a S P , *

6 23Y a P , 

7 0X  , 7 0Y  , 8 0X  , 8 0Y  , 2 * *

9 11 22X a a S P   ,  * *

9 11 22Y a S a P  . 

Thus, (8.29) becomes  

     
1

2 2 2 2 2 2 2

1 1 1 2 2 2 3 3 32 2

1 1

2 ( ) ( )
u X Y X Y X Y d

R I
    

  





            
 , 

   
2

2 2 2 2 2

2 5 5 3 6 62 2

1 1

2 ( ) ( )
u X Y X Y d

R I
   

  





          
 , 

 
3

2 2 2

3 9 92 2

1 1

2 ( ) ( )
u X Y d

R I
  

  





        
 . 

 

If we are interested in the dynamics of system (8.1)-(8.3) with either 1 0   or 2 0   or 3 0  , 

then the population variances are  

 

If 1 2 0   , then 

 

  
 

1

2 2

3 32 3

2 22 ( ) ( )
u

X Y
d

R I


 

  








 ,
 

2

2 2

6 62 3

2 22 ( ) ( )
u

X Y
d

R I


 

  








 , 

 
 

3

2 2

9 92 3

2 22 ( ) ( )
u

X Y
d

R I


 

  








 . 
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If 2 3 0   , then 

 

 
1

2 2

1 12 1

2 22 ( ) ( )
u

X Y
d

R I


 

  








  ,      
2

2 0u   ,     
3

2 0u  . 

If 1 3 0   , then 

 

 
1

2 2

2 22 2

2 22 ( ) ( )
u

X Y
d

R I


 

  








 ,      
 

2

2 2

5 52 2

2 22 ( ) ( )
u

X Y
d

R I


 

  








 ,
3

2 0u  . 

 

The equations in (8.29) give three variations of the inhabitants. The integrals over the real line 

can be estimated which gives the variations of the inhabitants. 

 

9.  Computer Simulation    
 

In this section we demonstrate as well as boost up, our analytical findings through numerical 

simulations considering the following parameters:  
     

 

Example 1.   

 

1 4.8a  , 11 0.5a  , 12 0.02a  , 13 0.15a  , 1 0.15q  , 1 10E  , 2 3.5a  , 22 0.8a  , 

23 0.48a  , 3 9a  , 33 0.02a  , 2 0.98q  , 2 15E  . 

 

          

      Figure 9.1. The variation of population against time, initially with x = 30, y = 15, z = 25, and the 

variation of population among commensal population, host1 population, and host2 

population. 
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Example 2: 

 

1 11 12 13 1 1 2 22 234.4, 0.06, 0.02, 0.01, 0.05, 20, 1.5, 0.05, 0.04,a a a a q E a a a        

3 33 2 22.7, 0.02, 0.1, 15a a q E    . 

           

        Figure 9.2. The variation of population against time, initially with x = 100, y = 150, z = 250                     

and the variation of population among commensal population, host1 population, 

and host2 population 
 

Example 3. 

 

1 11 12 13 1 1 2 22

23 3 33 2 2

2.4, 0.06, 0.02, 0.01, 0.05, 10, 20, 4.5, 0.05,

0.04, 5,2.7, 2.7, 0.02, 0.01, 15.

a a a a q E a a

a a a q E





        

     
 

 

           

        Figure 9.3. The variation of population against time, initially with x = 10, y = 20, z = 20 and 

the variation of population among commensal population, host1 population, and 

host2 population 

 

Example 4.  

 

1 11 12 13 1 1 2 22 23

3 33 2 2

5.4, 0.06, 0.2, 0.1, 0.05, 10, 20, 4.5, 0.05, 0.04,

5, 2.7, 0.02, 0.01, 15.

a a a a q E a a a

a a q E
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         Figure 9.4. The variation of population against time, initially with x = 100, y = 200, z = 200 and 

the variation of population among commensal population, host1 population, and host2 

population 
 

 

Example 5. 

 

1 11 12 13 1 1 2 22 23

3 33 2 2

5.4, 0.06, 0.02, 0.01, 0.01, 10, 10, 1.5, 0.05, 0.04,

5, 2.7, 0.02, 0.01, 15.

a a a a q E a a a

a a q E





         

    
 

 

      
 

         Figure 9.5. The variation of population against time, initially with x = 100, y = 100, z = 150 

and the variation of population among commensal population, host1 population, 

and host2 population 

 

 

Example 6. 

 

1 11 12 13 1 1 2 22 23

3 33 2 2

2.4, 0.06, 0.02, 0.01, 0.01, 10, 10, 1.5, 0.05, 0.04,

5, 0.7, 0.02, 0.01, 10.

a a a a q E a a a

a a q E
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         Figure 9.6. The variation of population against time, initially with x = 100, y = 

100, z = 150 and the variation of population among commensal 

population, host1 population, and host2 population
 

 

 

Example 7. 

 

1 11 12 13 1 1 2 22 23

3 33 2 2

2, 0.01, 0.45, 0.08, 0.2, 10, 10, 1, 0.5, 0.32,

30, 3, 0.3, 0.01, 10.

a a a a q E a a a

a a q E





         

    
 

 

                   

        Figure 9.7. The variation of population against time, initially with x = 15, y = 15, z = 15 and 

the variation of population among commensal population, host1 population, and 

host 2 population 

 

Example 8. 

 

1 11 12 13 1 1 2 22 23

3 33 2 2

3, 0.01, 0.45, 0.08, 0.2, 5, 10, 2, 0.5, 0.32,

30, 1, 0.2, 0.01, 10.

a a a a q E a a a

a a q E
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    Figure 9.8. The variation of population against time, initially with x = 15, y = 15, z = 15 

and the variation of population among commensal population, host1 

population, and host 2 population 

 

 

Example 9. 
 

 

1 11 12 13 1 1 2 22 23

3 33 2 2

3, 0.01, 0.45, 0.08, 0.2, 5, 10, 2, 0.5, 0.32,

30, 1.2, 0.2, 0.1, 10

a a a a q E a a a

a a q E





         

    
 

 

               

    Figure 9.9. The variation of population against time, initially with x = 20, y = 15, z = 25 and the 

variation of population among commensal population, host1 population, and host 2 

population 
 

10.   Conclusions 
  

In this paper a model of a distinctive three species syn-ecosystem with a stochastic term has been 

invented. At first we discussed the model without the stochastic term and examined the survival 

of the equilibrium points as well as local and global stabilities by using Routh-Hurwitz criteria 

and Lyapunov function respectively. We also analyzed the idea of a bionomic equilibrium and 

computed optimal harvesting policy through Pontryagin’s maximum principle. Later we 

computed the population intensities of fluctuations (variances) around the positive equilibrium 

(due to noise). The given MATLAB simulations exhibit the theoretical analysis. Figures 9.1-9.4 

represent the stability of the deterministic model and figures 9.5-9.9 show the fluctuations in the 
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population densities around the mean state. The conclusion is that the noise on the system results 

in immense variances of oscillations around the equilibrium point causing our system to be 

chaotic. So in our model, standard deviations act as an unpredictable dynamic force that 

influences bulky rise and fall for intensities in the region of the equilibrium point.  
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