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Abstract

In this paper, we will introduce two methods to obtain the numerical solutions for the system of
dispersive long-wave equations (DLWE) in (2+1)-dimensions. The first method is the
differential transformation method (DTM) and the second method is Adomian decomposition
method (ADM). Moreover, we will make comparison between the solutions obtained by the two
methods. Consequently, the results of our system tell us the two methods can be alternative ways

for solution of the linear and nonlinear higher-order initial value problems.
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1. Introduction

A variety of methods, exact, approximate, and purely numerical are available for the solution of
systems of differential equations. Most of these methods are computationally intensive because
they are trial-and-error in nature, or need complicated symbolic computations. Integral
transforms such as Laplace and Fourier transforms are commonly used to solve differential
equations and usefulness of these integral transforms lies in their ability to transform differential
equations into algebraic equations which allows simple and systematic solution procedures.
However, using integral transform in nonlinear problems may increase its complexity. In the
present work, some partial differential equations with nonhomogeneous initial conditions aimed
to solve by the differential transformation method and comparison with Adomian decomposition
method which was introduced by G. Adomian in 1984. The differential transformation is a
numerical method for solving differential equations. The concept of differential transform was
introduced by Zhou (1986), who solved linear and nonlinear initial value problems in electric
circuit analysis.

Ayaz [(2003), (2004a), Ayaz (2004b)], and Kangalgil and Ayaz (2008) developed this method
for PDEs and obtained closed form series solutions for linear and nonlinear initial value
problems. The differential transforms method an analytical solution in the form of a polynomial.
It is different from the traditional high order Taylor series method, which requires symbolic
computation of the necessary derivatives of the data functions. The Taylor series method is
computationally taken long time for large orders. The present method reduces the size of
computational domain and applicable to many problems easily. Adomian decomposition method
which is given by Jin and Liu (2005), for approximate solution of linear and nonlinear
differential equations and to the solutions of various scientific models such that in El-Wakil and
Abdou (2007), Jin and Liu (2005), Khalifa et al. (2007). A distinctive practical feature of the
differential transformation method DTM is ability to solve linear or nonlinear differential
equations. In fact, DTM and ADM are very efficient methods to find the numerical and analytic
solutions of differential-difference equations, delay differential equations as well as integral
equations we can see that in Karakoc and Bereketoglu (2009), Arikoglu and Ozkol (2006) and
Rahman and Fatt (2009). Higher-order dimensional differential transformations are applied to a
few some initial value problems to show that the solutions obtained by the proposed method
DTM coincide with the approximate solution ADM and the analytic solutions.

System of Dispersive Long-wave Equations

In this paper we will study the system of dispersive long-wave equations (DLWE) in (2+1)-
dimensions by using differential transformation method (DTM) and Adomian decomposition
method (ADM) and Compare them with exact solution

uyt+vxx+%(u2)Xy =0, (1.1)

vt+(uv+u+uxy)X =0. (1.2)
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Equations (1.1) and (1.2) can be reduced to the (1+1)-dimensions model:

ut+vz+%(u2)z =0, (1.3)

Vi +(uw+u+u,), =0, (1.4)
for U=u(z,t)=u(x+Yy,t) and v=Vv(z,t)=V(X+ Y,t) with initial conditions

u(z,0)=2+2Tanh [z], and Vv(z,0)=-1+2 Sech [z]. (1.5)

The analytical solution of the problem is given by Bai et al. (2006) as follows:

u(z,t)=2+2 Tanh [z -2t] and v(z,t)=—1+2 Sech [z -2t (1.6)

2. The Definitions and Operations of Differential Transform

The basic definitions and fundamental theorems of the two- dimensional transform are defined
by Ayaz (2003) as follows:

k+h
Wk, hy=— E D | e
k! h!l ox* oy ©.0)

where W (X,Y)is the original function and W (K,h) is the transformed function. The

transformation is called T-function and the lower case and upper case letters represent the
original and transformed functions respectively. The differential inverse transform of W (K, h) is

defined as:

W (X, y)=> > W(k,hx“y". (2.2)
h=0 k=0
From Equations (2.1) and (2.2) we obtain

S 1 [ 0'W
Wxy)=>> { , y)} x“y". (2.3)
' (0.0)

oxk ov"

The fundamental theorems of the two-dimensional transform have been proved in Chen and Ho
(1999) and we only mention them here in order to use them in Theorem 8.
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Theorem 1:
Ifw(x,y)=u(x,y)xVv(X,y), then W(k,h)=U(k,h)xV (k,h).
Theorem 2:

Ifw(x,y)=Au(x,y), then W(k,h)=1 U (k,h) where 1 is constant.

