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Abstract 

The present paper describes a model of resource biomass and population with a non-linear catch 

rate function on resource biomass. The harvesting effort is assumed to be a dynamical variable. 

Tax on per unit harvested resource biomass is used as a tool to control exploitation of the 

resource. Pontryagin’s Maximum Principle is used to find the optimal control to maintain the 

resource biomass and population at an optimal level. A numerical simulation is also carried out 

to support the analytical results.  
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1. Introduction  

Conservation of renewable resources is a very important task for ecologists to maintain the 

ecological balance. The first work on renewable resource using mathematical modelling was 
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done by Clark (1976, 1990). The capital for the optimal exploitation of a renewable resource 

stock of restricted malleability has been discussed by Clark and De Pee (1976). Many 

researchers have worked on renewable resources. Chaudhuri (1986) described a model of 

competing logistically growing fish species which is being harvested according to catch-per-unit-

effort hypothesis. He described the optimal harvesting policy using Pontryagin’s Maximum 

Principle. Dubey et al. (2003a) investigated a model in an aquatic environment that consists of 

two zones: i) free fishing zone and ii) reserved zone by taking the fishing effort as a control 

variable. They also proved that if fishing is done continuously in the unreserved zone, fish 

population can be maintained at an appropriate equilibrium level in the habitat. The model 

proposed by Dubey et al. (2003a) was extended by Kar and Misra (2006). 

A ratio-dependent model with selective harvesting of prey species has been discussed by Kar 

(2004a). Again, Kar (2004b) proposed a model of prey-predator system with delay and 

harvesting. He showed that both the delay and harvesting effort play important roles on the 

stability of the system. Dhar et al. (2008) proposed and discussed a phytoplankton-fishery model, 

where fish depends upon plankton which grows logistically and the revenue is generated from 

fishing. Then they converted this model with delay for the digestion of plankton by fish. They 

found a threshold of conversional parameter for Hopf-bifurcation. Misra and Dubey (2010) 

analyzed a prey-predator model with discrete delay and the predator is harvested. Then they 

discussed stability analysis of equilibrium points and Hopf bifurcation taking the delay as a 

bifurcation parameter. Ji and Wu (2010) proposed a prey-predator model with Holling type II 

functional response incorporating a constant prey refuge and a constant rate of prey harvesting. 

They also discussed instability, global stability, and existence and uniqueness of limit cycles of 

the model. 

A ratio dependent eco-epidemiological system where prey population is harvested has been 

discussed by Chakraborty et al. (2010). They also obtained a suitable condition for non-existence 

of a periodic solution around the interior equilibrium. Yunfei et al. (2010) described a 

phytoplankton-zooplankton model, in which both species are harvested for food. They found 

stability conditions of equilibria and conditions for the existence of Hopf-bifurcation. They also 

discussed the existence of bionomic equilibria and the optimal harvesting policy. Sadhukhan et 

al. (2010) described a three competing species model: i) prey, ii) predator and iii) super predator. 

These three species are harvested in this model. They studied the global stability, bionomic 

equilibrium and optimal harvesting policy. A prey-predator harvested model with non-monotonic 

functional response has also been studied by Kar et al. (2010). In this model, they introduced 

scaled harvesting efforts for both the species. Chakraborty et al. (2011a) discussed a prey-

predator fishery model with stage structure for prey, where the adult prey and predator 

populations are harvested. They also observed singularity induced bifurcation phenomena when 

variation of the economic interest of harvesting was taken into account. Olivares and Arcos 

(2011) investigated a model of a renewable resource in an aquatic environment composed of two 

different patches. They also discussed the optimal harvesting policy using Pontryagin’s 

maximum principle. 

