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Abstract 
        
In this paper, we will introduce two methods to obtain the numerical solutions for the system of 
dispersive long-wave equations (DLWE) in (2+1)-dimensions. The first method is the 
differential transformation method (DTM) and the second method is Adomian decomposition 
method (ADM). Moreover, we will make comparison between the solutions obtained by the two 
methods. Consequently, the results of our system tell us the two methods can be alternative ways 
for solution of the linear and nonlinear higher-order initial value problems. 
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1.  Introduction 
 
 
A variety of methods, exact, approximate, and purely numerical are available for the solution of 
systems of differential equations. Most of these methods are computationally intensive because 
they are trial-and-error in nature, or need complicated symbolic computations. Integral 
transforms such as Laplace and Fourier transforms are commonly used to solve differential 
equations and usefulness of these integral transforms lies in their ability to transform differential 
equations into algebraic equations which allows simple and systematic solution procedures. 
However, using integral transform in nonlinear problems may increase its complexity. In the 
present work, some partial differential equations with nonhomogeneous initial conditions aimed 
to solve by the differential transformation method and comparison with Adomian decomposition 
method which was introduced by G. Adomian in 1984. The differential transformation is a 
numerical method for solving differential equations. The concept of differential transform was 
introduced by Zhou (1986), who solved linear and nonlinear initial value problems in electric 
circuit analysis.   
 
Ayaz [(2003), (2004a), Ayaz (2004b)], and Kangalgil and Ayaz (2008) developed this method 
for PDEs and obtained closed form series solutions for linear and nonlinear initial value 
problems. The differential transforms method an analytical solution in the form of a polynomial. 
It is different from the traditional high order Taylor series method, which requires symbolic 
computation of the necessary derivatives of the data functions. The Taylor series method is 
computationally taken long time for large orders. The present method reduces the size of 
computational domain and applicable to many problems easily. Adomian decomposition method 
which is given by Jin and Liu (2005), for approximate solution of linear and nonlinear 
differential equations and to the solutions of various scientific models such that in El-Wakil and 
Abdou (2007), Jin and Liu (2005), Khalifa et al. (2007). A distinctive practical feature of the 
differential transformation method DTM is ability to solve linear or nonlinear differential 
equations. In fact, DTM and ADM are very efficient methods to find the numerical and analytic 
solutions of differential-difference equations, delay differential equations as well as integral 
equations we can see that in Karakoc and Bereketoglu (2009), Arikoglu and Ozkol (2006) and 
Rahman and Fatt (2009). Higher-order dimensional differential transformations are applied to a 
few some initial value problems to show that the solutions obtained by the proposed method 
DTM coincide with the approximate solution ADM and the analytic solutions. 
 
System of Dispersive Long-wave Equations 
      
In this paper we will study the system of dispersive long-wave equations (DLWE) in (2+1)-
dimensions by using differential transformation method (DTM) and Adomian decomposition 
method (ADM) and Compare them with exact solution  
 

 21
0,

2yt xx xy
u v u      (1.1) 

  0.t xy x
v uv u u                (1.2) 
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Equations (1.1) and (1.2) can be reduced to the (1+1)-dimensions model: 

 21
0,

2t z z
u v u           (1.3) 

  0,t zz z
v uv u u                      (1.4) 

for  ( , ) ( , )  and  ( , ) ( , )u u z t u x y t v v z t v x y t       with initial conditions 

 
2( ,0) 2 2  [ ],    and     ( ,0) 1 2   [ ] .u z Tanh z v z Sech z       (1.5) 

 
The analytical solution of the problem is given by Bai et al. (2006) as follows: 

2( , ) 2 2  [ 2 ] and  ( , ) 1 2   [ 2 ] .u z t Tanh z t v z t Sech z t               (1.6) 

 
 
2.  The Definitions and Operations of Differential Transform 
 
The basic definitions and fundamental theorems of the two- dimensional transform are defined 
by Ayaz (2003) as follows: 
 

(0,0)

1 ( , )
( , ) ,

! !  

k h

k h

w x y
W k h

k h x y

 
    

   (2.1) 

 

where ( , )W x y is the original function and ( , )W k h  is the transformed function. The 

transformation is called T-function and the lower case and upper case letters represent the 

original and transformed functions respectively. The differential inverse transform of ( , )W k h  is 

defined as: 

0 0

( , ) ( , ) .k h

h k

W x y W k h x y
 

 

     (2.2) 

 From Equations (2.1) and (2.2) we obtain 

0 0 (0,0)

1 ( , )
( , ) .

