
553 
 

 

Available at 
http://pvamu.edu/aam 

Appl. Appl. Math. 

ISSN: 1932-9466 
 

Vol. 8, Issue 2 (December 2013),  pp. 553 – 572  

Applications and Applied 
Mathematics:  

An International Journal 
(AAM) 

 

 
Exact Traveling Wave Solutions of Nonlinear PDEs in  

Mathematical Physics Using the Modified Simple Equation Method 
 
 

E. M. E. Zayed  
Department of Mathematics 

Zagazig University 
Zagazig, Egypt 

e.m.e.zayed@hotmail.com 
 

A. H. Arnous 
Department of Engineering Mathematics and Physics 

Higher Institute of Engineering 
El Shorouk, Egypt 

ahmed.h.arnous@gmail.com 
 

Received: November 27, 2012; Accepted: August 21, 2013 
 
 

Abstract 
 
In this article, we apply the modified simple equation method to find the exact solutions with 
parameters of the (1+1)-dimensional nonlinear Burgers-Huxley equation, the (2+1) dimensional 
cubic nonlinear Klein-Gordon equation and the (2+1)-dimensional nonlinear Kadomtsev-
Petviashvili-Benjamin-Bona-Mahony (KP-BBM) equation. The new exact solutions of these 
three equations are obtained. When these parameters are given special values, the solitary 
solutions are obtained. 
 
Keywords:  Nonlinear evolution equations, exact solutions, solitary wave solutions, modified 

simple equation method 
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1. Introduction 
 
In science, many important phenomena in various fields can be described by nonlinear partial 
differential equations. Searching for exact soliton solutions of these equations plays an important 
role in the study on the dynamics of those phenomena.   
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With the development of soliton theory, many powerful methods for obtaining these exact 
solutions are presented, such as the inverse scattering transformation method [Ablowitz and 
Clarkson (1991)], the Backlund transformation method [Miura (1978)], the Hirota bilinear 
method [Hirota (1971)], the extended tanh-function method [Fan (2000)], the sine-cosine method 
[Wazwaz  (2004)], the exp-function  method [He and Wu (2006)], the F-expansion  method 
[Zhang and Xia (2006)], the Jacobi-elliptic function method [Lu (2005)], the ( / )G G -expansion 
method [Wang et al. (2008)], the modified simple equation method [Jawad et al. (2010), Zayed 
(2011), Zayed and Ibrahim (2012), Zayed and Arnous (2012)], and so on.  
 
To exemplify the application of the modified simple equation method, we will consider the exact 
wave solutions of three nonlinear partial differential equations, namely, the (1+1) nonlinear 
Burgers-Huxley equation, the (2+1)-dimensional cubic nonlinear Klein-Gordon equation and the 
(2+1)-dimensional nonlinear KP-BBM equation.  
 
The rest of this article is organized as follows: In Section 2, the description of the modified 
simple equation method is given. In Section 3, we apply this method to the three nonlinear 
equations indicated above. In Section 4, conclusions are given. 
 
2.  Description of the Modified Simple Equation Method 
 
Suppose we have a nonlinear evolution equation in the form: 
 

( , , , ,...) 0,t x xxF u u u u                                                                                                             (1)                         

 
where  F is a polynomial in u (x, t ) and its partial derivatives in which the highest order 
derivatives and nonlinear terms are involved. 
 
 In the following, we give the main steps of this method [Jawad et al. (2010), Zayed (2011), 
Zayed and Ibrahim (2012), Zayed and Arnous (2012)]: 
 
Step  1.  We use the wave transformation:   
 

( , ) ( ), ,u x t u x ct                                                                                                       (2) 
                                                                                                    
where c is a nonzero constant, to reduce equation (1) to the following ODE:       
   

( , , ) 0,P u u u                                                                                                                         (3) 
 
where P is a polynomial in ( )u   and its total derivatives, while ' / .d d    
 
Step  2.  We suppose that Equation (3) has the formal solution     
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where kA are constants to be determined, such that 0.NA   The function ( )   is an unknown 

function to be determined later, such that 0.    
 
Step 3.  We determine the positive integer N in Equation (4) by considering the homogeneous 
balance between the highest order derivatives and the nonlinear terms in the equation (3). 