Increasing industrialization and population are important factors for the depletion of renewable 

resources. Shukla et al. (2011) proposed and analyzed the depletion of a renewable resource by 

population and industrialization with resource dependent migration. The resource biomass, 

which grows logistically, is depleted by population and industrialization but it is conserved by 
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technological effort. The growth rate of the technological effort depends on the difference 

between carrying capacity and the current density of the resource biomass. They proved that the 

resource never becomes extinct by population and industrialization, if technological effort is 

applied appropriately for its conservation. Dubey and Patra (2013a) discussed a resource-based 

on population model where both are growing logistically and the resource is harvested according 

to the catch-per-unit effort hypothesis. Using the optimal harvesting policy they proved that the 

harvesting effort should always be kept less than the effort to maintain the resource and the 

population at an optimal equilibrium level. Bischi et al. (2014) proposed a fishery model with a 

discontinuous on-off harvesting policy. The basic assumption in their modeling is that harvesting 

must be stopped whenever the fish stock goes below a threshold level. They investigated the 

effect of different time scales (from continuous to discrete) on the dynamics of the model.  In all 

of the previous cases the harvesting effort is taken to be a control variable.   

In addition to the harvesting effort, there are some other tools which have been used as control 

variables. Taxation, lease of property rights, seasonal harvesting, license fees, creating reserve 

zones, fishing period are all seen as a control instrument. Among all of these, taxation is assumed 

to be the most efficient because of its flexibility, and many of the advantages of a competitive 

economic system can be better maintained by taking taxation as a control instrument. A 

dynamical model of single-species fishery is described by Dubey et al. (2002) using taxation as a 

control instrument to protect the fish population from over- exploitation. The dynamics of 

inshore-offshore fishery under variable harvesting was discussed by Dubey et al. (2003b). They 

proved that by increasing tax and discount rates, the overexploitation of fishery resources can be 

protected. The dynamics of two competing prey and one predator species was proposed and 

discussed by Kar et al. (2009). Here both the prey species are harvested according to the catch-

per-unit effort hypothesis. In the above model, tax on per-unit harvested biomass has been used 

to control the over-exploitation of the resource biomass. The work of Dubey et al. (2003a) was 

further extended by Huo et al. (2012) taking into account the harvesting effort as a dynamical 

variable and taxation is a control variable. They also examined the optimal harvesting policy 

using Ponyryagin’s Maximum Principle. Dubey and Patra (2013b) described model of resource 

biomass and population in which the crowding effect is taken into account. The harvesting effort 

is assumed to be a dynamical variable and taxation as a control variable. Guo and Zou (2015) 

considered a stock-effort fishing model with discontinuous harvesting strategies. They also 

proved that discontinuous harvesting strategies are superior to continuous harvesting strategies.  

The nonlinear harvesting rate function has also been used by some researchers. Ganguly and 

Chaudhuri (1995) proposed and analyzed a single species fishery model with realistic catch rate 

function instead of usual catch-per-unit-effort hypothesis. The fishing effort is assumed to be a 

dynamical variable in their model. They also discussed the stability analysis and optimal 

harvesting policy. Pradhan and Chaudhuri (1999a) investigated a mathematical model for growth 

and exploitation of a schooling fish species by taking into account a realistic catch rate function 

and taxation as a control instrument. Peng (2008) discussed a mathematical model involving 

continuous harvesting of a single species fishery. He assumed a reasonable catch-rate function 

and a suitable tax per unit biomass of landed fish imposed by some external energy. A prey-

predator fishery model incorporating prey refuge, where prey is harvested, is proposed and 

analyzed by Chakraborty et al. (2011b). They also discussed Hopf-bifurcation by considering a 

density dependent mortality for the predator as bifurcation parameter. Then, they found the 

optimal tax with the help of Pontrygin's Maximum Principle. 
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Recently, Gupta et al. (2012) proposed and analyzed a bi-dimensional system of prey-predator 

model with non-linear harvesting rate of the prey population. They showed that the model can 

have two, one or no interior equilibrium point in the first quadrant and the system shows 

complex dynamical behavior (such as Saddle-node and Hopf-bifurcation) considering the rate of 

harvesting as bifurcation parameter. Using Pontrygin's Maximum Principle they also discussed 

the optimal singular control. Gupta and Chandra (2013) discussed a modified Laslie-Gower 

prey-predator model considering the harvesting effort as a control variable. The prey population 

is harvested according to a non-linear harvesting rate. They observed the complex dynamical 

behaviour of the model system such as Saddle-node, Transicritical, Hopf- Andronov and  

Bogdanov-Takens bifurcation. Ghosh and Kar (2014) described a prey-predator system with 

harvesting of prey species in the presence of some alternative food to predator. They considered 

an alternative functional form as harvesting rate instead of using the catch-per-unit-effort 