! !  

k h
k h

k h
h k

W x y
W x y x y

k h x v

 

 

 
    
            (2.3) 

 
The fundamental theorems of the two-dimensional transform have been proved in Chen and Ho 
(1999) and we only mention them here in order to use them in Theorem 8.   
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Theorem 1:  
 
If ( , ) ( , ) ( , ),  then ( , ) ( , ) ( , ).w x y u x y v x y W k h U k h V k h     

 
Theorem 2:  
 
If ( , ) ( , ),  then ( , )  ( , ) where  is constant.w x y u x y W k h U k h     

 
Theorem 3:  
 

( , )
If ( , ) ,  then ( , ) ( 1) ( 1, ).

u x y
w x y W k h k U k h

x


   


 

 
Theorem 4:  
 

( , )
If ( , ) ,  then ( , ) ( 1) ( , 1).

u x y
w x y W k h h U k h

y


   


 

 
Theorem 5:  
 

( , )
If ( , ) ,  then 

r s

r s

u x y
w x y

x y




 
 

 
( , ) ( 1)( 2) ( )( 1)( 2) ( ) ( , ).W k h k k k r h h h s U k r h s           

 
 
Theorem 6:  
 

0 0

If ( , ) ( , ) ( , ),  then ( , ) ( , ) ( , ).
k k

r s

w x y u x y v x y W k h U r h s V k r s
 

     

 
Theorem 7: 
  
 

If ( , ) ,  then ( , ) ( , ) ( ) ( ),n mw x y x y W k h k m h n k m h n         where 

 

1,       and ,
( , )

0,       Otherwise.

k m h n
k m h n
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Theorem 8:  
 

( , )
If ( , ) ( , ) ,

u x y
w x y u x y

x





then 

 

0 0

( , ) ( 1) ( , ) ( 1, )
k k

r s

W k h k r U r h s U k r s
 

      . 

 
Proof: 
 
The proof of Theorem 8 is a consequence of Theorem 3 and Theorem 6. 
 
 
3.  Analysis of the ADM method 
 
 
We consider Equations (1.3) and (1.4) in the operator form 
 

( ),t zL u L v N u     (3.1) 

 
( , ) ( , ) ,t z zzzL v M u v K u v L u L u                (3.2) 

 
3

3where  ,       and  t z zzzL L L
t z z

  
  
  

  symbolize the linear differential operators and 

the notations ( ) , ( , )   and  ( , )z z zN u uu M u v uv K u v vu    symbolize the nonlinear 

operators. 
 

Applying integration inverse operator 1

0

( )
t

tL dt   � to the system (3.1) and (3.2) and using the 

specified initial conditions yields 
 

1 1( , ) ( ,0) ( ),t z tu z t u z L L v L N u       (3.3) 

 
and 
 

1 1 1 1( , ) ( ,0) ( ) ( ) .t t t z t zzzv z t v z L M u L K u L L u L L u                (3.4) 

 

The Adomain decomposition method assumes an infinite series solution for unknown 

function ( , )  and  ( , )u z t v z t  given by 
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0

( , ) ( , ),n
n

u z t u z t




         (3.5) 

and 

0

( , ) ( , ).n
n

v z t v z t




                (3.6) 

 

The nonlinear operators ( ) , ( , )z zN u uu M u v uv   and ( , ) zK u v vu which is defined by the 

infinite series of Adomain polynomials given by 

 0 1 0 1 0 1
0 0

( ) ( , , , ),     ( , ) ( , , , , , , , )n n n n n
n n

N u D u u u M u v M u u u v v v
 

 

     , 

and 
 

 0 1 0 1
0

( , ) ( , , , , , , , ),n n n
n

K u v W u u u v v v




            

 
where ,  and n n nD M W  are the appropriate Adomian’s polynomials which are generated 

according to algorithm determined in Zhou et al. (2005). 
 