Theorem 3:

I w(x, y) :w, then W (k,h) = (k +1) U (k +1,h).
X

Theorem 4:

Ifw(x,y) =

augyx,y), then W (k,h) = (h+1) U (k,h +1).

Theorem 5:

1w(x,y) = S0V

then
ox"oy°®

Wk,h)y=(k+D)(k+2)---(k+r)(h+1)(h+2)---(h+s) Uk +r,h+5).

Theorem 6:

Ifw(x,y)=u(x, y)v(x,y), then W(k,h)= ZK:ZK:U (r,h=s)V(k-r,s).

r=0 s=0

Theorem 7:

Ifw(x,y)=x"y", then W(k,h) =5(k —m,h—-n)=5(k —m)S&(h —n), where

I, k=mandh=n,

o(k—m,h—n)= ,
0, Otherwise.

151
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Theorem 8:

Ifw(x,y)=u(x, y)%,men

W(k,h):zkzzk:(k—rH)U(r,h—s) Uk-r+1,s).

r=0 s=0
Proof:

The proof of Theorem 8 is a consequence of Theorem 3 and Theorem 6.

3. Analysis of the ADM method

We consider Equations (1.3) and (1.4) in the operator form

Lu=-L,v—-N(), (3.1
Lv=-M(u,v)-K(u,v)-Lu-L,u, (3.2)
0 0 ’ . RS
where L, = L L, = = and L, = Py symbolize the linear differential operators and
yA yA

the notations N(U)=uu,,M(u,v)=uv, and K(u,v)=VvU, symbolize the nonlinear
operators.

t
Applying integration inverse operator L;l = I(D)dt to the system (3.1) and (3.2) and using the
0

specified initial conditions yields

u(z,t)=u(z,0)— L;'L,v — L;'N(u), (3.3)

and

V(Zat) = V(Z,O) B Lt_lM (U) - L[_IK(U) - Lt_leu - Lt_lezzu' (3.4)

The Adomain decomposition method assumes an infinite series solution for unknown
functionU(z,t) and v(z,t) given by
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u(z,t)=> u,(z.b), (3.5)
n=0

and

V(z,t)= > Vv, (zb). (3.6)
n=0

The nonlinear operators N (U) = uu,,M (u,v) =uv, and K(U,V)=VU, which is defined by the

infinite series of Adomain polynomials given by

NU) =D, Ug, Uy, Uy, MUV =DM (Ug, Uy, Uy Vo, VooV, ),
n=0

n=0

and
K(U,V) = an(uoaula'”:unavoavla"'avn)a
n=0

where D,,M_  and W, are the appropriate Adomian’s polynomials which are generated
according to algorithm determined in Zhou et al. (2005).

For nonlinear operator N(u) these polynomials can be defined as

D, (U, U, U, ) = 'd/”t” [Zﬂkuk(z/lkuk}] , n>0. (3.7)

A=0

Similarly, for nonlinear operator M (U,V), we have

Mn(uo,ul’...un,vo,vp...,Vn) 1dﬂ(” {Z/lkuk [Z j ] , >0, (3.8)
z A

=0

k 0
Kn(u0:u19 un9V07V19 ;Vn) n'dln (Zl Vk (Z jz} ) H nZO (39)

=0
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These formulae are easy to set computer code to get as many polynomials as we need in
calculation of the numerical as well as explicit solutions. For the sake of convenience of the
readers, we can give the first few Adomian polynomials for

N(u)=uu,,M(u,v)=uv, and K(u,v)=vu,

of the nonlinearity as

Dy = Uy (Uy),

D, =u,(Uy), +U,(uy),

D, =u,(Uy), +U;(uy), +U,(U,),

D; =u;(u,), +U,(U;), +U,(U,), +U,(Us),

D, =u,(Uy), +us(u), +U,(U,), +u;(Uy), +u,(u,),

and

M, =U,(V,),

M, =u,(Vy), +Uy(v),

M, =u,(Vy), +U;(V;), + Uy (V,),

M, =Us(Vy), + U,y (V), +U(V,), +Uy(V3),

M4 = u4(V0)z + u3(vl)z + Uz(Vz)z +U1(V3)z +U1(V4)Z

and

W, =V, (Uy),

Wi =V (Uy), + Vo (Uy),

W, =V, (Uy), +Vi(U;), +V,(U,),

W, =v;(Uy), +V,(Uy), +V,(U,), +V,(Us),

W4 :V4(u0)z +V3(ul)z +V2(u2)z +Vl(u3)z +V1(U4)Z

and so on. The rest of the polynomials can be constructed in a similar manner. Substituting the
initial conditions into (3.3) and (3.4) identifying the zeroth components Uy and Vo, then we obtain
the subsequent components by the following recursive equations by using the standard ADM
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Uni = _Lt_leVn - Lt_lAv (3.10)