(CPUE) hypothesis. They observed that alternative source of food to the predator has a negative 

effect on the growth of prey species. Using Pontrygin's Maximum Principle, they found an 

optimal tax policy. Gupta et al. (2014) considered a three dimensional prey-predator model with 

Holling type-II functional response and non-linear harvesting rate of prey population. Here they 

have considered the harvesting effort as a dynamical variable and tax as control variable. They 

proved that the system has periodic, quasi periodic and chaotic solutions. Using sensitivity 

analysis they have shown that the solutions are highly dependent on the initial conditions. Using 

Pontrygin's Maximum Principle they found optimal tax to maintain the resource at an optimal 

level.   

In most of the harvesting models, the harvesting rate function follows the proportional to catch-

per-unit effort hypothesis, i.e., ( ) ( ) ( )h t qE t B t , where q  is catchability coefficient, E  is the 

harvesting effort and B is the resource biomass. But in fishery models, this catch-rate-function 

has some unrealistic features such as  

i) random search for the resource,  

ii) equal likelihood of being captured for every resource, 

iii)  unbounded linear increase of h  with E  for fixed B , and 

iv)  unbounded linear increase of h  with B for fixed E . 

 

In order to avoid the above circumstances, the following non-linear harvesting rate function has 

been used by some researches (Ganguly and Chaudhuri (1995), Pradhan and Chaudhuri (1999a), 

Peng (2008), Chakraborty et al. (2011b), Gupta et al. (2012), Gupta and Chandra (2013), Ghosh 

and Kar (2014)):  

,
qEB

h
mE nB




  

where m  and n  are positive constant. This catch rate function is always saturated with respect to 

effort level and stock abundance. The parameter m  is proportional to the ratio of the stock-level 

to the catch rate at higher level of effort and n  is proportional to the ratio of the effort level to the 

catch rate at higher stock levels. 

In this catch rate function we observe the following: 



596                                                                                                                                                        B. Dubey et al.                                                                           

                                                                                                                                                            

 

a) 
qB

h
m

  as E   for fixed value of B , 

b) 
qE

h
n

  as B  for fixed value of E , and 

c) h has singularity at 0B   and 0E  .  

 

In order to remove the singularity of h, we modify the harvesting rate h in the following form 

( ) ( )
( ) .

1 ( ) ( )

qE t B t
h t

mE t nB t


 
 (1) 

Keeping the above in view, we formulate a dynamical model of resource biomass and 

population, both growing logistically. The resource biomass, which is of commercial importance, 

is harvested according to the harvesting rate function h(t) defined in equation (1). The harvesting 

effort is taken as a dynamical variable and taxation as a control variable. Then we analyze the 

existence of non-negative equilibria and their local and global stability. We also discuss the 

maximum sustainable yield (MSY) and optimal harvesting policy. 

 

2.  Mathematical Model 

Let us consider a resource biomass of density B(t) and a population of density N(t), both growing 

logistically in absence of each other. Following Dubey and Patra (2013b), the dynamics of 

resource biomass and population may be governed by the following system of ordinary 

differential equations:  

2

1 21
1

dB B qEB
rB NB NB

dt K mE nB
 

 
     

  
,                                                             

2

1 21
dN N

sN NB NB
dt L

 
 

    
 

.           

In the above model, r and s are the intrinsic growth rates of resource and population respectively, 

K and L are their respective carrying capacities, 
1 and 

2 are the depletion rates of resource 

biomass due to the population, 
1 2 and    are the growth rates of population due to the presence 

of resource biomass. Now we assume that the resource biomass is being harvested according to 

the modified harvesting rate function h(t) given in equation (1) and  a regulatory agency imposes 

a tax  ( 0)   per unit resource biomass to protect the over-exploitation of the resource.   