For nonlinear operator N(u) these polynomials can be defined as 
 

0 1
0 0

0

1
( , , ) , 0.

!

n
k k

n n k kn
n n z

d
D u u u N u u n

n d


 


 

  

   
         

     (3.7) 

 
Similarly, for nonlinear operator ( , )M u v , we have 

 

0 1 0 1
0 0

0

1
( , , , , , , ) , 0,

!

n
k k

n n n k kn
n n z

d
M u u u v v v N u v n

n d


 


 

  

   
         

      (3.8) 

 

0 1 0 1
0 0

0

1
( , , , , , , ) ,  0.

!

n
k k

n n n k kn
n n z

d
K u u u v v v N v u n

n d


 


 

  

   
         

       (3.9) 
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These formulae are easy to set computer code to get as many polynomials as we need in 
calculation of the numerical as well as explicit solutions. For the sake of convenience of the 
readers, we can give the first few Adomian polynomials for  
 

( ) , ( , )   and  ( , )z z zN u uu M u v uv K u v vu     

 
of the nonlinearity as  
 

0 0 0

1 1 0 0 1

2 2 0 1 1 0 2

3 3 0 2 1 1 2 0 3

4 4 0 3 1 2 2 1 3 1 4

( )

( ) ( )

( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

z

z z

z z z

z z z z

z z z z z

D u u

D u u u u

D u u u u u u

D u u u u u u u u

D u u u u u u u u u u



 

  

   

    



 

and 
 

0 0 0

1 1 0 0 1

( )

( ) ( )
z

z z

M u v

M u v u v


 

 

2 2 0 1 1 0 2

3 3 0 2 1 1 2 0 3

4 4 0 3 1 2 2 1 3 1 4

( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

z z z

z z z z

z z z z z

M u v u v u v

M u v u v u v u v

M u v u v u v u v u v

  

   

    


 

 
and 
 

0 0 0

1 1 0 0 1

2 2 0 1 1 0 2

3 3 0 2 1 1 2 0 3

4 4 0 3 1 2 2 1 3 1 4

( )

( ) ( )

( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

z

z z

z z z

z z z z

z z z z z

W v u

W v u v u

W v u v u v u

W v u v u v u v u

W v u v u v u v u v u



 

  

   

    



 

 
and so on. The rest of the polynomials can be constructed in a similar manner. Substituting the 
initial conditions into (3.3) and (3.4) identifying the zeroth components u0 and v0, then we obtain 
the subsequent components by the following recursive equations by using the standard ADM 
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1 1
1 ,n t z n t nu L L v L A 
       (3.10) 

and 
 

1 1 1 1
1 .n t n t n t z n t zzz nv L M L W L L u L L u   
              (3.11) 

the one can formulate the recursive algorithm for u0 and v0 and general term un+1 and vn+1  in a 
form of the modified recursive scheme as follows: 

0

1 1
1 0 0

1 1
1

( ,0),

,

, 1,

t z t

n t z n t n

u u z

u L L v L A

u L L v L A n

 

 




  

   

         (3.12) 

 
and 
 

0

1 1 1 1
1 0 0 0 0

1 1 1 1
1

( ,0),

,

, 1.

t t t z t zzz

n t n t n t z n t zzz n

v v z

v L M L W L L u L L u

v L M L W L L u L L u n

   

   




    

     

        (3.13) 

 
This type of modification is giving more flexibility to the ADM in order to solve complicate 
nonlinear differential equations. In many cases the modified decomposition scheme avoids the 
unnecessary computation especially in calculation of the Adomian polynomials. The 
computation of these polynomials will be reduced very considerably by using the ADM. 
 
It is worth noting that the zeroth components u0 and v0 are defined then the remaining 
components un and vn, n ≥ 1 can be completely determined. As a result, the components u0, u1, ..., 
and v0, v1, ..., are identified and the series solutions thus entirely determined. However, in many 
cases the exact solution in a closed form may be obtained. 
 