and

-1 -1 -1 -1

Vou =—L M, - LW, -L 'Lu, - L,u,. (3.11)
the one can formulate the recursive algorithm for Uy and vy and general term Uny; and Vq:; in a
form of the modified recursive scheme as follows:

u, =u(z,0),
u =-L'Lv,-L'A, (3.12)
Upy = _L;leVn B L;1A1’ nx1,

and
Vv, =V(z,0),
Vi= _|_[—1|\/|0 - Lt_lwo - Lt_ll—zuo - Lt_lezzu07 (3.13)
Vo = _Llen o LIIWn o Lzleun o L;lezzunﬂ nx1.

This type of modification is giving more flexibility to the ADM in order to solve complicate
nonlinear differential equations. In many cases the modified decomposition scheme avoids the
unnecessary computation especially in calculation of the Adomian polynomials. The
computation of these polynomials will be reduced very considerably by using the ADM.

It is worth noting that the zeroth components U, and Vv, are defined then the remaining
components Uy and Vp, N > 1 can be completely determined. As a result, the components U, Uy, ...,

and Vo, Vi, ..., are identified and the series solutions thus entirely determined. However, in many
cases the exact solution in a closed form may be obtained.

4. Numerical Illustrations

4.1. Differential transformation method

Taking the differential transformation of (1.3) and (1.4), can be obtained
(h+DULK,h+1]=—(k +DV[k+Lh]= > > (k—=r+DU[r,h—=sU[k —r +1,s],

k=0 h=0

(4.1.1)
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(h+1V[k,h+1]= ii(k—r+1)U[r,h—s]V[k—r+1,s]

=SS k=t +)Vrh—sUTK—r +1,8] - (k+ DUK + Lh]
k=0 h=0

— (K +1)(k +2)(k +3)U[k +3,h].

(4.1.2)
From the initial conditions (1.5), we can write
Uf0,0]=2; U[1,0]=2; UJ[2,0]=0; UBJH=—§; U[4,0]=0;
4 34 124
U[5,0]=—; U[6,0]=0; U[7,0]=———; UJ[8,0]=0; U[9,0]=——
[5,0] s [6,0]= [7,0] 313 [8,0] [9,0] 2935
U[10,0]=0: U[I1L0]=——2"%% . Upn2.01=0.
155925
(4.1.3)
V[0,0]=L V[L0]=0; V[2,0]=-2; V[3,0]=0; VH4H=§;
V[S.0]=0; V[6.0]=—>2: V[7.0]=0: VIS, O]_ﬁ, V[9,0]=0;
45 315
V[l0,0]z—m; V[11,0]=0; V][12,0]= 43688.
14175 467775
4.1.4)

Substituting from (4.1.3) and (4.1.4) into (4.1.1) and (4.1.2) and by recursive method we have:

U[o,1]=—-4 U[L1]=0; U[21]=4; U[3,1]=0; UJ[0,2]=0;

lﬂ%ﬂz—g;Luiu Olﬂﬁﬂ—ég,lHZH:O;LﬂLﬂ:—&

32 136 248
U[2,2]=0; U[3,2]==; U[4,2]=0; U[52]=——; U[81]=-"—;
[2,2] [3.2]= [4,2] [5,2]==73 [8.11==313
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ul6,2]1=0; U[9,1]1=0; U[3,3]=0; U[4,3]:ﬂ; U[7,2]:1984;
9 315
U[2.3]= 6?, UWQFJ§;L”Lﬂzo;tniﬂzo;tu&ﬂzo;

U[4,4]=0; UJ[11,1]=0; U[7,3]=0; U[0,4]=0; U[14]_%

U.41=0, UR41=—22 upon=22 . ype3=-2%8
9 14175 135

(4.1.5)

and

32

V[0,1]=0; V[L1]=8 U[2,1]=0; uply,_;, V[0,2]=-8:

V[4,1]=0; ku_l¥§ VI6,1]=0; \qnu:_%ﬁg;vmgkﬂk

136

VI[2,2]=32; VI[3,2]=0; V[4’2]:_T; V[5,2]=0; V[81]=0;

vi6,21= 22 o =220 vi3 3= 188 via g0 vim21=0;
45 2835 9
V[2,3]1=0; V[0,3]=0; VI, 3]_—%, V5, 3]__%’
3 45
VBJPPJi%E;\H%M=§%§; ngpﬁx\quzﬁi
2835 9 3
VILA=0; V[24]1=-2% VI34]-0.
(4.1.6)
Substituting all U(k, h) and V(k, h) into (2.2) we have :
3 4 3,2 3
u(z,t):2—4t+16t 127 g7+ DML g 08T 22
3 (4.1.7)
32t°2°  544t'z2° stz 272tz
+ — — + SRS
3 9 3 9

and



158 M. A. Mohamed

4 3 4.2 3
v(z,t)=1-8t" + O | gy 1282550 gpppe 244U 2T 32U
3 (4.1.8)
1088t°2° 136t%z* 4z* 3968t'z*
+ - + + Foen
9 3 3 9

4.2. Implementation of the ADM Method

Using (3.10)-(3.13) with (3.7)-(3.9) for Equations (1.3) and (1.4) with the initial conditions (1.5)
gives:

U, =2+ 2Tanh[z]
u, = —4tSech[ z]’
u, = —8t*Sech[z]*Tanh[z]

u, = —?P (=2 + Cosh[2z])Sech[z]*

U, = —%t“Sech[z]S (~11Sinh[z] + Sinh[3z])

U, = _%ﬁ (33-26Cosh[22] + Cosh[4z]) Sech[z]", -

and

v, =—1+2Sech[z]’
v, = 8tSech[z]*Tanh[z]
v, =8t* (-2 + Cosh[2z]) Sech[ z]*

v, :%t3(—118inh[z]+ Sinh[3z]) Sech[z]’
v, = gt“Sech[z]é (33-26Cosh[2z] + Cosh[4z])

v, :%tS(3028inh[z]—578inh[3z]+ Sinh[5z])Sech[z]’, -,
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and so on. In this manner the other components of the decomposition series can be easily
obtained of which u(z, t) and v(z, t) were evaluated in a series form

U(z,t) = 2 — 4tSech[ 2]’ —?ﬁ (-2 +Cosh[2z]) Sech{z]*

—~ %ts (33-26Cosh[2z]+ Cosh[4z])Sech[z]° (4.2.1)

—§t43ech[z]5(—1 1Sinh{z] + Sinh[32]) + -
v =—1+2Sech[z]* + 8tSech[z]’Tanh[z] + 8t* (-2 + Cosh[2z]) Sech[ z]*

+ ?P (—11Sinh[z]+ Sinh[3z]) Sech[z]" + §t48ech[z]6(33 —26Cosh[2z]

+Cosh[4z]) + %ts (302Sinh[z] - 57Sinh[3z] + Sinh[5z]) Sech[z]" +---.

4.2.2
Table 1.  Comparison of exact solution, the (DTM) [formula 4.1.7] and error of u(x, t), ( :
(x=-0.01).
t U exact U numerical Error
0.01 1.9400179935223598 1.9400179944009066 8.7855 X 10—10
0.02 1.9000832500842400 1.9000832773454222 272612 X 10—8
0.03 1.8602282193671420 1.8602284259237865 2.06557 X 10—7
0.04 1.8204844305056798 1.8204852993740800 8.68868%x1077
0.05 1.7808830595711410 1.7808857057488887 2.64618x107°
0.06 1.7414548327878834 1.7414614019153070 6.56913x107°
0.07 1.7022299327533639 1.7022440935549332 1.41608%107°
0.08 1.6632379082583706 1.6632654351638756 5 75260% 10
0.09 1.6245075882634292 1.6245570300527468 4.94418)(1075
0.10 1.5860670005410948 1.5861504303466670 8.34298)(1075
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0.08 0.1
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Figure 1. Plot of exact solution and numerical solution by the (DTM) [formula 4.1.7] of u(X,t)

Table 2. Comparison of exact solution, the (DTM) [formula 4.1.8] and error of V(X t),

(x=-0.01).

