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Abstract 
 
This paper is concerned with the oscillation of solutions of a certain more general neutral type 
dynamic equation. We establish within the necessary and sufficient conditions for the oscillation 
of its solutions. 
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1.  Introduction and Preliminaries  
 
The theory of "dynamic equations" unifies the theories of differential equations and difference 
equations and it also extends these classical cases to cases "in between." The general idea is to 
prove a result for a dynamic equation where the domain of the unknown function is a so-called 
time scale, which may be an arbitrary closed subset of the reals. This way results not only related 
to the set of real numbers or set of integers but those pertaining to more general time scales are 
obtained. They give rise to plenty of applications, among them the study of population dynamic 
models which are discrete in season (and may follow a difference scheme with variable step-size 
or often modeled by continuous dynamic systems), die out, say in winter, while their eggs are 
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incubating or dormant, and then in season again, hatching gives rise to a nonoverlapping 
population Bohner and Peterson (2001). In this paper we obtain some necessary and sufficient 
conditions for oscillation of neutral delay partial dynamic equation of the form 
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where { } ( ) [ )0 0, sup , , ,t x t t GÎ =¥ ÎW´ ¥ º� �    and L  is Laplacian in n

� . We assume 

throughout this paper that 
 

(H1)   a  is constant with 0 1a< < ; 
 

(H2)   [ )( )0, , , , , 1, 2,..., ; 1, 2,...,k j rda a q C t k s j n+Î ¥ = = ; 

 

(H3 [ )( )0, , , ,rdC tf b g Î ¥    are unbounded increasing functions satisfying 

( ) ( ) ( ), ,t t t tf b g £  for all sufficiently large t .   

 
The intervals with a �  index below are used to denote the intersection of the usual interval with 

� ; i.e., [ ) [ )0 0, : ,t t¥ = ¥ Ç   for convenience. Consider the following boundary condition: 

 
  0,  txu N ,     ( ) [ )0, ,x t tÎ¶W´ ¥  ,                                                (2) 

 

where N  is the exterior normal vektor to  . 

 

Definition 1. The function ( ) ( )2 1
rd rdu C G C GÎ Ç  is said to be a solution of the problem (1) and 

(2), if it satisfies (1) in the domain G  and boundary condition (2). 

 

Definition 2. The solution ( ),u x t  of the problem (1) and (2) is said to be oscillatory in the 

domain [ )0 ,G t=W´ ¥  , if for any positive number tm , there exists a point ( ) )0 0, ,x t tméÎW´ ¥êë 
 

such that the condition ( )0 0, 0u x t =  holds. 

 

We will give a short introduction to the time scales calculus which will be used in the next 

sections 
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1.1. Basic Definitions 
 
We start with the definitions given by Hilger (1988) to define the exponential function on a time 
scale. 
 
Definition 3. A function :f    is called rd-continuous provided it is continuous at right-
dense points in   and its left-sided limits exist (finite) at left-dense points in  . 
 
Definition 4. Let , rda b and f CÎ Î .  

 

i) If =  , then     
b

a

b

a

dttfttf  , 

where the integral on the right is the usual Riemann integral from calculus.  
 

ii) If  b,a  consist of only isolated points, then 
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Some useful definitions about partial dynamic equations from Bohner, M. and Guseinov, G. Sh. 
(2004) are the followings. 
 
Definition 5. Let n  be fixed. Further, for each  1,...,i n  let i  denote a time scale, that is, 

i  is a nonempty closed subset of the real numbers  . Let us set 

 
    1 1... ,..., : 1,...,     n

n n i ix x t t t t for all i n   . 

 
We call n  an n - dimensional time scale. 
 
Definition 6. Let is  and ir  denote, respectively, the forward and backward jump operators in i . 

