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Abstract

In this paper, Reduced differential transform method is presented for solving nonlinear reaction-

diffusion-convection initial value problems. The methodology with some known techniques shows

that the present approach is simple and effective.To show the efficiency of the present method,

four interesting examples is given.
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1. Introduction

Nonlinear reaction–diffusion–convection (RDC) equations of the form

ut = [(
l∑

i=0

aiu
i)ux]x + [

p∑

i=0̇

biu
i]x + [

r∑

i=0

ciu
i], (1)
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where u = u(x, t) is unknown function, l, p, r are nonnegative integer constants and ai, bi, ci

are real constants, and the subscripts t and x denote derivatives with respect to these variables,

generalizes a great number of the known nonlinear second-order equations describing various

processes in biology (Murray, 1993). Actually nonlinear phenomena occurs in a wide range of

apparently different contexts in nature, for instance biological, economical, chemical and physical

systems (Ames, 1972; Vazquez, 2006; Murray, 1993; Murray, 1977; Witelski, 1997). There are

well-known methods such as Lie and conditional symmetry methods, which successfully applied

to construct exact solutions for a wide range of nonlinear equations (Bluman et al., 2010; Cherniha

and Pliukhin, 2007; Cherniha, 1998). In this paper, the differential transformation method (Zhou,

1986; Arikoglu and Ozkol, 2008; Keskin and Oturanc, 2009; Jang et al., 2006; Kurnaz and

Oturance, 2005) is applied to solve the nonlinear reaction–diffusion–convection equation (1)

under initial condition

u(x, 0) = f(x). (2)

The given problem can be transformed into a recurrence relation, using differential transformation

operations, which leads to a series solution.

2. Reduced differential transform method

Consider a function of two variables u(x, t) which is analytic and suppose that it can be rep-

resented as a product of two single-variable functions, i.e., u(x, t) = f(x)g(t). Based on the

properties of one dimensional differential transform, the function u(x, t) can be represented as

follows:

u(x, t) =

( ∞∑

i=0

F (i)xi

)( ∞∑

j=0

G(j)tj

)
=

∞∑

k=0

Uk(x)tk,

where Uk(x) is called t-dimensional spectrum function of u(x, t). The basic definitions and

operations of RDTM are reviewed as follows:

Definition 1: If function u(x, t) is analytic and differentiated continuosly with respect to time t

and space x in the domain of interest, then let

Uk(x) =
1

k!

[
∂k

∂tk
u(x, t)

]

t=0

, (3)

where the t-dimensional spectrum function Uk(x) is the transformed function. The differential

inverse transform of Uk(x) is defined as follows:

u(x, t) =
∞∑

k=0

Uk(x)tk. (4)

Combining (3) and (4) gives that:

u(x, t) =
∞∑

k=0

1

k!

[
∂k

∂tk
u(x, t)

]

t=0

tk. (5)
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In fact, above definition shows that, the concept of reduced differential transform is derived from

the power series expansion (Keskin and Oturanc, 2009). For example, consider u(x, t) = ex+t.

This function can be written as

u(x, t) = ex+t =
(
1 + x +

x2

2
+ · · ·

)

︸ ︷︷ ︸
ex

(
1 + t +

t2

2
+ · · ·

)

︸ ︷︷ ︸
et

=
∞∑

i=0

F (i)xi

∞∑

j=0

G(j)tj

otherwise,

u(x, t) = ex+t = ex
(
1 + t +

t2

2
+ · · ·

)

︸ ︷︷ ︸
et

= ex + ext +
ext2

2
+ · · · =

∞∑

k=0

ex

k!︸︷︷︸
Uk(x)

tk =
∞∑

k=0

Uk(x)tk.

For more clarification, suppose that we have a nonlinear partial differential equation as

Lu(x, t) + Ru(x, t) + Nu(x, t) = g(x, t),

with initial condition

u(x, 0) = f(x),

where L = ∂
∂t

, R is a linear operator which has partial derivatives, Nu(x, t) is a nonlinear term

and g(x, t) is an inhomogeneous term.

According to the RDTM and (T1-T10) of bellow, we can construct the following iteration formula:

(k + 1)Uk+1(x) = Gk(x)− RUk(x) − NUk(x), (6)

where Uk(x), RUk(x), NUk(x) and Gk(x) are the transformations of the functions Lu(x, t),

Ru(x, t), Nu(x, t) and g(x, t). From initial condition u(x, 0) = f(x), we write

U0(x) = f(x). (7)

Substituting (7) into (6) and A straightforward iterative calculation, gives the Uk(x) values for k =

1, 2, ..., n. Then the inverse transformation of the {Uk(x)}n

k=0 gives the approximation solutoin

as:

ũn(x, t) =

n∑

k=0

Uk(x)tk (8)

where n is order of approximation solution. Therefore, the exact solutoin is given by:

u(x, t) = lim
n−→∞

ũn(x, t). (9)

The fundamental operations of reduced differential transform are listed in below.
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Function Form Transformed Form

u(x, t) Uk(x) = 1
k!