 
4.  Numerical Illustrations 
 
4.1. Differential transformation method 
 
Taking the differential transformation of (1.3) and (1.4), can be obtained 
 

0 0

( 1) [ , 1] ( 1) [ 1, ] ( 1) [ , ] [ 1, ],
k h

h U k h k V k h k r U r h s U k r s
 

 

             

   (4.1.1) 
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0 0

0 0

( 1) [ , 1] ( 1) [ , ] [ 1, ]

( 1) [ , ] [ 1, ] ( 1) [ 1, ]

( 1)( 2)( 3) [ 3, ].

k h

k h

h V k h k r U r h s V k r s

k r V r h s U k r s k U k h

k k k U k h

 

 

 

 

        

        

    



  

 (4.1.2) 
 
From the initial conditions (1.5), we can write 
 

2
[0,0] 2;     [1,0] 2;     [2,0] 0;      [3,0] ;       [4,0] 0;

3
4 34 124

[5,0] ;    [6,0] 0;   [7,0] ;     [8,0] 0;     [9,0] ;    
15 315 2835

2764
[10,0] 0;    [11,0] ;    [12,0] 0.

155925

U U U U U

U U U U U

U U U

     

     

   

 

             (4.1.3) 
 

4
[0,0] 1;     [1,0] 0;     [2,0] 2;      [3,0] 0;       [4,0] ;

3
34 124

[5,0] 0;    [6,0] ;   [7,0] 0;     [8,0] ;     [9,0] 0;    
45 315

2764 43688
[10,0] ;    [11,0] 0;    [12,0] .

14175 467775

V V V V V

V V V V V

V V V

     

     

   

 

 (4.1.4) 
 
Substituting from (4.1.3) and (4.1.4) into (4.1.1) and (4.1.2) and by recursive method we have: 
 

[0,1] 4;     [1,1] 0;     [2,1] 4;      [3,1] 0;       [0,2] 0;

8 68
[4,1] ;    [5,1] 0;   [6,1] ;     [7,1] 0;    [1,2] 8;    

3 45
32 136 248

[2,2] 0;   [3,2] ;     [4,2] 0;     [5,2] ;    [8,1]
3 15 31

U U U U U

U U U U U

U U U U U

     

      

       ;    
5
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272 1984
[6,2] 0;    [9,1] 0;    [3,3] 0;    [4,3] ;    [7,2] ;     

9 315
64 16

[2,3] ;    [0,3] ;    [1,3] 0;    [5,3] 0;    [8,2] 0;    
3 3

64
[4,4] 0;     [11,1] 0;    [7,3] 0;    [0,4] 0;    [1,4] ;    

3

U U U U U

U U U U U

U U U U U

U

    

     

    

544 5528 3968
[2,4] 0;    [3,4] ;     [10,1] ;    [6,3] .

9 14175 135
U U U     

 

         (4.1.5) 
 
and 
 

32
[0,1] 0;     [1,1] 8;     [2,1] 0;      [3,1] ;       [0,2] 8;

3
136 1984

[4,1] 0;    [5,1] ;   [6,1] 0;     [7,1] ;    [1,2] 0;    
15 315

136
[2,2] 32;   [3,2] 0;     [4,2] ;     [5,2] 0;    [8,1]

3

V V U U V

V V V V V

V V V V V

      

     

      0;    

1984 11056 1088
[6,2] ;    [9,1] ;    [3,3] ;    [4,3] 0;    [7,2] 0;     

45 2835 9
128 7936

[2,3] 0;    [0,3] 0;    [1,3] ;    [5,3] ;    
3 45

11056 3968 64
[8,2] ;    [4,4] ;     [7,2] 0;    [0,4]

2835 9

V V V V V

V V V V

V V V V

    

     

     ;    
3

544
[1,4] 0;    [2,4] ;    [3,4] 0.

3
V V V   

 

 (4.1.6) 
 
Substituting all U(k, h) and V(k, h) into (2.2) we have : 
 

3 4 3 2 3
2 2

2 3 4 3 4 3 4

16 64 64 2
( , ) 2 4 2 8 4

3 3 3 3

32 544 8 272
         ,

3 9 3 9

t t z t z z
u z t t z t z tz

t z t z tz t z

        

    
    (4.1.7) 

and 
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4 3 4 2 3
2 2 2 2

3 3 2 4 4 4 4

64 128 544 32
( , ) 1 8 8 2 32

3 3 3 3

1088 136 4 3968
         .