Remember that for  iu   the forward jump operator : i i i   is defined by 

  
( ) { }inf :i iu v v us = Î >  

 
and the backward jump operator : i i i   is defined by  

 
( ) { }sup :i iu v v ur = Î < . 
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If i  has a left-scattered maximum M , then we define  \ i i M  , otherwise  i i  . If i  

has a right-scattered minimum m , then we define    \

i i m  , otherwise   i i  . 

 
Definition 7. Let : nf  be a function. The partial delta derivative of f  with respect to 

i it   is defined as the limit 
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provided that this limit exists as a finite number, and is denoted by any of the following symbols: 
 

       1,..., , , , .  
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2.  Main results 
 
To obtain our main results, we need the following lemmas. 
 

Lemma 1. Assume that ( ) 0y t > , ( ) 0y tD <  and ( ) 0iq s ¹  for *,s t Té ùÎ ê úë û  and t T³  where *T  

satisfies that ( )*
i T tg = . Let ( ) ( ){ }{ }max , min ib t T tf g= - , and assume that the integral 

inequality 
 

( ) ( )( ) ( ) ( )( ) ,i i

t

z t z t q s z s s t Ta f g
¥

³ + D ³ò                                                (3) 

 
has a continuous positive solution [ ) ( ): , 0,y T b- ¥  ¥  with T b- Î . Then the 

corresponding integral equation 
 

( ) ( )( ) ( ) ( )( ) ,i i

t

x t x t q s x s s t Ta f g
¥

= + D ³ò                                                (4) 

 
has a continuous positive solution     ,0,: TbTx . 

 
Proof:  
 
Define a set of functions L  and a mapping   as follows: 
 

[ )( ) ( ){ }, , : 0 1,rdw C T b w t t T b+L= Î - ¥ £ £ ³ - , 
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It is easy to see from (3) that LÌL  and ( )( ) 0w t >  on [ ),T b T-  for any wÎL . Define a 

sequence ( ){ }kw t  in L  as follows: ( )0 1w t =  and ( ) ( )( )1 , 0,1, 2,...k kw t w t k+ = = , for 

t T b³ - . From (3), by induction, we have 
 

( ) ( )10 1, 0,1, 2,..., .k kw t w t k t T b+£ £ £ = ³ -  

 
Then, ( ) ( )lim k

k
w t w t

¥
= , for t T b³ - , exists and 

 

( )
( )

( )( ) ( )( ) ( ) ( )( ) ( )( )1
i i i
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z t

a f f g g
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ò , for t T³ , 

 

       ( ) ( )( ) 1
t T b t T b

w t w T
b b

- + - +
= + - , for T b t T- £ £ . 

 
Set ( ) ( ) ( )x t w t z t= . Then ( )x t  satisfies (4) and ( ) 0x t >  for [ ),t T b TÎ - . Clearly, ( )x t  is 

continuous on [ ],T b T- . Then, in view of (4), we see that ( )x t  is continuous on [ ),T b- ¥ . 

Finally, it remains to show that ( ) 0x t >   for t T b³ - . Assume that there exists *t T³  such 

that ( ) 0x t >   for *T b t t- £ £  and ( )* 0x t = . Thus by (4), we have 

 

( ) ( )( ) ( ) ( )( )
*

* *0 ,i i

t

x t x t q s x s s t Ta f g
¥

= = + D ³ò  

 

which implies that 0a=  and ( ) ( )( ) 0i iq s x sg =  for all *s t³  which contradicts ( )0,1aÎ , 

[ )( )0 , ,j rdq C t +Î ¥   and ( ) 0iq s ¹  for *,s t Té ùÎ ê úë û . Therefore, ( ) 0x t >  on [ ),T b- ¥ . 

 
Lemma 2. Every solution of the dynamic equation 
 

( ) ( )( ) ( ) ( )( ) 0
1

0,
n

i i
i

v t v t q t v t t ta f g
D

=

é ù- + = ³ê úë û å ,                                   (5) 

 

where ( ) [ )( ) [ )( )0 00,1 , , , , ,i rd i rdq C t and C ta g+Î Î ¥ Î ¥    is oscillatory, if and only if 

the inequality 
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has no eventually positive solutions. 
 
