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Abstract 
 

In this paper, we prove the existence, uniqueness and continuous dependence of initial data on 

mild solutions of first order semilinear functional impulsive mixed integro-differential equations 

with nonlocal condition in general Banach spaces. The results are obtained by using the 

semigroup theory and Banach contraction theorem. 
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1.  Introduction 
 

Many evolution processes are characterized by the fact that at certain moments of time they 

experience an abrupt change of state. These processes are subject to short-term perturbations 

http://pvamu.edu/aam
mailto:kamlendra.14kumar@gmail.com
mailto:rakeshnaini1@gmail.com


660                                                                                                                   Kamalendra Kumar and Rakesh Kumar 
                                                                                                                                                            

 

whose duration is negligible in comparison to the duration of the process. Consequently, it is 

natural to assume that these perturbations act instantaneously, that is, in the form of impulse. It is 

known, for example, that many biological phenomena involving thresholds, burning rhythm 

models in medicine and biological, optimal control models in economics, pharmacokinetics and 

frequency modulated systems, do exhibit impulsive effects. Thus, impulsive differential 

equations, that is, differential equations involving the impulsive effect, appear as a natural 

description of observed evolution phenomena of several real world problems. For more details 

on this theory and applications, see the monograph of Lakshmikantham et al. (1989), Perestyuk 

et al. (2011), Bainov and Simeonov (1989), and the papers of Akca et al. (1998), Ji et al. (2010), 

Liang et al. (2009), Belarbi et al. (2014). 

 

Most of the practical systems in nature are generally integro-differential equations. So, the study 

of integro-differential equations is very important. Integro-differential equations with impulsive 

conditions have been studied by Balachandran et al. (2009), Ravichandran et al. (2013), and Yan 

(2011). The problems of existence, uniqueness and other qualitative problems of semilinear 

differential equations in Banach space has been studied extensively in the literature, see for 

instance, Akca, et al. (1998), Byszewski, et al. (1991, 1997, 1998), Pazy (1983). On the other 

hand, the nonlocal initial value problem was first studied by Byszewski (1992), where the 

existence, uniqueness and continuous dependence of a mild solution of a semilinear functional 

differential equation were discussed. Then it has been extensively studied by many authors, see 

for example, Balachandran et al. (1996), Lin et al. (1996). 

 

Akca et al. (2002) established the existence, uniqueness and continuous dependence of a mild 

solution of an impulsive functional differential evolution nonlocal Cauchy problem of the form 

 

      
.

, , 0, , ,t ku t Au t f t u t a t    
 

       0 , 1,2, , ,k k k k k ku Q u u I u k           
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space ;  ,  E f g  and   are given functions satisfying some assumptions,    :tu s u t s 
 
for 
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and the impulsive moments k  are such that 
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Recently, Machado et al. (2013) studied a class of abstract impulsive mixed-type functional 

integro-differential equations with finite delay in a Banach space of the form 
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by using the Mönch fixed point theorem via measures of non-compactness and semigroup 

theory. 

 

Ravichandran et al. (2011) proved the existence and uniqueness of mild solutions for a class of 

impulsive fractional integro-differential equations of the form 

 

           *
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assuming that A is a sectorial operator on a Banach space  by means of Banach contraction 

principle and Leray-Schauder’s alternative fixed point theorem. In the present paper, we study 

the nonlocal semilinear functional Volterra-Fredholm type of differential equations with 

impulses of the form 

 

       


0 0

,, , , , , , ,

0, , ,  1,2,3, ..., ,

t a

t s s

k

u t Au t f t u h t s u ds k t s u ds

t a t k m

 
    

 

  

 

                      

(1) 

         
1
, , , ,0 ,

pt tu t g u u t t t r     
 

            (2) 
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where  10  ,pt t a p    A  is the infinitesimal generator of a 0C
 
semigroup of 

bounded linear operators   , 0T t t 
 
and  1,2, ,kI k m   are the linear operators acting in a 

Banach space   ;  ,0 ,E C r E 
 
and , , ,f h k g  are given functions satisfying some 

assumptions,      k 0 0k k ku uI u     
 
and the impulsive moments k  

are such that

0 1 10 , ,m m a m          . 

 

Motivated by the above mentioned discussed and the work of Balachandran et al. (2001) and 

Ravichandran et al. (2013), we study the existence, uniqueness and continuous dependence of 

mild solution of nonlocal problem for an impulsive functional Volterra-Fredholm type of 

integro-differential equations. The results are obtained by using the semigroup theory and 

Banach contraction theorem. In this paper we generalize and extend the results of Akca et al. 

(2002, 2013) and Ji (2010). As usual, in the theory of impulsive differential equations, see for 

example, Lakshmikantham et al. (1989) and Samoilenko et al. (1995), at the points of 

discontinuity i  
of the solution  t u t , we assume that    0i iu u   . It is clear that, in 
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general, the derivatives  ' iu 
 
do not exist. On the other hand, from (1), there exist the limits

 ' 0iu   . According to the above convention, we assume    ' ' 0i iu u   .  