 

Thus, the net economic revenue is  

( )
( )

1

p qB
R t E c

mE nB

 
  

  
, 

where p  is the fixed selling price per unit biomass and c is the fixed cost of harvesting per unit 

of effort. 
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Taking the harvesting effort E  as a dynamic variable, its dynamics may be governed by the 

following differential equation   

0

( )

1

dE p qB
E c

dt mE nB




 
  

  
, 

where 
0  is the stiffness parameter measuring the intensity of reaction between the effort and the 

perceived rent. Therefore, we consider the following dynamical system of equations 

2

1 21
1

dB B qEB
rB NB NB

dt K mE nB
 

 
     

  
, (2a)

2

1 21
dN N

sN NB NB
dt L

 
 

    
 

, (2b)         

0

( )

1

dE qB p
E c

dt mE nB




 
  

  
, (2c)   

(0) 0,  (0) 0,  (0) 0.B N E      

The units of variables and parameters are given in Table 1. The parameter   is defined in 

equation (11). 

 

Table 1. Units of variables and parameters 

Variables/Parameters Units 

B, N number per unit area (tons)  

E total number of vessel per day 

r, s per day 

K, L number per unit area (tons) 

, , 1,2i i i    per day 

q per day 

m, n constants 

0  per day 

p dollar per individual per day 

  dollar per individual per day 

c dollar per individual per day 

  dollar per individual per day 
 

In the next section, we shall discuss the stability analysis of the model system (2a)-(2c).  

 

3. Stability Analysis  
 

First of all, we state the following lemma which establishes a region of attraction of the model 

system (2a)-(2b). 
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Lemma 1. 

 

The set 

 

0{( , , ) :  0 ( ) ,  0 N(t) ,  0 ( ) ( ) }B N E B t K L B t E t           

 

is a region of attraction for all solutions initiating  in the interior of the positive orthant, where 

 

2 0
0 1 2

2 ( )
( ),  , .

r p KL
L s K K p

s

 
   




       

 

The above lemma shows that all solutions of model (2a)-(2c) are non-negative and bounded, so 

our model is biologically well-behaved. The proof of this lemma is the same as the Freedman 

and So (1985), Shukla and Dubey (1997), and hence omitted. 

 

To discuss the biological equilibrium of the system (2a)-(2c), we note that the model system has 

six non-negative equilibrium points, viz, 

 
* * * *

0 1 2 3 4
ˆ ˆ(0,0,0),  ( ,0,0),  (0, ,0),  ( , ,0),  ( ,0, ),  ( , , ).P P K P L P B N P B E P B N E  

The equilibrium points 
0 1 2,  and P P P

 
always exist. We show the existence of other equilibrium 

points as follows: 

 

Existence of 3( , ,0)P B N : B and N are the positive solutions of the following two equations 

 

1 21 0,
B

r N NB
K

 
 
    

 
 (3a) 

2

1 21 0.
N

s B B
L

 
 
    

 
 (3b) 

From equation (3b), we have  
 

 2

1 2 .
L

N s B B
s

     (3c)                                                                                                                 

Putting the value of N  in equation (3a), we get a cubic equation in B , i.e., 

3 2

1 2 3 4 0a B a B a B a    , (3d)  

where  



AAM: Intern. J., Vol. 9, Issue 2 (December 2014)                                                                                                   599                                                                                                              

          

   

 

1 2 2

2 2 1 1 2

3 1 1 2

4 1

,

( ) ,

,

( ) .

a LK

a LK

a rs LK s LK

a L r sK

 

   

  





 

  

 

  

Equation (3d) has a unique positive real root if 
1r L .  

Putting the value of B , we can calculate N from (3c), and, thus, we can state the following 

result. 

Theorem 1. 

The equilibrium point 3( , ,0)P B N exists if 
1r L . 

The above theorem shows that for the co-existence of resource biomass and population, the 

intrinsic growth rate of resource biomass should be larger than a threshold value which depends 

on the carrying capacity L of the population and the bilinear depletion rate coefficient 
1 of the 

resource biomass. 

Existence of the point 4
ˆ ˆ( ,0, )P B E :  

 

In this case, ˆ ˆ and B E are the positive solutions of the following equations:  

 

1 0
1

B qE
r

K mE nB

 
   

  
,        (4a)                                                                       

 

( )
0

1

qB p
c

mE nB


 

 
.       (4b)  

 

 The above two equations yield 

  

 1
r B

E p B
c K


 

   
 

. (4c)   

From (4c), we note that 0E  , as  and B K p   .       

