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Abstract

In this paper, the extended tanh method is used to construct exact solutions of the generalized
Benjamin and (3 + 1)-dimensional gKP equation. This method is shown to be an efficient
method for obtaining exact solutions of nonlinear partial differential equations. It can be applied
to nonintegrable equations as well as to integrable ones.
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1. Introduction

It is well known that the nonlinear partial differential equations (NLPDEs) are widely used to
describe complex phenomena in various fields of sciences, such as physics, biology, chemistry,
etc. Therefore, seeking exact solutions of NLPDEs is very important and significant in the
nonlinear sciences. In the past decades, great effort has been made towards this task and many
powerful methods have been presented, such as the homogeneous balance method [Khalafallah
(2009) and Wang (1995, 1996)], the modified simplest equation method [Kudryashov and
Loguinova (2008)], the tanh method [Malfliet and Hereman (1992, 1996)], the extended tanh
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method [Taghizadeh et al. (2011) and Wazwaz (2007, 2008)], the Jacobian elliptic function
expansion method [Liu et al. (2001)], the first integral method [Feng et al. (2002, 2005)], and so
on.

In recent years, many authors have used the extended tanh method to obtain the exact solutions
of partial differential equations as the method is deemed an efficient method for obtaining exact
solutions of NLPDESs. The aim of this paper is to find exact soliton solutions of the generalized
Benjamin equation and (3 + 1)-dimensional gKP equation, using the extended tanh method.

2. The Extended Tanh Method and Tanh Method

A PDE

F,u, uu_ u_,u

o) =0, (1)

xx 27 xt?

can be converted to an ODE

Guu'u"u",..)=0, (2)

upon using a wave variable & =x — A . Eq. (2) is then integrated as long as all terms contain
derivatives where the integration constants are considered zeros.

The standard tanh method is developed by Malfliet [9 — 11] where the tanh is used as a new

variable, since all derivatives of a tanh are represented by a tanh itself. Introducing a new
independent variable

Y =tanh(ug), ¢=x A, (3)

leads to the change of derivatives:

d o d

T e W

e u( )dY

d° _ 5y a-v -4y 2a-y 2y d @)
ag M av " ay

The extended tanh method admits the use of the finite expansion

M M
u(ué)=S¥ =Y a¥ +>by ", (5)
k=0 k=1
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where )7 is a positive integer, in most cases, that will be determined. Expansion (5) reduces to
the standard tanh method for b, =0, (k =1,...,M ). Substituting (5) into the ODE (2) results
in an algebraic equation in powers of Y.

To determine the parameter )z, we usually balance the linear terms of highest order in the

resulting equation with the highest order nonlinear terms. We then collect all coefficients of
powers of Y in the resulting equation where these coefficients have to vanish. This will give a

system of algebraic equations involving the parameters a, (k =0,...,M), b, (k =1,...,.M ),
4 and A . Having determined these parameters we obtain an analytic solution u# (x ,¢) in a
closed form.

3. Exact Solutions of the Generalized Benjamin Equation
Let us consider the generalized Benjamin equation:

u,+aw'u,) +pu._. =0, (6)

XXXX

where @ and [ are constants. This kind of equation is one of the most important NLPDEs,

used in the analysis of long wave in shallow water [Hereman et al. (1986)]. By using the wave
variable u(x,t)=U (u&), &=k (x —At), (6) becomes the ODE

k*2°U "+ a(kU"U ")+ Bk ‘U ™=0. (7)
Integrating Equation (7), twice and setting the constant of integrating to zero, we have

k22U +:—f1U”” + Bl*U " =0. ®)

Balancing U " with U""" in Equation (8) gives
M +2=mn+1)M,
then

M==
n

To get a closed form solution, M should be an integer. To achieve our goal, we use the
Transformation