 

2.  Preliminaries  
 

Throughout this work,  , .E
 
is a Banach space, A  is the infinitesimal generator of a oC  

semigroup   , 0T t t 
 
on E ,  D A

 
is the domain of A , and 

 
 

 
0,

Sup
B E
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M T t


 . In this 

consequence the operator norm 
 

.
B E

 will be denoted by . . Consider  
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For a continuous function  : ,u r a E  , we denote tu  a function belonging to X  and defined 

by  

 

 tu u t s 
 
for 0,t J s J  .  

 

Let  

 

: , , :f J X X X E h k J J X X        and X .  

 

To proceed, we need the following assumptions: 

 

( 1A ): For every , ,u v w Y  and ,t J  ., , ,t t tf u v w Z . 
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( 4A ): There exists a constant 0K   such that 

                    
  , ,

, ;, , ,
s s C r s E
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( 5A ): Let : pg X X  such that there exists a constant 0G   satisfying 
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             (5) 

 

is said to be the mild solution of problem (1) (3) . 

 

The following inequality will be useful while proving our result: 

 

Lemma 1. (Perestyuk et al. (2011), p.11)  

 

Suppose that a nonnegative piecewise-continuous function  u t
 
satisfies the following 

inequality for 0 :t t  
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where 0, 0, 0C     , and i  are the point of discontinuity of the first kind of the function

 u t . Then the following estimates hold for the function  u t : 

 

   
   0 0

,
,1

i t t t t
u t C e





   

 

where  0 ,i t t
 
is the number of points i  on the interval 0 ,t t . 

 

3. Existence of Mild Solution 

 

Theorem 1.  

 

Suppose that the assumptions 1 7( ) ( )A A  are satisfied and 1q  , where   

 

 
0

1
k

k

t

q MG MLa Ha Ka M L
 

      . 

 

Then, the impulsive nonlocal Cauchy problem (1) (3)  has a unique mild solution. 

 

Proof:  

 

Define an operator F  on the Banach space Y  by the formula 

 

  

       

         

     

     

1

1

0 0 0

0

, , , ,0 ,

0 , , 0

, , , , , , ,

, 0, ,

p

p

k

t t

t t

t s a

s

k k k

t

t g u u t t r

T t T t g u u

Fu t
T t s f s u h s u d k s u d ds

T t I u t a

 







   

 
 

     
 


    


   

   
  


  


  

           

(6) 

 

where u Y . It is easy to see that F  maps Y  into itself. Now, we will show that F  is 

contraction on Y . Consider  
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From  7
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From equation (9) (11) , we get 
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Since, 1q  , equation (12) shows that F  is a contraction on Y . Consequently, the operator F

satisfies all the assumptions of the Banach contraction theorem and therefore, in space Y  there is 

only one fixed point of F  and this is the mild solution of the nonlocal Cauchy problem with 

impulse effect. This completes the proof of the theorem. 

 

4.  Continuous Dependence of a Mild Solution 

 

Theorem 2.  

 

Assume that the functions , , ,f g h k  and   , 1,2, , ,kI u k m   satisfy the assumptions 

   1 6A A
 
and 1q  . Then, for each 1 2, Y  

 
and for the corresponding mild solutions 1 2,u u  

of the problems, 
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Proof:  

 

Assume that  1,2i X i   are arbitrary functions and let  1,2iu i   be the mild solution of 

problem (13) (15) . Then,  

         1 2 1 20 0u t u t T t        



668                                                                                                                   Kamalendra Kumar and Rakesh Kumar 
                                                                                                                                                            

 

                                         
1 1

1 1 2 2, , 0 , , 0
p pt t t t

T t g u u g u u    
  

 

                                           1 1 1

0 0 0

, , , , , , ,

t s a

s
T t s f s u h s u d k s u d

 
   

  
    

  
    

                                         2 2 2

0 0

, , , , , , ,

s a

s
f s u h s u d k s u d ds

 
   

 
  

 
   

                                         1 2 ; ,
k

k k k k k

t

T t I u I u t J


  
 

                                      (19) 

and  

 

       

             
1 1

1 2 1 2

2 2 1 1 0, , , , .;
p pt t t t

u t u t t t

g u u t g u u t t J

     

     
  

          (20) 

 

From our assumptions, we get 
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With this result, and by virtue of ( 5A ) it follows that 
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By hypothesis ( 5A ) and  20  we have 

    1 2 1 2 1 2
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X Y
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Formula  21  and  22  imply that 
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Applying Gronwall’s inequality for discontinuous function (see Perestyuk et al. (2011)), from 

 23  it follows that 

 

         12

1 2 1 2 1 2 1 ,
kaML Ha

kX YY
u t u t M M G LKa u u e ML 

       
               

(24) 

 

and therefore,  16
 
holds. Inequality  18  is a consequence of  16 . This completes the proof of 

the theorem. 

 

5.  Conclusion  
 

In this article, the existence, uniqueness and continuous dependence of initial data on a mild 

solution of semilinear functional impulsive mixed integro-differential equations with nonlocal 
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condition in general Banach spaces are discussed. We apply the concepts of semigroup theory 

together with Banach contraction theorem to establish the results. 
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