Then putting the value of E from (4c) in equation (4a), we get a quadratic equation in B, i.e., 

2

1 2 1 0b B b B   , (4d)    

 where 

1

( )mr p
b

cK


 , 2

( ) ( )q p p mr
b n

c c

   
   
 

 . 
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Thus equation (4d) has always a positive real root given by 

2

2 2 1

1

4

2

b b b
B

b

  
 , 

and we can state the following result. 

 

Theorem 2. 

 

The equilibrium 4
ˆ ˆ( ,0, )P B E always exists. 

 

Existence of * * * *( , , )P B N E :  

 

Here * * *,   and EB N  are the positive solutions of the following equations: 

 

1 21 0,
1

B qE
r N NB

K mE nB
 

 
     

  
 (5a)

2

1 21 0
N

s B B
L

 
 
    

 
, (5b)

( )
0

1

qB p
c

mE nB


 

 
.  (5c) 

 

From equations (5b) and (5c), we get  

 2

1 2

L
N s B B

s
    , and 

( ) 1q p B nB
E

mc m m


   . (5d) 

Putting these values in equation (5a), we get a biquadratic equation in B, namely,  

4 3 2

1 2 3 4 5 0c B c B c B c B c     ,  (5e) 

where 

 2 2
1 2 2 1 1 2 3 1 1 2

4 1 5

,   ,   ,

( )
,   .

( ) ( )

L L L r
c c c L

s s s K

q p nc c
c L r c

m p m p

 
      




 

 
      

 

 
    

 

  

Using Descartes' rule of sign, we note that equation (5e) has always a unique positive real root,
*B B . Using the value of B , we can get the values of N 

 and E  from (5d) . 

 

Now we can state the following result. 
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Theorem 3. 

 

The equilibrium * * * *( , , )P B N E exists if  

 

( 1)
0

c nB
p

qB







   .  (6)       

 

Now we analyze the local as well as global stability behavior of these non-negative equilibrium 

points. For local stability behavior, first we find the variational matrices at each equilibrium 

point and then using Eigenvalue method and Routh-Hurwitz criteria, we can conclude the 

following results: 

 

i) The point 
0P  is a saddle point with unstable manifold in the B-N plane and stable 

manifold in the E-direction. 

 

ii) a) The point 
1P  is always a saddle point with stable manifold in the B-direction and 

unstable manifold in the N-E plane if 0 (1 )
c

p nK
qK

    . 

b) If (1 )
c

p nK
qK

    , then 
1P  is again a saddle point with stable manifold in the B-

E plane and unstable manifold in the N-direction.   

 

iii) a) The point 
2P  is locally asymptotically stable if 

1r L . 

 

b)  If 
1r L , then 

2P  is a saddle point with unstable manifold in the B-direction and 

stable manifold in the N-E plane.  

    

 iv)    a) If 
(1 )c nB

p
qB




  , then the point 
3P  is locally asymptotically stable. 

                b) If 
(1 )c nB

p
qB




  , then 
3P  is a saddle point with stable manifold in the B-N  plane 

and unstable manifold in the E-direction.   

                                                                    

       v)     The point 
4P  is always a saddle point with unstable manifold in the N-direction and 

stable manifold in the B-E plane if  

  
2

ˆ

ˆ ˆ(1 )

r qnE

K mE mB


 
. 

 

Let   be an eigenvalue of the variational matrix *M evaluated at the interior equilibrium point 
* * * *( , , )P B N E . Then the characteristic equation is given by 
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3 2

1 1 1 0A B C      , (7)  

where 

* ** * * *
* * 0

1 2 * * 2 * * 2

( )

(1 ) (1 )

qm p B ErB qnE B sN
A N B

K mE nB L mE nB

 


  
     

    
, 

2

* ** * * *
* * 0

1 2 * * 2 * * 2

* * * * *

0

* * 2 * * 2

* * * * *

1 2 1 2

( )

(1 ) (1 )

( ) (1 )(1 )

(1 ) (1 )

( )( 2 ),

qm p B ErB qnE B sN
B N B

K mE nB L mE nB

q p B E smN q nB mE

mE nB L mE nB

B B N N B

 


 

   

   
     

     

   
  

    

  

 

2

* ** * * *
* * 0

1 2 * * 2 * * 2

* ** * *

0

* * 2 * * 2

* *
* * * * * 0

1 2 1 2 *

( )

(1 ) (1 )

( ) (1 )(1 )
      

(1 ) (1 )

( )
       ( )( 2 )

(1

qm p B ErB qnE B sN
C N B

K mE nB L mE nB

q p E mEqB nB sN

mE nB L mE nB

qm p B E
B B N N B

mE nB

 


 

 
   

   
     

     

  
  

    


  

  * 2
.