Proof:  
 
The sufficiency is obvious. To prove the necessity, we assume that (5) has an eventually positive 

solution ( )v t . Set ( ) ( ) ( )( )y t v t v ta f= - . Since 10    and ( )v t  is an eventually positive 

solution, it is easy to see that   0ty  eventually and 
 

( ) ( ) ( )( ) ( ) ( )( )
1

0
n

i i
i

y t v t v t q t v ta f g
DD

=

é ù= - =- £ê úë û å . 

 
Integrating (6) from t  to  , we have 
 

( ) ( ) ( )( )i i

t

y t q s v s sg
¥

³ Dò . 

 
That is, 
 

( ) ( )( ) ( ) ( )( )i i

t

v t v t q s v s sa f g
¥

³ + Dò . 

 
By Lemma 1, the corresponding integral equation 
 

( ) ( )( ) ( ) ( )( )i i

t

z t z t q s v s sa f g
¥

= + Dò  

 
also has a positive solution  tz . Clearly,  tz  is an eventually positive solution of (5), 
contradicting the assumption. 
 
Theorem 1. Every solution of the problem (1) is oscillatory in G  if and only if the inequality (6) 
has no eventually positive solutions. 
 
Proof:  
 
i) Sufficiency. Suppose to the contrary that there is a nonoscillatory solution  txu ,  of the 

problem (1) and (2) which has no zero in [ )0 ,tW´ ¥   for some 0 0t ³ . Without loss of generality, 

we may assume that   ,0, txu ( )( ), 0,u x tf > ( )( ), 0ku x tb >  and ( )( ), 0ju x tg >  in 
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[ )1 1 1 0, ,t t tW´ = ¥ ³�  , 1, 2,..., ; 1, 2,...,k s j n= = . Integrating (1) with respect to x  over the 

domain W , we have 
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for 1t t³ . From the Green's formula on time scales, Bohner et al. (2007) and boundary condition 

(2), it follows that 
 

   , , 0NLu x t x u x t S

 

     ,   1t t³                                                (8) 

 
and 

 

( )( ) ( )( ), , 0N
k kLu x t x u x t Sb bD

W ¶W

D = D =ò ò ,   1t t³ ,                                  (9) 

 
where SD  is the surface element on ¶W . Let 
 

   


 xtxutv ,  for 1t t³ . 

 
Combining (7)-(9), we have 
 

( ) ( )( ) ( ) ( )( ) 1
1

0, .
n

i i
i

v t v t q t v t t ta f g
D

=

é ù- + = ³ê úë û å                                  (10) 

 
This shows that ( ) 0v t > is a solution of (5). But by lemma 2 and the condition that the inequality 

(6) has no eventually positive solutions, we obtain that every solution of (5) is oscillatory. This is 
a contradiction. 
 
ii) Necessity. Suppose that inequality (6) has an eventually positive solution. By lemma 2, we 

obtain that (5) has a nonoscillatory solution. Without loss of generality, we may assume that  tv  

for 0t t³  is a solution of (5). From (5), we have 

 

( ) ( )( ) ( ) ( )( ) 0
1

0,
n

i i
i

v t v t q t v t t ta f g
D

=

é ù- + = ³ê úë û å . 

 

Notice that ( ) 0Lv t = , ( )( ) 0kLv tb =  for 0t t³ , from (10) we get 
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This shows that     0,  tvtxu  satisfies (1). It is easy to see that 0NuD = ,   ( ) [ )0, ,x t tÎW´ ¥  . 

Hence     0,  tvtxu  is a nonoscillatory solution of the problem (1) and (2), which is a 
contradiction. This completes the proof. 
 
Using lemma 2 and Theorem 1, we can obtain the following corollary. 
 
Corollary 1. Every solution of the problem (1) and (2) is oscillatory in G  if and only if every 
solution of the dynamic equation (5) oscillates. 
 