[
∂k

∂tk
u(x, t)

]

t=0

T 1 : u(x, t) = c (c is a constant) Uk(x) = δ(k) =
{

1 k=0
0 k 6=0

T 2 : u(x, t) = v(x, t) + w(x, t) Uk(x) = Vk(x) + Wk(x)

T 3 : u(x, t) = cv(x, t) Uk(x) = cVk(x) (c is a constant)

T 4 : u(x, t) = v(x, t)w(x, t) Uk(x) =
k∑

k1=0

Vk1
(x)Wk−k1

(x)

T 5 : u(x, t) = xmtn Uk(x) = xmδ(k − n) =
{

xm k=n
0 k 6=n

T 6 : u(x, t) = xmtnv(x, t) Uk(x) = xmVk−n(x)

T 7 : u(x, t) =
∂

∂t
v(x, t) Uk(x) = (k + 1)Vk+1(x)

T 8 : u(x, t) =
∂m

∂xm
v(x, t) Uk(x) =

∂m

∂xm
Vk(x).

Also

T9: if u(x, t) = v1(x, t)v2(x, t)...vm−1(x, t)vm(x, t), then

Uk(x) =
k∑

km−1=0

km−1∑

km−2=0

· · ·
k3∑

k2=0

k2∑

k1=0

(V1)k1
(V2)k2−k1

· · · (Vm−1)km−1−km−2
(Vm)k−km−1

.

And finally T10: if u(x, t) = vm(x, t)
∂

∂x
w(x, t), then

Uk(x) =
k∑

km=0

km∑

km−1=0

· · ·
k3∑

k2=0

k2∑

k1=0

∂

∂x
Wk1

Vk2−k1
Vk3−k2

· · · Vkm−1−km−2
Vk−km−1

.

3. Application of reduced differential transform method

According to the RDTM and (T1-T10), we can construct the following iteration for the Eq.(1)
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as:

(k + 1)Uk+1(x) =
∂

∂x
[a0

∂

∂x
Uk(x) + a1

k∑

k1=0

∂

∂x
Uk1

(x)Uk−k1
(x)

+a2

k∑

k2=0

k2∑

k1=0

∂

∂x
Uk1

(x)Uk2−k1
(x)Uk−k2

(x) + · · ·

+al

k∑

kl=0

kl∑

kl−1=0

kl−1∑

kl−2=0

...

k3∑

k2=0

k2∑

k1=0

∂

∂x
Uk1

(x)Uk2−k1
(x)Uk3−k2

(x) · · ·

Ukl−kl−1
(x)Uk−kl

(x)]

+
∂

∂x
[b0 + b1Uk(x) + b2

k∑

k1=0

Uk1
(x)Uk−k1

(x) + · · ·

+bp

k∑

kp−1=0

kp−1∑

kp−2=0

· · ·
k3∑

k2=0

k2∑

k1=0

Uk1
(x)Uk2−k1

(x)Uk3−k2
(x) · · ·

Ukp−1−kp−2
(x)Uk−kp−1

(x)]

+[c0 + c1Uk(x) + c2

k∑

k1=0

Uk1
(x)Uk−k1

(x) + · · ·

+cr

k∑

kr−1=0

kr−1∑

kr−2=0

· · ·
k3∑

k2=0

k2∑

k1=0

Uk1
(x)Uk2−k1

(x)Uk3−k2
(x) · · ·

Ukr−1−kr−2
(x)Uk−kr−1

(x)].

From the initial condition (2), we can get the U0(x) and afterwards the Uk(x) values. Then the

inverse transformation of the set of values {Uk(x)}n

k=0 gives approximation solution as:

ũn(x, t) =
n∑

k=0

Uk(x)tk

where n is order of approximation solution. Therefore, the exact solution of problem is given by

u(x, t) = lim
n−→∞

ũn(x, t).

We apply this method for solving the examples which have solved by the other methods.

Example 1. In this example, we will consider the following initial value nonlinear problem

(Shidfar et al., 2011; Cherniha and Pliukhin, 2007; Duangpithak and Torvattanabun, 2012)





∂u
∂t

= ∂
∂x

(
u∂u

∂x

)
+ 3u∂u

∂x
+ 2(u − u2),

u(x, 0) = 2
√

ex − e−4x, −∞ < x < +∞,

(10)

with the exact solution u(x, t) = 2e2t
√

ex − e−4x.
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By using the basic properties of the reduced differential transform and formulas (T1-T10),

we can find transformed form of Equation (10) as:

(k + 1)Uk+1(x) =
∂

∂x

k∑

k1=0

∂

∂x
Uk1

(x)Uk−k1
(x) + 3

k∑

k1=0

∂

∂x
Uk1

(x)Uk−k1
(x)

+2Uk(x) − 2
k∑

k1=0

Uk1
(x)Uk−k1

(x). (11)

Initial condition u(x, 0) = 2
√

ex − e−4x gives:

U0(x) = 2
√

ex − e−4x (12)

After substituting (12) into (11), we obtain the next terms of Uk(x) as:

U1(x) = 4
√
−e−4x + ex, U2(x) = 4

√
−e−4x + ex,

U3(x) =
8

3

√
−e−4x + ex, · · · , Uk(x) =

(2)k+1

k!