Step 4. We substitute (4) into (3), calculate all the necessary derivatives , ,...u u  , of the 

unknown function ( )u   and account for the function ( ).   As a result of this substitution, we 

get a polynomial of , ( 0,1,...)j j   . In this polynomial, we gather all the terms of the same 

power of , ( 0,1,...)j j   , and we equate with zero all the coefficients of  this polynomial. This 

operation yields a system of equations which can be solved to find kA  and ( )  . Consequently, 

we can get the exact solutions of the equation (1). 

 

3.  Applications  
 
In this section, we apply the modified simple equation method to find the exact wave solutions 
and then the solitary wave solutions of the following nonlinear partial differential equations:   
 
Example: 1. The (1+1)-dimensional nonlinear Burgers-Huxley Equation 
 
This equation is well known [Yefimova and Kudryashov (2004), Kheiri et al. (2011), 
Kudryashov and Loguinova  (2008)] and has the form: 
 

2 33 0,t xx xu u uu u u u                                                                                               (5) 

 
where   is a nonzero constant. The solutions of the equation (5) have been investigated by using 
the Cole-Hopf transformation [Yefimova and Kudryashov (2004)], the ( / )G G -expansion 
method [Kheiri et al. (2011)] and the extended simple equation method [Kudryashov and 
Loguinova  (2008 )]. Let us now investigate the equation (5) using the modified simple equation 
method. To this end, we use the transformation (2) to reduce the equation (5) to the following 
ODE: 
 

2 33 0.cu u uu u u u                                                                                                 (6) 
 
Balancing u   with 3u  yields 1N  . Consequently, the equation (6) has the formal solution 
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0 1( ) ,u A A


 

   
 

                                                                                                             (7) 

 
where 0A  and 1A  are constants to be determined such that  1 0A   and 0   . It is easy to see 

that 
 

2

1 2
,u A

 
 
  

   
 

                                                                                                               (8) 

 
and 
 

3

1 2 3

3 2
.u A

   
  
    

    
 

                                                                                               (9) 

 
Substituting (7) - (9) into (6) and equating all the coefficients of  0 1 2 3, , ,     

 to zero, we 

respectively obtain 
 

0 2
0 0 0: ( ) 0,A A A                                                                                                         (10) 

 
1 2

1 1 0 1 0 0: (3 ) (3 2 ) 0,A A A c A A A                                                                    (11) 

 
2 2

1 0 1 0 1 1 1: ( 3 3 ) 3 ( 1) 0,A c A A A A A A                                                                 (12) 

 
3 3 2

1 1 1: ( 3 2) 0.A A A                                                                                                    (13) 

 

Since 1 0A   and 0   , we deduce from (10) and (13) that 

 
2

0 0 0 1 10, 0, 1, 2.A A A A A                                                                               (14) 

 
Let us now discuss the following cases: 
 
Case  1.  If 0 10, 1A A     

 
In this case, equations (11) and (12) reduce to 
 

0,c                                                                                                                    (15) 
 

2( 1) 0.c                                                                                                                           (16) 
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From equations (15) and (16), we get 1c    and 
 

0,                                                                                                                      (17) 
 
which has the solution 
 

1 2 3exp ( 1 1 4 ) exp (1 1 4 ) ,
2 2

c c c
                    

                                           (18) 

 

where 1c  and 2c are constants and 
1

4
  . Differentiating (18) with respect to  , we  have 

 

2

3

( 1 1 4 )
exp ( 1 1 4 )

2 2

(1 1 4 )
exp (1 1 4 ) .

2 2

c

c

  

 

           

       

                                                   (19) 

 
Substituting (18) and (19) into (7), we obtain 
 

2

1 2 3

3

1 2 3

1 1 4
exp ( 1 1 4 )

2 2
( )

exp ( 1 1 4 ) exp (1 1 4 )
2 2

1 1 4
exp (1 1 4 )

2 2
.

exp ( 1 1 4 ) exp (1 1 4 )
2 2

c

u
c c c

c

c c c

 


  

 

  

             
                

           
                

                             (20) 

 

If we set  1 0c   and  3 2c c   , we have the following solitary wave solutions 

 

1

1 1 4
( , ) 1 1 4 tanh ( ) ,

2 2
u x t x t


         
   

                                                            (21) 

 
and                                                                    
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2

1 1 4
( , ) 1 1 4 coth ( ) .