U (1) =V " (ué). )
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This transformation (9) changes Equation (8) into the ODE
kAn>(n+1WV > +an¥ > - B [(n> =1V “—n(n +1WVV "]=0. (10)
Balancing V'V " with ¥ * in Equation (10) gives
2M +2=3M,
SO
M =2.
In this case, the extended tanh method in the form (5) admits the use of the finite expansion

UwE)=S¥ )=a,+aY +a2YZ+IZ;—1+1%. (11)

Substituting the form (11) into Equation (10) and using (4), while collecting the coefficients of
Y we obtain:

Coefficients of Y °:
an’a + 28k’ 1’ (n +1)(n +2)a;.
Coefficients of Y °:
3an’aa’ + 46k u’(n +1)°aa,.
Coefficients of ¥ *:
k A’n*(n +Da; +3an’laa; +ala, ]+ Bk’ 1’ (n +D[(n +Da —8a; + 6naya,].
Coefficients of Y °:

2kA°n* (n+)aa, +3an’[aib, + 2a,a,a, ]+ an’a;

+ 28K 11> (n+ D[naya, — (n+ 4aa, + (5n-2)a,b,].

Coefficients of ¥ %:
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kA’n* (n+Da] +2a,a,]+3an’[a,al +aja, + a;b, +2a,a,b,|
=28k 1 (n+D[a} + (n—2)a; +4na,a, — (2n—Dab, —4(2n—)a,b,].
Coefficients of Y ':

2k2%n* (n+Daya, + a,b |+ 3an’[ala, +a’b, +2aa,b, + 2a,a,b,]
=28k 1’ (n+ D[naya, + (n—2)a,a, + (9n—4a,b —2(2n—1ab,].

Coefficients of ¥ °:

kA’n*(n+D[a; +2ab, +2a,b, 1+ 3an’[a’b, + a,b} + 2a,ab, +2a,a,b, ]
+an’a, = 2Bk 1’ (n+ )[-na,a, — na,b, +2(2n —1)ab, +8(2n—1)a,b, ]
— Bk (n+ DY =D + b1,

Coefficients of ¥ '

2k2°n* (n+1)[ayb, + ab,]+3an’[aib, + ab’ +2a,a,b, +2a,bb, ]
=28k 1 (n+ D[nayb, + (n—2)bb, +(9n —4)ab, —2(2n-Da,b,].

Coefficients of Y :

kA’n* (n+1D)[b} +2a,b,]+3an’[ab] +ab, + a,b; +2abb,]

=28k 1P (n+ D[b] + (n—2)b; +4nab, — (2n—ab, —4(2n-a,b,].
Coefficients of ¥ — :

2kA°n’ (n+1)bb, +3an’[ab; +2a,bb,]+ an’b;
+ 28k 1’ (n+ D[nab, — (n+4)bb, + (5Sn—2)ab,].

Coefficients of ¥ ~*:
kA*n 2(n + 1)b22 +3an 2[aol)22 +b12b2] + pk 3,u2 (n+D[(n+ l)bl2 - 8b22 +6nay,].

Coefficients of ¥



180

3an 2b1b22 + 4Pk 3y2 (n+ l)zblbz.
Coefficients of ¥ °:

an’b) + 28k’ 1’ (n +1)(n +2)b,.
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Setting these coefficients equal to zero, and solving the resulting system, by using Maple, we

find the following sets of solutions:

. 12k +D)(n+2)
0 2 a 9

. 1 2Xk(n+D(n+2)
0 2 a s

:l/lzk (n+1)(n+2)

b=0. b,=3 .

. 12k +D)(n+2)

a, =0,
0 4 a 1

:yfk (n+1)(n+2)

b,=0, b
1 27 g o
Recall that
1
u=rr.

2

a,

M=%

2

Ak (n+1)(n+2)

N |-

=0,

1 nA

o

2kJ-B

o0 | —

_+1 nAi

_ZW.