By (10) and 

 

( ) ( ) ( )( )w t v t v tf= - ,                                                (12) 

 
we have 
  

( ) ( ) ( )( ) ( ) ( )( )
1 1

.
n n

j j j j
j j

w t q t v t q t w tg gD

= =

£- £-å å  

 
for 1t t³ . Then we obtain the inequality 

 

( ) ( ) ( )( ) 1
1

0,
n

j j
j

w t q t w t t tgD

=

+ £ ³å .                                              (13) 

 
Our aim is to establish a sufficient condition for the oscillation of all solutions of the inequality 
(13).  
 
Consider the linear delay dynamic equation of the form 
 

( ) ( ) ( )( )
1

0
n

j j
j

w t q t w tgD

=

+ =å .                                                          (14) 

 
where for  1, 2,...,j n= , 
 

[ )( )0 , ,j rdq C t +Î ¥  , and   jj
t

qtq 


lim .                                  (15) 

 
Therefore, we have the limiting equation 

( ) ( )( )
1

0
n

j j
j

w t q w tg
D

=

+ =å .                                               (16) 
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Zhang et al. (2002) studied the oscillation of the following delay differential equations on time 
scales 

 

( ) ( ) ( )( ) 0x t p t x ttD + = , 0t t³ , 

 
where ( ) ( ), , ,rd rdp C Ct+Î Î    and ( )t tt <  for t Î  and { }sup =¥� . They have 

proved the following result. 
 
Proposition 1. Assume that ( ) ( )1 0,p t t tm- > Î . Define a set 

 
( ) ( ){ }| 0, 1 0E p t tl l l m= > - > . 

 
If  
 

( ) ( )( )
( )

0 0

lim supsup exp 1
t

st t t E
t

p s sm
l

t

l x l
¥ > Î

ì üì üï ïï ïï ïï ïï ï ïï- D <í í ýýï ï ïïï ï ïïï ïî þï ïî þ
ò , 

 
then all solutions of equation are oscillatory. 
 
By this proposition we have the following theorem. 
 

Theorem 2. Assume that ( ) ( )
1

1 0,
n

jj
q t t tm

=
- > Îå  . Define a set 

 

( ) ( ){ }1
| 0, 1 0

n

jj
E q t tl l l m

=
= > - >å . 

 
If  

( ) ( )( )
( )

0 0
1

lim supsup exp 1
j

t
n

js jt t t E
t

q s sm
l

g

l x l
=¥ > Î

ì üì üï ïï ïï ïï ïï ï ïï- D <í í ýýï ï ïïï ï ïïï ïî þï ïî þ
åò , 

 
then all solutions of equation (1) are oscillatory. 
 
Corollary 2. Assume that (15) holds and that every solution of the limiting equation (16) 
oscillates. Then every solution of (14) also oscillates. 
 
Example 1. Let =   and [ )0,t Î ¥


. Consider the following neutral delay parabolic 

differential equation 
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( ) ( ) ( )1
, , , ,

2 2

3
, 2 , ,

2 2

t

t

u x t u x t Lu x t e Lu x t
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e Lu x t u x t
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p p
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                    (17) 

( ) ( ) [ ), 0, 0,x t pÎ ´ ¥


 with boundary condition 

 
( ) ( )0, ,

0
u t u t

x x

p¶ ¶
= =

¶ ¶
. 

 

It is easy to see that 
1

2
a= , ( )t tf p= - , ( )1 2

t t
p

b = - , ( )2

3

2
t t

p
b = - , ( )

2
t t

p
g = - , ( ) 1a t = , 

( ) ( )1 2
ta t a t e= = , ( )1 2

t
p

f =  and 2q = . Then we see that all the assumptions of the theorems 

are satisfied. Thus we obtain that every solution of the problem (17) oscillates in ( ) [ )0, 0,p ´ ¥


. 

In fact ( ), cos .sinu x t x t=  is such a solution of the problem (17). 
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