2 2
u x t x t


         
   

                                                            (22) 

 
Case  2.  If 0 10, 2.A A   
 
In this case, equations (11) and (12), respectively, reduce to 
 

0,c                                                                                                                    (23) 
  
and 
                                                                                                       

(( 2) 3 ) 0.c                                                                                                              (24) 
 
Since 0   , we deduce from (23) and (24) that 

 
2 2 3

/ , 2.
2

c c
c

c

       


                                                                                         (25) 

 
Integrating (25) yields 
 

2

1

2 3
exp .

2

c c
c

c

 
         

                                                                                           (26) 

 
From (24) and (26) we get 
 

2
13 2 3

exp ,
2 2

c c c

c c

 
           

                                                                                      (27) 

 
and consequently, 
 

2
1

2 2

3 2 3
exp ,

2 3 2

c c c
c

c c c

 


   
        

                                                                     (28) 

 
where 1c  and 2c  are constants of integration. Now, the exact wave solution of the equation (5) 

has the form: 
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2

1

2
1

2 2

2 3
exp ( )

26
( , ) .

2 3 2 3
exp ( )

2 3 2

c c
x ct

cc
u x t

c c c c
c x ct

c c c






                            

                                      (29) 

 

If we set 
2

1

2 3

3

c c
c

 
  and 2 1c    in (29) we have the following solitary wave solutions, 

respectively, as:  
 

2 2

1

2 3 1 2 3
( , ) 1 coth ( ) ,

2 2 2

c c c c
u x t x ct

c c

                        
                                       (30) 

 
and 

 
2 2

2

2 3 1 2 3
( , ) 1 tanh ( ) .

2 2 2

c c c c
u x t x ct

c c

                        
                                       (31) 

 

Case  3.  2
0 0 0,A A     1 1A  . In this case, equations (11) and (12), resprctively, reduce to 

 
2

0 0 0(3 ) (3 2 ) 0,A c A A                                                                                     (32) 

 
and 
 

2( 1) 0.c                                                                                                                           (33) 
 
Since 2

0 0 0,A A     we get 

 
2 2
0 0 0 03 2 2 .A A A A                                                                                                       (34) 

 
From equations (32), (33) and (34) we have 1c    and 
 

0 0 0(3 1) (2 1) 0,A A A                                                                                           (35) 

 
which has the solution  
 

1 2 0 3 0exp[ ] exp[ (2 1) ].c c A c A                                                                               (36) 

 
Differentiating equation (36), we get 
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0 2 0 0 3 0exp[ ] (2 1) exp[ (2 1) ].A c A A c A                                                                   (37) 

 
Substituting equations (36) and (37) into (7), we have 
 

0 2 0 0 3 0
0

1 2 0 3 0

exp[ ] (2 1) exp[ (2 1) ]
( ) .

exp[ ] exp[ (2 1) ]

A c A A c A
u A

c c A c A

 
 

    
 

    
                                               (38) 

 
If we set 1 0c   and  3 2c c   in (38), we obtain the following solitary wave solutions, 

respectively, as: 
 

0
1 0

( 1) 1
( , ) 1 tanh ( 1)( ) ,

2 2

A
u x t A x t

           
                                                               (39) 

 
and 

 

0
2 0

( 1) 1
( , ) 1 coth ( 1)( ) .

2 2

A
u x t A x t

           
                                                              (40) 

 
Case  4.  2

0 0 10, 2A A A     
 
In this case, equations (11) and (12), respectively, reduce to  
 

2
0 0 0(3 ) (3 2 ) 0,A c A A                                                                                     (41) 

 
and 
 

0[(3 2) 3 ] 0.A c                                                                                                      (42) 

 
Since 0   , we deduce from (41), (42) and using (34) that 
 

0

3 ( 2)
/ .

3 2

c c

A c

     
 

                                                                                                       (43) 

 
Integrating (43) yields  
 

1
0

3 ( 2)
exp .