For 5 <0 , the sets (12)-(14) give the solitons solutions

ul(x,t):{—?m k(n +1)(n +2)

sech’[

1

nA

9 ﬁ(x _/u)]}n

Ak (n+1)(n+2)

(04

»

(12)

(13)

(14)

(15)
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122 1
) = o SN e e 20 (16
. 2
., (x 1) = {_1/1 k(n+1)(n+2) (2—tanh2[l nA (x = Jt)]
8 4 . -p
1 ni 1 )
—coth’ [——L_(x — A)])}".
4-p
However for # >0 , we obtain the travelling wave solutions
—1 22 1
ety = (AR EDEID o2 L2 gy, (13
2 275
—142 1
us(x,t)= {_1 Ak(n+1)(n+2) CSCZ[lM(x - AN}, (19)
2 25
_ 2
g ) = {2 2R OIDI D) o a2 A ()
8 a 4./p
U na | (20)
+eot’ [ 2L (x — A
4Jp
4. The (3 + 1)-dimensional gKP Equation
The (3 + 1)-dimensional gKP equation, given by
W, +6u'u, +u. ), +3u, +3u_ =0, (21)

describes the dynamics of solitons and nonlinear waves in plasmas physics and fluid dynamics
[Alagesan et al.(1997)].

By using the wave transformation u(x,y,z,t)=Uué), S=k(x +ly +mz —At),
carries Equation (21) into the ODE

(1> +3m> =AU "+ 6U"U "+6nU " (U ") + kU ™ =0. 22)

Twice integrating of Equation (22), setting the constant of integrating to zero, we will have



182 N. Taghizadeh, M. Mirzazadeh and S.R. Moosavi Noori

6
n+1

(I1*+3m*> - AU + U™ +k*U"=0. (23)

Balancing U " with U """ in Equation (23) gives
M +2=mn+1)M,

then

M==
n

To get a closed form solution, M should be an integer. To achieve our goal, we use the
Transformation

1
U(ug) =V "(us). (24)
This transformation (24) will change Equation (23) into the ODE

n*(m+DGI>+3m> =AWV > +6nV > =k [(n> =1V "—n(n+1VV "|=0. (25

Balancing V'V " with ¥ ° in Equation (25) gives
M +2=3M,
then
M =2.
In this case, the extended tanh method the form (5) admits the use of the finite expansion

Uwé)=S¥ )=a,+aY +a2Y2+}[Z—1+I%. (26)

Substituting the form (26) into Equation (25) and using (4), collecting the coefficients of ¥ we
obtain:

Coefficients of ¥ °:
on’a, + 2k’ (n +1)(n +2)a;.

Coefficients of ¥ °:
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18n’aa; + 4k 1’ (n +1)’aga,.
Coefficients of ¥ *:
n’(n+ 13 +3m’ — A)a; +18n’[aya; +aa,]
+k* P (n+D[(n+1)a —8a: + 6na,a,].
Coefficients of ¥ °:

2n* (n+1)(31° +3m’ — A)a,a, +18n°[alb, + 2a,a,a,]+6n’a;

+2k* 12 (n+ D[naya, — (n+4aa, + (5n—2)a,b,].
Coefficients of Y *:
n’(n+ 13 +3m* — A)[a] +2a,a,]+18n’[aa + aja, + asb, +2a,a,b,]
=2k’ (n+1)[a +(n—2)a; +4nasa, —(2n—ab, —4(2n—1)a,b,].
Coefficients of ¥ ':
2n* (n+1)(31* +3m* — A)[aya, + a,b 1+ 18n’[a,a, + a.b, +2a,a,b, + 2a,a,b, ]
=2k (n+D[naya, + (n-2)aa, + (On—4ab, —2(2n-1)ab,].
Coefficients of Y :
n’(n+ 13 +3m* — A)[a; +2ab, +2a,b,]+18n°[a’b, + a,b} +2a,ab, +2a,a,b,]
+6n’a; —2k> 11 (n +1)[-na,a, — na,b, + 2(2n —1)ab, +8(2n—1)a,b,
— kK (n+D)(n-1[a +b1.
Coefficients of ¥ '
2n* (n+1)(31° +3m* — A)[a,b, + ab,1+18n’[a b, + ab’ +2a,a,b, +2a,bb, ]
—2k* 12 (n+D[nayb, + (n—2)bb, +(9n—4)ab, —2(2n—-1a,b,].