9 3 3 9

t t z t z tz
v z t t tz z t z

t z t z z t z

        

    

        (4.1.8) 

 
 
4.2.  Implementation of the ADM Method 
 
 
Using (3.10)-(3.13) with (3.7)-(3.9) for Equations (1.3) and (1.4) with the initial conditions (1.5) 
gives: 
 

 

 

0

2
1

2 2
2

3 4
3

4 5
4

2 2 [ ]

4 [ ]

8 [ ] [ ]

16
2 [2 ] [ ]

3
8

[ ] 11 [ ] [3 ]
3

u Tanh z

u tSech z

u t Sech z Tanh z

u t Cosh z Sech z

u t Sech z Sinh z Sinh z

 

 

 

   

   

 

 5 6
5

16
33 26 [2 ] [4 ] [ ] ,

15
u t Cosh z Cosh z Sech z      

 
and 
 

 

 

 

 

2
0

2
1

2 4
2

3 5
3

4 6
4

5 7
5

1 2 [ ]

8 [ ] [ ]

8 2 [2 ] [ ]

16
11 [ ] [3 ] [ ]

3
8

[ ] 33 26 [2 ] [4 ]
3
16

302 [ ] 57 [3 ] [5 ] [ ] , ,
15

v Sech z

v tSech z Tanh z

v t Cosh z Sech z

v t Sinh z Sinh z Sech z

v t Sech z Cosh z Cosh z

v t Sinh z Sinh z Sinh z Sech z
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and so on. In this manner the other components of the decomposition series can be easily 
obtained of which u(z, t) and v(z, t) were evaluated in a series form 
 

 

 

 

2 3 4

5 6

4 5

16
( , ) 2 4 [ ] 2 [2 ] [ ]

3
16

          33 26 [2 ] [4 ] [ ]
15
8

          [ ] 11 [ ] [3 ]
3

u z t tSech z t Cosh z Sech z

t Cosh z Cosh z Sech z

t Sech z Sinh z Sinh z

    

  

   

   (4.2.1) 

 

 

 

2 2 2 4

3 5 4 6

5 7

1 2 [ ] 8 [ ] [ ] 8 2 [2 ] [ ]

16 8
   11 [ ] [3 ] [ ] [ ] (33 26 [2 ]

3 3
16

   [4 ]) 302 [ ] 57 [3 ] [5 ] [ ] .
15

v Sech z tSech z Tanh z t Cosh z Sech z

t Sinh z Sinh z Sech z t Sech z Cosh z

Cosh z t Sinh z Sinh z Sinh z Sech z

      

    

    

 

(4.2.2) 
Table 1. Comparison of exact solution, the (DTM) [formula 4.1.7] and error of u(x, t),  
                   (x = -0.01). 

t U exact U numerical Error 
0.01 1.9400179935223598 1.9400179944009066 8.7855

1010  
0.02 1.9000832500842400 1.9000832773454222 2.72612

810  
0.03 1.8602282193671420 1.8602284259237865 2.06557

710  
0.04 1.8204844305056798 1.8204852993740800 8.68868

710  
0.05 1.7808830595711410 1.7808857057488887 2.64618

610  
0.06 1.7414548327878834 1.7414614019153070 6.56913

610  
0.07 1.7022299327533639 1.7022440935549332 1.41608

510  
0.08 1.6632379082583706 .6632654351638756 2.75269

510  
0.09 1.6245075882634292 1.6245570300527468 4.94418

510  
0.10 1.5860670005410948 1.5861504303466670 8.34298

510  
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0.00

0.50

1.00

1.50

2.00

2.50

0 0.02 0.04 0.06 0.08 0.1 0.12

u exact

u by DTM

 
Figure 1. Plot of exact solution and numerical solution by the (DTM) [formula 4.1.7] of u(x,t) 

 
 

Table 2.   Comparison of exact solution, the (DTM) [formula 4.1.8] and error of v(x, t), 
                (x = -0.01). 

t V  exact V  numerical Error 
0.01 0.9982010794494582 0.9982010796524885 2.0303 1010  