3 2

c c
c

A c

 
          

                                                                                          (44) 

 
From (42) and (44) we have 
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1

0 0 0

33 3 ( 2)
exp ,

3 2 3 2 3 2

c c c

A c A c A c

  
                

                                                 (45) 

 
and consequently, we  get  
 

1
2

0

3 3 ( 2)
exp ,

3 ( 2) 3 2

c c c
c

c c A c

 


   
         

                                                                  (46) 

 
where 1c and 3c are arbitrary constants of integration. Now, the exact wave solution of equation 

(5) has the form: 
 

0

01

0 1
2

0

( , )

3 ( 2)
exp ( )

3 26
,

3 2 3 3 ( 2)
exp ( )

3 ( 2) 3 2

u x t A

c c
x ct

A cc

A c c c c
c x ct

c c A c








                                   

                (47) 

 

where  0

1
( 1 1 4 )

2
A      and 

1

4
  .  If we set 1

3 ( 2)

3

c c
c

  
  and 2 1c    in (47), we 

have respectively the following solitary wave solutions:   
 

1 0

0 0

( , )

3 ( 2) 1 3 ( 2)
1 coth ( ) ,

3 2 2 3 2

u x t A

c c c c
x ct

A c A c

 



                         

                               (48) 

 

2 0

0 0

( , )

3 ( 2) 1 3 ( 2)
1 tanh ( ) .

3 2 2 3 2

u x t A

c c c c
x ct

A c A c

 



                         

                               (49) 

 
Example: 2. The (2+1)-Dimensional Cubic Nonlinear Klein-Gordon Equation 
 
This equation is well known [Wang and Zhang (2007), Zayed (2011)] and has the form: 
 

3 0,xx yy ttu u u u u                                                                                                    (50) 

 
where   and   are nonzero constants. The solution of the equation (50) has been investigated 
using the multi-function expansion method [Wang and Zhang (2007)] and the ( / )G G -
expansion method [Zayed (2011)]. In this section we investigate the equation (50) by the 
modified simple equation method. To this end, we use the wave transformation 
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( , , ) ( ), ,u x y t u x y ct                                                                                            (51) 

 
to reduce the equation (50) to the following ODE :  
 

2 3(2 ) 0,c u u u                                                                                                         (52) 
 
where 2(2 ) 0c  . Balancing u   with 3u  yields 1N  . Consequently, the equation (52) has the 
formal solution (7). Substituting (7) - (9) into (52) and equating all the coefficients of 

0 1 2 3, , ,     
  to zero, we, respectively, obtain 

 
0 2

0 0: ( ) 0,A A                                                                                                              (53) 

 
1 2 2

1 1 0: (2 ) ( 3 ) 0,A c A A                                                                                      (54) 

 
2 2

1 0 1: 3 (( 2) ) 0,A c A A                                                                                          (55) 

 
and 

 
3 3 2 2

1 1: (2(2 ) ) 0.A c A                                                                                                (56) 

 
Since  1 0A   and 0   , we deduce from (53) and (56) that  

 
2

0 0 1

2(2 )
0, , ,

c
A A A


 


                                                                                 (57) 

 

where 0


  and 

22
0

c




 .  

 
Let us now discuss the following cases:  
 

Case  1.  
2

0 1

2(2 )
0,

c
A A




   .  In this case the equations (54) and (55) yield 0.    This 

case  is rejected.  
 

Case  2.  
2

0 1

2(2 )
, .

c
A A


 


     Since 0   , we deduce from (54) and (55) that

 
 

2(2 ) 2 0,c                                                                                                               (58) 
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2 2( 2) 2 (2 ) 0.c c                                                                                                  (59) 

 
From (58) and (59) we deduce that  
 

2

2
/ .

2 c

    


                                                                                                             (60) 

 
Consequently, we get  
 

1 2

2
exp .

2
c

c

 
 

    
                                                                                                     (61) 

 
From (59) and (61) we have 
 

2 2

1 2

2 2 2
exp ,

2 2 2

c c
c

c

  
 

         
                                                               (62) 

 
and consequently, we  have 
 

2
1

2 2

(2 ) 2
exp ,

2 2

c c
c

c

 


 
    

                                                                                  (63) 

 
where 1c  and 2c  are arbitrary constants of integration.  

 
Now, the exact wave solution of the equation (50) has the form 
 

1 22

2
1

2 2

2
exp

2(2 )
( ) .