Coefficients of ¥
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n’(n+1)(31° +3m? — A)[b} +2a,b,]+18n’[a,b + alb, + a,b; +2abb,]
= 2k* 1> (n+1)[b] + (n—2)b; +4nab, — (2n —1)ab, —4(2n—1a,b,].

Coefficients of ¥

21 (n+1)(31* +3m* — A)bb, +18n’[a,b; +2a,bb,]+ 61n°b;
+2k* 1> (n +D[nab, — (n+4)bb, + (5n—2)ab,].

Coefficients of ¥ ~*:

n’(n+1)(3* +3m*> — A)b; +18n’[ab; +b7b,]
+k* 12 (n+1)[(n +1)b" —8b; + 6nayb,].

Coefficients of ¥

18nzblbz2 +4k 21 (n + l)zblbz.
Coefficients of ¥ ~°:

6n°b; +2k >’ (n +1)(n +2)b;.

Setting these coefficients equal to zero, and solving the resulting system, by using Maple, we
find the following sets of solutions:

a, :1_—21(312 +3m* - +1)(n+2), a =0,

a2:é(3lz+3m2—/l)(n+l)(n+2), b =0, b,=0, @7)
_+ln\//1—3m2—312
H=5 k '

b= G 43P+ D0+, @ =0, a=0. b=0, (8)
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_ 1nVa=3m? -3
+ p .

b, 25(312 +3m> = D)n+D)(n+2), u
a, =;—i(3l2 +3m* = D)(n+1)(n+2), a =0,

%=2%6V+3m2—2Xn+Dm+QL b =0,

_ 2_ 2
55:£%GV+3m2—an+Dm+QL ,u:ianl sm_ =317

Recall that

1

U=Vr.

For A—3m?* =317 <0, the sets (27)-(29) give the solitons solutions

u,(x,y,z,t)= {1_—21 GBI +3m> = V)(n+1)(n+2)

1nyA-3m* =31
2 k
u,(x,y,z,t)= {1_—21(312 +3m* = A)(n+1)(n+2)

5]};7

x sech’[

1 nJA—=3m? =312

5 . sy,

x csch’[

uy(x,y,z,t) = {;—; GBI +3m* = A)(n+1)(n+2)

_ 2_ 2
><(2—tanh2[%n\//1 3: 3 &l

1 nA—=3m* =31 1
[Z . shi,

— coth?

where &=k (x + 1y +mz — At).

185

(29)

(30)

(31

(32)
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However, for A —3m?* —3[? >0, we obtain the travelling wave solutions

2 2 1
u4(x,y,z,t)={1_—21(312 +3m? = A)(n +1)(n +2)secz[%n\/3l +k3m —A £,
(33)
2 2 1
us(x,y,z,t)= {1_—21(312 +3m> = A)(n +1)(n +2)cs 02[%n\/3l +k3m 4 1y,
(34)
u(x,y,z,t)= {;—; GBI +3m* = V)(n+1)(n+2)
1 3 +3m* = 4 13l +3m> =4
2 + tan’[— t2[— n
X (2 + tan [4 . &]+co [4 . ED,
(35)

where E=k(x +1ly +mz —At).

5. Conclusion

The extended tanh method has been successfully applied here to find the exact solutions for
generalized Benjamin equation and the (3+1)-dimensional gKP equation. It is also evident that
the proposed method can be extended to solve the problems of nonlinear partial differential
equations arising in the theory of solitons and other areas.
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