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Abstract 
 
The aim of the paper is to develop a simple model for capillary tissue fluid exchange system to 
study the effect of glycocalyx layer on the single file flow of red cells. We have considered the 
channel version of an idealized Krogh capillary-tissue exchange system. The glycocalyx and the 
tissue are represented as porous layers with different property parametric values. Hydrodynamic 
Lubrication theory is used to compute the squeezing flow of plasma within the small gap 
between the cell and the glycocalyx layer symmetrically surrounded by the tissue. The system of 
non linear partial differential equations has been solved using analytical techniques. The model 
predicts that decrease in glycocalyx thickness reduces the axial velocity of plasma and the 
resistance to flow increases in presence of glycocalyx.  
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1.   INTRODUCTION 
 
Microscopic observations identified a thin, negatively charged macromolecular layer adjacent 
the luminal surface of vascular endothelial surface of the capillary. This layer was named as 
glycocalyx and was hypothesized to affect the transport properties of the capillary wall. 
Glycocalyx, a layer of macromolecules bounded or adsorbed to the endothelial surface, may 
retard plasma motion in a zone adjacent to the capillary wall [Sugihara-Seki & Bingmei (2005)]. 
Regulation of the exclusion of blood from this relatively thick endothelial region could 
contribute, not only to control of capillary red blood cell filling the space and oxygen supply to 
tissue cells, but also to the controlled modulation of transcapillary solute exchange and tissue 
hydration. 
 
 
The state of understanding of the single file motion of red blood cells through cylindrical tubes is 
relatively mature, beginning with the seminal works of Lighthill (1968), Fitzgerald (1969 a, b) 
and Bernard et al. (1968) and cumulating in the models of Zerda et al. (1977) and Secomb et al. 
(1986), which are faithful to the constitutive relationships and well characterized the red cell 
membrane. However, experimental evidence mounting over the past 20 years has begun to cast 
doubt on the applicability of these models to capillary blood flow in vivo. Several experimental 
studies during the period suggest that the flow resistance measured in vivo was about twice that 
from estimates based on measurements in glass tubes [Lipowsky et al. (1978, 1980), Pries et al. 
(1994)]. Although, several mechanisms were considered, the most likely explanation, as 
demonstrated convincingly by recent experiments of Pries and Secomb (1997) that the 
glycocalyx is, primarily responsible for the difference [Klitzman & Duling (1979) and 
Desjardins and Duling (1990)]. 
 
Several theoretical models have recently been presented that are generally consisting with this 
new concept of microvascular resistance and reduction of capillary tube hematocrit [Damiano 
(1998), Damiano et al. (1996, 2004), Secomb et al. (1998, 2001) and Wang and Parker (1995), 
Srivastava (2007)]. These authors assumed binary mixture theory and  account for deformability 
of the red cells as they  travel in single file through capillaries of roughly 6m diameter. They 
further assume the existence of a thin lubricating layer adjacent to the capillary wall. These 
models have not discussed the effect of glycocalyx on flow characteristics of single file flow of 
red cell in capillaries surrounded by tissue and the fluid movement into and out of the tissue 
through the glycocalyx layer. 
 
Therefore, our aim is to study the effect of glycocalyx on blood flow in very narrow capillary 
lined with uniform thickness of porous layer (Glycocalyx) which is surrounded by tissue. In this 
paper, we have considered the glycocalyx as a porous layer. The tissue is also considered as a 
porous matrix. Darcy’s law of fluid flow is assumed to govern the flow in tissue as well as in 
glycocalyx. The shape of red blood cell is assumed to be axisymmetric. Lubrication theory is 
used to compute the flow of plasma around the cell. Single file flow of red blood cell is 
considered and cell to cell interactions are neglected. We have obtained the results for resistance 
to plasma flow, pressure, normal and axial component of velocity in very narrow capillary. 
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2.   FORMULATION OF THE PROBLEM 
 
We have considered the channel version (Figure1) of an idealized Krogh capillary tissue cylinder 
as the geometrical representation of the capillary beds. The interior surface of capillary is lined 
with a glycocalyx layer, which is assumed as a porous matrix. Red blood cell is assumed 
axisymmetric. Single file flow of red blood cell is considered. Hydrodynamic lubrication theory 
is used to describe the motion of plasma around the cell. Gap between the cell and capillary wall 
is given by 
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To write the governing equations for flow in three regions as given below: 
 
 
(A)    Fluid Film Region  

 
In between the red cell and the glycocalyx surface there is a thin lubricating layer of plasma. 
Therefore, introducing lubrication theory, the governing equations of motion and continuity for 
two dimensional flow of plasma (considered as Newtonian fluid) may be written as follows:  
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where u and v are the velocity component along axial and transverse directions and   is the 
viscosity of plasma in the capillary.  P is the pressure in fluid film region. 
 
(B)    In Glycocalyx and Tissue Region 
 
The flow of viscous fluid in porous matrices is governed by Darcy’s Law. Therefore axial and 
normal component of velocity are given as:  
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iv  are the axial and normal velocities of the fluid in the porous matrix of glycocalyx   and tissue. 
 