(2 ) 2
exp

2 2

c
cc

u
c c

c
c

 

   



              
            

                                             (64) 

 

If we set 1 2

2

2
c

c





 and  2 1c    in (64) we have, respectively, the following solitary wave 

solutions  
 

1 2
( , , ) tanh ( ) ,

2(2 )
u x y t x y ct

c

 


 
     

                                                              (65) 
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2 2
( , , ) coth ( ) .

2(2 )
u x y t x y ct

c

 


 
     

                                                              (66) 

 
 
Example: 3. The (2+1)-Dimensional Nonlinear KP-BBM Equation 
 
 
This equation is well known [Zayed and Al-Joudi (2010), Wazwaz (2008)] and has the form 
 

2( ( ) ) 0,t x x xxt x yyu u u u u                                                                                         (67) 

 
where , ,    are nonzero constants. The solution of the equation (67) has been investigated 

using the auxiliary equation method [Zayed and Al-Joudi (2010)] and the extended tanh-function 
method [Wazwaz (2008)]. In this section we will solve the equation (67) by using the modified 
simple equation method. To this end, we use the wave transformation (51) to reduce the equation 
(67) to the following ODE: 
 

2( ( ) ) 0.cu u u c u u                                                                                              (68) 
 
By integrating the equation (68) twice with zero constants of integration, we get 
 

2( 1) 0.c u u c u                                                                                                      (69) 
 
Balancing u   with 2u yields 2N  . Consequently, the equation (69) has the formal solution: 
 

2

0 1 2( ) ,u A A A
 
 
    

     
   

                                                                                         (70) 

 
where 0A , 1A  and 2A  are constants to be determined such that  2 0A   and  0   . It is easy to 

see that 
 

2 3

1 22 2 3
( ) 2 ,u A A

    
   
       

       
   

                                                                        (71) 

 
and 

 
3 2 2 4

1 22 3 2 2 3 4

3 2 5 3
( ) 2 .u A A

         
      
            

          
   

                           (72) 
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Substituting (70) and (72) into (69) and equating all the coefficients of  0 1 2 3 4, , , ,       
 to 

zero, we deduce, respectively, that 
 

0 2
0 0: ( 1 ) 0,c A A                                                                                                      (73) 

 
1

1 0: [( 1 ) 2 ] 0,A c A c                                                                                    (74) 

 
2 2 2 2 2 2

1 2 0 2 1 2: ( 1 ) 2 3 2 [ ] 0,A c A A A c A c A                                    (75) 

 
3 3 3 2

1 1 2 2: 2 2 10 0,c A A A c A                                                                              (76) 

 
and 
 

4 4 2 4
2 2: 6 0.c A A                                                                                                     (77) 

 
From equations (73) and (77), we have the following results  
 

0 0 2

1 6
0, , ,

c c
A A A

 
 
 

                                                                                      (78) 

 
where 1 0c    .  
 
Let us now discuss the following cases: 
 
Case  1.  0 0A   and 1 0A  , then 0   . This case is rejected. 

 
Case  2.  0 0A   and 1 0A  ,  then we deduce from equations (74) - (76) that 

 
( 1) 0,c c                                                                                                            (79) 
 

2 2 2 2
1 2 1 2( 1) 3 2 ( ) 0,A c A c A c A                                                           (80) 

 

1 1 2 22 2 10 0.c A A A c A                                                                                          (81) 

 
From (79) and (81), we have 
 

1

6
,

1

c c

c A

 
 

    
 

                                                                                                    (82) 

 
and consequently, we get  
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1

6( 1)
/ .

c

A

 

                                                                                                              (83) 

 
Integrating (83), we get  
 

1
1

6( 1)
exp ,

c
c

A

 


     
 

                                                                                                 (84) 

 
and substituting from (84) into (82), we have  
 

1

1 1

6 6( 1)
exp .

c c c

A A

  
 

      
 

                                                                                        (85) 

 
Integrating (85), we have  
 

2 1
1

6( 1)
exp ,

1

c c
c c

c A

  
 

  
      

                                                                              (86) 

 
where 1c  and 2c  are arbitrary constants of integration. Substituting equation (82) into (80), we 

get 
 

1

6
( 1),A c c 


                                                                                                         (87) 

 
where  ( 1) 0c c     . Now, the exact wave solution of the equation (67) in this case has the 
form  
 

1

1
2

2

2 2 2
1

1
2

( 1)
exp

6
( )

( 1)
exp

1

( 1)
exp

6
.