0.02 0.9950083215431356 0.9950083292842610 7.74113 910  

0.03 0.9902319246693598 0.9902319949769045 7.03075 810  

0.04 0.9838870801545647 0.9838874251277311 3.44973 710  

0.05 0.9759938832085482 0.9759950837831111 1.20057 610  
0.06 0.9665771982556295 0.9665805506384725 3.35238 610  

0.07 0.9556664935259673 0.9556745210383017 8.02751 610  

0.08 0.9432956467829017 0.9433128059761436 1.71592 510  

0.09 0.9295027243641272 0.9295363320946007 3.36077 510  

0.10 0.9143297359794771 0.9143911416853333 6.14057 510  
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0.91

0.92

0.93

0.94

0.95

0.96

0.97

0.98

0.99

1.00

1.01

0 0.02 0.04 0.06 0.08 0.1 0.12

v exact

v by DTM

 
Figure 2. Plot of exact solution and numerical solution by the (DTM) [formula 4.1.8] of v(x,t) 

 
 
 

Table 3.  Comparison of exact solution, the (ADM) [formula 4.2.1] and error of u(x, t), 
                         (x = -0.01). 

t U exact U numerical Error 
0.01 1.9400179935223598 1.9400179935217388 6.19949 1310  

0.02 1.9000832500842400 1.9000832500356863 4.856 1110  

0.03 1.8602282193671420 1.8602282187141876 6.5296 1010  

0.04 1.8204844305056798 1.8204844262781286 4.22755 910  
0.05 1.7808830595711410 1.7808830413239556 1.82472 810  

0.06 1.7414548327878834 1.7414547720106959 6.07772 810  

0.07 1.7022299327533639 1.7022297637469743 1.69006 710  

0.08 1.6632379082583706 1.663237496878035 4.1138 710  

0.09 1.6245075882634292 1.6245066843727567 9.03891 710  
0.10 1.5860670005410948 1.5860651695106742 1.83103 610  
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Figure 3.  Plot of exact solution and numerical solution by the (ADM) [formula 4.2.1] of u(x, t) 

 
 
 

Table 4.   Comparison of exact solution, the (ADM) [formula 4.2.2] and error of v(x, t),  
                         (x = -0.01). 

t V  exact V  numerical Error 
0.01 0.9982010794494582 0.9982010794976929 4.8234 1110  
0.02 0.9950083215431356 0.9950083246256554 3.08252 910  
0.03 0.9902319246693598 0.990231959715404 3.5046 810  
0.04 0.9838870801545647 0.9838872766158613 1.96461 710  
0.05 0.9759938832085482 0.9759946306263977 7.47418 710  
0.06 0.9665771982556295 0.9665794230972938 2.22484 610  
0.07 0.9556664935259673 0.9556720840302048 5.5905 610  
0.08 0.9432956467829017 0.9433080546786226 1.24079 510  
0.09 0.9295027243641272 0.9295277701483391 2.50458 510  
0.10 0.9143297359794771 0.9143766419979097 4.6906 510  
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Figure 4.  Plot of exact solution and numerical solution by the (ADM) [formula 4.2.2] of v(x, t) 

 

 
Figure 5.   Comparison between the exact solution and the behavior of the solution obtained by 

ADM [formula 4.2.1, 4.2.2 respectively] method, z = 4 
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Figure 6.    Comparison between the exact solution and the behavior of the solution obtained by 

DTM [formula 4.1.7, 4.1.8 respectively] method, z = 0.4 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 7a. The Exact solution of u(x, t)                       Figure 7b. The Exact solution of v(x, t)  
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Figure 8a. The solution of u(x, t) by (DTM)             

Figure 8b. The solution of v(x, t) by (DTM)  
 

 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 9a. The solution of u(x, t) by (ADM)           Figure 9b. The solution of v(x, t) by (ADM)  
 
 
5.  Conclusion 
 
This paper applied the differential transformation technique and Adomian decomposition method 
to solve initial value problem. Throughout the result of our example which are found by using 
the two methods are compared with the analytic solutions, we show that the convergence are 
quite close. Too the results of our example tell us the two successfully methods can be 
alternative way for the solution of the linear and nonlinear higher-order initial value problems. In 
fact, DTM and ADM are very efficient methods to find the numerical and analytic solutions of 
differential-difference equations, delay differential equations as well as integral equations. 
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