√
−e−4x + ex

and the approximation solutoin as:

ũn(x, t) =
n∑

k=0

(2)k+1

k!

√
−e−4x + ex tk = 2

√
−e−4x + ex

n∑

k=0

(2t)k

k!
· (13)

At last, we get the following exact solution :

u(x, t) = lim
n−→∞

ũn(x, t) = 2 e2t
√
−e−4x + ex

Example 2. Let us consider the following reaction-diffusion equation with exponential nonlin-

earities (Shidfar et al., 2011; ?)




∂u
∂t

= ∂
∂x

(
exp(u)∂u

∂x

)
+ exp(−u) + 1 − exp(u),

u(x, 0) = ln
(

1
2

+ 2cosh(x)
)
, −∞ < x < +∞,

(14)

with the exact solution u(x, t) = ln

(
(1

2
+

√
5

2
tanh(

√
5t
2

) + ( 1

cosh(
√

5t
2

)
)(e( t

2
−x) + e( t

2
+x))

)
. By

using the transformation v = exp(u), the problem (14) becomes





∂v
∂t

= v ∂2v
∂x2 + 1 + v − v2,

v(x, 0) = 1
2

+ 2cosh(x), −∞ < x < +∞.

(15)

Taking reduced differential transform of Problem (15), the following are obtained:

(k + 1)Vk+1(x) =

k∑

k1=0

∂2

∂x2
Vk1

(x)Vk−k1
(x)

+δ(k) + Vk(x) −
k∑

k1=0

Vk1
(x)Vk−k1

(x), (16)
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and

V0(x) =
1

2
+ 2 cosh(x). (17)

By using the recurrence relation (16) and the transformed initial condition (17), we obtain the

following terms of Vk(x):

V1(x) = −5

4
− cosh(x), V2(x) =

1

2
cosh(x)(3 + 4 cosh(x)),

V3(x) =
1

4
(−81 − 116 cosh(x) − 56 cosh(2x) − 16 cosh(3x))

V4(x) =
1

48
(85 + 165 cosh(x) + 89 cosh(2x) + 32 cosh(3x) + 4 cosh(4x))

V5(x) =
1

480
(−1331 − 2234 cosh(x) − 1366 cosh(2x)

− 626 cosh(3x) − 160 cosh(4x) − 8 cosh(5x)) + · · · .

For instance the inverse transformation of the set of values {Vk(x)}5
k=0 , gives approximation

solution as:

ṽ5(x, t) =
5∑

k=0

Vk(x)tk =
1

480
(−1331 − 2234 cosh(x)

−1366 cosh(2x) − 626 cosh(3x) − 160 cosh(4x) − 8 cosh(5x))t5

+
1

48
(85 + 165 cosh(x) + 89 cosh(2x) + 32 cosh(3x) + 4 cosh(4x))t4

+
1

4
(−81 − 116 cosh(x)− 56 cosh(2x) − 16 cosh(3x))t3 (18)

+
1

2
cosh(x)(3 + 4 cosh(x))t2 − (

5

4
+ cosh(x))t +

1

2
+ 2 cosh(x).

We indicated the approximation solution u50(x, t) and the exact solution of the problem in the

Figure 1.

The cpu time (on a pc with core 2 duo processor) for obtaining the approximate solution u50(x, t)

was 0.78 s. A comparison between the relative error of this approximate solution and the relative

error of approximate solution which was obtained by using homotopy analysis method (HAM)

(Shidfar et al., 2011) has shown in figure 2. The cpu time (on the similar system) for the HAM

method was 26.84 s. Thus the time needed using the RDTM is very very shorter than using the

HAM.
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Fig. 1: The approximation solution u50(x, t) and the exact solution of the example 2.
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Fig. 2: Comparison between the relative errors of the approimate solutions obtained by using The RDTM and

The HAM.

4. Conclusion

In this paper, the reduced differential transform method (RDTM) has been successfully applied

for reaction-diffusion-convection equations with given initial condition which gives rapidly con-

verging series solutions. The obtained solution was compared with the exact solution.

In the first example the exact solution of problem was obtained. In the last example the approx-

imate solution was compared with the solution obtained by the homotopy analysis method. The

results show that the RDTM is more accurate and faster than the homotopy analysis method.

It can be concluded that, RDTM is a very powerful and efficient technique for finding exact

solutions for wide classes of problems and can be applied to many complicated linear and non-

linear problems and does not require linearization, discretization or perturbation. Computations

in this paper were performed using Mathematica 7.
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