( 1) ( 1)
exp

1

c
cc c

u
c c c

c
c c

c
cc c

c c c c
c

c c

 


   
 

 


    
 

      
     

           

      
                 

                           (88) 

 

If we set 1

1c
c

c




 
  and 2 1c    in (88), we have the following solitary wave solutions: 
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2
1

3( 1) ( 1)
( , , ) csc ( ) ,

2 4

c c
u x y t h x y ct

c

 
 

      
   

 
                                             (89) 

 
and 

 

2
2

3( 1) ( 1)
( , , ) sec ( ) .

2 4

c c
u x y t h x y ct

c

 
 

     
   

 
                                               (90) 

 

Case  3.  0

1c
A



 


 
and 1 0A  , then 0   . This case is rejected. 

 

Case  4.  0

1c
A



 

  and 1 0A  , then we deduce from equations (74) - (76) that 

 
( 1) 0,c c                                                                                                           (91) 

 
2 2

2 2 2 2
1 1

6 ( 1) 12
3 [ ] 0,

c c c
A c A

          
 
                                        (92) 

 
2

1

6
[ ] 0.

c
A

  


                                                                                                           (93) 

 
From equations (91) and (93), we have  
 

1

6
,

1

c c

c A

 
 

   
 

                                                                                                    (94) 

 
and consequently, we  get  
 

1

6( 1)
/ .

c

A

 


                                                                                                             (95) 

 
Integrating the equation (95), we obtain  
 

1
1

6( 1)
exp ,

c
c

A

 


      
 

                                                                                               (96) 

 
and substituting the equation (96) into (94), we have 
 

1
1 1

6 6( 1)
exp .

c c
c

A A

  
 

       
 

                                                                                     (97) 
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Integrating (97), we have  
 

2 1
1

6( 1)
exp ,

1

c c
c c

c A

  
 

   
      

                                                                            (98) 

 
where 1c  and 2c  are arbitrary constants  of  integration. Substituting the equation (94) into (92), 

we get 
 

1

6
( 1),A c c 


                                                                                                          (99) 

 
where ( 1) 0c c     . Now, the exact wave solution of the equation (67) in this case has the 
form 
 

1

1
2

2

2 2 2
1

1
2

1
exp

61
( )

1
exp

1

1
exp

6
.

( 1) 1
exp

1

c
cc cc

u
c c c

c
c c

c
cc c

c c c c
c

c c

 


    
 

 


    
 

   
  

       
          

   
  
                









                 (100) 

 

If we set 1

1c
c

c




 
 and 2 1c     in the equation (100), we have respectively the following 

solitary wave solutions: 
 

2
1

1 3 1
( , , ) 1 sec ( ) ,

2 4

c c
u x y t h x y ct

c

 
 

           
   

                                           (101) 

 
and 

 

2
2

1 3 1
( , , ) 1 csc ( ) .

2 4

c c
u x y t h x y ct

c

 
 

           
   

                                          (102) 

 
4.  Conclusions 
 
In this article, we have applied the modified simple equation method to find the exact solutions  
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of the (1+1)-dimensional nonlinear Burgers-Huxley equation, the (2+1)-dimensional cubic 
nonlinear Klein - Gordon equation and the (2+1)-dimensional nonlinear KP-BBM  equation 
which play an important role in the mathematical physics. 
 
 On comparing our results of these equations using the modified simple equation method with 
the well- known results from other methods, we conclude that our results are different, new and 
not published elsewhere. Furthermore, the proposed method in this article is effective and can be 
applied to many other nonlinear partial differential equations.  
 
Finally, the physical meaning of our new results in this article can be summarized as follows: 
The solutions (21), (31), (39), (49) and (65) represent the kink shaped solitary wave solutions, 
while the solutions (90) and (101) represent the bell shaped solitary wave solutions, (see also  
Figures 1-4). 
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FIGURES 

 

 
 

Figure 1. The plot of the solution (21), when 12    
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Figure 2. The plot of the solution (22), when 12    

 

 

Figure 3. The plot of the solution (89), when 2, 9, 4, 1, 0c y         
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Figure 4. The plot of the solution (90), when 2, 9, 4, 1, 0c y         
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