t V exact V numerical Error
0.01 0.9982010794494582 | 0.9982010796524885 2.0303x107"
0.02 0.9950083215431356 | 0.9950083292842610 | 7.74113x10°°
0.03 0.9902319246693598 | 0.9902319949769045 7.03075%x107®
0.04 0.9838870801545647 | 0.9838874251277311 3.44973%107’
0.05 0.9759938832085482 | 0.9759950837831111 1.20057x107°
0.06 0.9665771982556295 | 0.9665805506384725 3.35238x107°
0.07 0.9556664935259673 | 0.9556745210383017 8.02751x107¢
0.08 0.9432956467829017 | 0.9433128059761436 1.71592x107°
0.09 0.9295027243641272 | 0.9295363320946007 | 3.36077x107°
0.10 0.9143297359794771 | 0.9143911416853333 6.14057x107
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—&—v exact
—#—v by DTM
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0.04 0.06

0.08 0.1

0.12

Figure 2. Plot of exact solution and numerical solution by the (DTM) [formula 4.1.8] of v(X,t)

Table 3. Comparison of exact solution, the (ADM) [formula 4.2.1] and error of u(x, t),

(x=-0.01).

t U exact U numerical Error
0.01 1.9400179935223598 1.9400179935217388 | 6.19949x107"
0.02 1.9000832500842400 1.9000832500356863 4.856x107!"
0.03 1.8602282193671420 1.8602282187141876 6.5296x107"°
0.04 1.8204844305056798 1.8204844262781286 | 4.22755x10°
0.05 1.7808830595711410 1.7808830413239556 1.82472x107%
0.06 1.7414548327878834 1.7414547720106959 6.07772x107°
0.07 1.7022299327533639 1.7022297637469743 1.69006x107’
0.08 1.6632379082583706 1.663237496878035 4.1138x107’
0.09 1.6245075882634292 1.6245066843727567 9.03891x1077
0.10 1.5860670005410948 1.5860651695106742 1.83103x10°°
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Figure 3. Plot of exact solution and numerical solution by the (ADM) [formula 4.2.1] of u(x, t)

Table 4. Comparison of exact solution, the (ADM) [formula 4.2.2] and error of V(X t),

(x=-0.01).

t V exact V numerical Error
0.01 0.9982010794494582 | 0.9982010794976929 4.8234x107""
0.02 0.9950083215431356 | 0.9950083246256554 3.08252x107°
0.03 0.9902319246693598 | 0.990231959715404 3.5046x107%
0.04 0.9838870801545647 | 0.9838872766158613 1.96461x1077
0.05 0.9759938832085482 | 0.9759946306263977 7.47418x1077
0.06 0.9665771982556295 | 0.9665794230972938 2.22484x107°
0.07 0.9556664935259673 | 0.9556720840302048 5.5905x107°
0.08 0.9432956467829017 | 0.9433080546786226 1.24079%107°
0.09 0.9295027243641272 | 0.9295277701483391 2.50458x107°
0.10 0.9143297359794771 | 0.9143766419979097 4.6906%x107
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—&—v exact
—#—v by ADM
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0.08 0.1 0.12

Figure 4. Plot of exact solution and numerical solution by the (ADM) [formula 4.2.2] of V(X, t)

4.0-_

39 NS
3.8 \
w7 \

3.7 '

361 \

DO 02 05 075 10 1258 148
tirne

--------------- Murnrical (ADM)

--------- Exact

time
0o 0.25 05 0.74a 1.0

-------------- Mumrical (ADK)

--------- Exact

Figure 5. Comparison between the exact solution and the behavior of the solution obtained by
ADM [formula 4.2.1, 4.2.2 respectively] method, z =4
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1.0

0.75

=
T

0.0 01 0z 0.3 0.4

.................. Numrlal [DTM)

--------- Exact

Figure 6. Comparison between the exact solution and the behavior of the solution obtained by
DTM [formula 4.1.7, 4.1.8 respectively] method, z= 0.4

Figure 7a. The Exact solution of u(x, t)

Figure 7b. The Exact solution of V(x, t)
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s
e e e
e
e e R

e T L T

Figure 8a. The solution of u(x, t) by (DTM)
Figure 8b. The solution of v(X, t) by (DTM)

Figure 9a. The solution of u(x, t) by (ADM) Figure 9b. The solution of v(X, t) by (ADM)

5. Conclusion

This paper applied the differential transformation technique and Adomian decomposition method
to solve initial value problem. Throughout the result of our example which are found by using
the two methods are compared with the analytic solutions, we show that the convergence are
quite close. Too the results of our example tell us the two successfully methods can be
alternative way for the solution of the linear and nonlinear higher-order initial value problems. In
fact, DTM and ADM are very efficient methods to find the numerical and analytic solutions of
differential-difference equations, delay differential equations as well as integral equations.
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