Pressures in the two porous regions satisfy the Laplace equation. Thus, 1 , the pressure in the 

glycocalyx layer of thickness d and 2 , is the pressure in the tissue region of thickness H satisfies 
the Laplace equations: 
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where Uo is the cell velocity,  is the slip parameter,  0  is the reference pressure, 1k  and 2k  

are the permeability of glycocalyx layer and tissue. 1  and 2  are the partition coefficients, 0h  

is the minimum gap width 
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SOLUTION OF THE PROBLEM  
 
Capillary Region 
 
Solving equation of motion and equation of continuity with the help of boundary condition 7(a) 
and 7(b) we get the solution for velocity distribution in the capillary region as given by 
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Porous Region 
 
Pressure in porous tissue and glycocalyx are governed by the Laplace equation 
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Thus, 1 , the pressure in the glycocalyx layer of thickness d, satisfies the equation 
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Integrating equation (11) with respect to y over the layer thickness d and using boundary 
condition (7g) 
 

0y

2
1

1

2
d

0
2
1

2

dy

1

yk

k
dy

xy  











 .          (12) 



AAM: Intern. J., Vol. 4, Issue 1 (June 2009) [Previously, Vol. 4, No. 1]             139 

  

 

Similarly, we integrate the Laplace equation in tissue layer of thickness H and using condition 

(7d)  
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From (12) and (13) we get 
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If the layer thickness d and H are assumed to be small, equation (14) reduces to 
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Introducing axial velocity in equation of continuity and using the condition at the interface (7f) 

pressure distribution in capillary region is obtained as  
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Resistance to blood flow is given as 
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where Q is the volumetric flow rate [Guyton and Hall (1996)].  
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Normal component of velocity is obtained as 
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3.   RESULTS AND DISCUSSIONS 
 
The role of glycocalyx has been described here for blood vessels when red cells flow in a single 
file. Their effects on pressure distribution, resistance to flow, axial velocity and normal 
component of velocity have been presented through figure 2 to 9 as discussed below. The 
presence of the glycocalyx reduces the crossection available for flow of red cells. The additional 
energy may be dissipated due to narrowing of the lubrication layer. 
 
Figures 2 and 3 depict the variation of pressure distribution and flow resistance for different 
values of glycocalyx layer thickness d. These figures demonstrate that both, after attaining a 
maximum value at the origin, decreases sideways symmetrically. This is due to the assumption 
of geometrical symmetry and reduction of the gap between the cell geometry and the capillary 
wall.  
 
Figure 4 and Figure 5 present the variation of normal and axial velocities for different values of 
glycocalyx thickness. Normal velocity as well as axial velocities both decrease with increasing 
values of the thickness. Both after attaining maximum value at the origin decrease sideways 
symmetrically and both the results support each other. Similar results have been observed by 
Secomb and Hsu (1997). This layer slows down the plasma flow due to the movement of the 
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fluid from the gap into the layer.  The axial velocity profiles of the fluid in the lubricating layer 
in presence of glycocalyx layer at its luminal surface have also been shown through Figure 5. 
The glycocalyx acts as a transport barrier. Further work is needed to explain the effects of 
glycocalyx on nutritional transport to the cells of the tissue. 
 
The present model also studies the effect of various shapes of the red blood cell through the 
variation of parameter . The effect of red cell shape parameter has been discussed through 
figures 6 to 9. Axisymmetric shape of red cell is assumed throughout in the model. In general, 
red blood cell shapes are not axisymmetric but this has little effect on flow behavior. 
 
Pressure distribution and the Resistance to flow have been presented in the Figure 6 and Figure 
7. Pressure in fluid film (lubrication layer) increases (Figure 6) and resistance to flow also 
increases (Figure 7) with increasing values of  . Normal component of the fluid velocity 

increases at the capillary-tissue interface as  increases. One may also observe that as  
increases, the red cell gets elongated and lubrication layer thickness decreases. Without the 
glycocalyx, the red cell almost fills the gap width. The presence of the glycocalyx leads to longer 
and narrower red blood cell shapes, and the width of Lubricating layer changes with  . 
 
Figures 8 and 9 represent the variation of normal and axial velocity of plasma in capillary. 
Results support the observation in Figures 6 and 7 for different values of  . 

 
4.   Concluding Remarks 
 
Introducing the concept of lubrication and the forming a wedge in between porous glycocalyx 
layer and the assumed shapes of red blood cell, this study presents the effects of glycocalyx layer 
on physiological parameters of the model.  The results support the experimental findings of 
various researchers [Damiano et.al. (1996); Damiano (1998); Secomb et.al. (1998, 2001); Wang 
and parker (1995)] Decreasing of the fluid flux into the tissue simultaneously decreases the 
nutritional transport and oxygen supply to the tissue cells. This would form the basis for further 
study of coupled diffusion in tissue in presence of glycocalyx layer on inner side of the capillary. 
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