)

 

Using the Routh-Hurwitz criteria, we note that all roots of equation (7) have negative real parts 

iff  

1 1 1 1 10,   0 and 0.A C A B C      (8) 

Thus, we are now able to state the following results. 
 

Theorem 4. 

The interior equilibrium point *P  is locally asymptotically stable iff inequalities in equation (8) 

hold.  

In the following theorem, we state sufficient conditions under which *P is globally 

asymptotically stable. 

Theorem 5. 

The interior equilibrium point *P  is globally asymptotically stable in the region   if the 

following conditions hold: 

* * * *

2 (1 )
r

N mE nB nqE
K


 

    
 

,        (9a) 
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 
*

2
* * 1

1 2 1 1 2 2 * *
( ) .

(1 )

k sr nqE
K k K B N

K mE nB L
    

 
             

     (9b)                     

 

Proof: 

 

Proof of this theorem is given in Appendix A. 

 

4.  Maximum Sustainable Yield 
 

The maximum rate of harvesting any biological resource biomass is called the maximum 

sustainable yield (MSY) and any larger harvest rate will lead to the depletion of resource 

eventually to zero. In absence of any population, the value of MSY is given by [Clark (1976)] 

 

0 .
4

MSY

rK
h   

 

If the resource biomass is subjected to the harvesting by a population, the sustainable yield is 

given by  

 
* * *

* * * * *2

1 2* *
(1 ) .

1

qE B B
h rB N B N B

mE nB K
     

 
  

We note that  

 
*

0
h

B





   yields   

*
* 1

*

2

( )
 and 

2( )

K r N
B

r KN










2

*2
0.

h

B





 

Thus,   

 
* 2

1

*

2

( )
,

4( )
MSY

K r N
h

r N K









  when  

*
* 1

*

2

( )
.

2( )

K r N
B

r KN









 

From the above equations, it is interesting to note that, when * 0,N  then *

2

K
B  and 

 

0 .
4

MSY MSY

rK
h h   

 

This result matches the result of Clark (1976).  

 

If 
MSYh h , then it denotes the overexploitation of the resource and consequently the resource 

biomass decreases. If 
MSYh h , then the resource biomass is under exploitation and the resource 

biomass may be maintained at an appropriate level. 



604                                                                                                                                                        B. Dubey et al.                                                                           

                                                                                                                                                            

 

 

5. Bionomical Equilibrium  

The bionomic equilibrium is said to be achieved when the total revenue obtained by selling the 

harvested biomass is equal to the total cost of harvested biomass, i.e. the economic rent is 

completely dissipated. 

The economic revenue at time t is given by  

.
1

pqB
c E

mE nB

 
   

  
     (10a) 

The bionomic equilibrium is ( , , )P B N E   
, where ,  and B N E  

 are the positive solutions of                           

0.B N E
  

      

From 0  , we get 
1

1
pq

E E n B
m c



  
     

  
,      (10b) 

0N


  gives us 2

1 2( )
L

N s B B
s

     , (10c) 

Using the values of E E  and N N , then 0B


  gives a biquadratic equation in B  which is 

given by 

 
4 3 2

1 2 3 4 5 0d B d B d B d B d     ,  (10d) 

where 

 

2 2 1 1
1 2 2 1 1 2 3 2

4 1 5

,  ( ) ,  ,

( ),  .

L LL r
d d d L

s s K s

pq cn c
d L r d

mp mp

   
    



 
      

 


    

  

 

We note that equation (10d) has always a unique positive real root B B . Putting the value of 

B
 in (10b) and (10c), we can find the value of  and N E 

.  It may be noted that E
 exists if  

 

) 1
pq

n B
c



 
  

 
.     
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6.  Optimal Harvesting Policy 
 

The net revenue to the society,  

 

( , , , , )B N E t  = the net economic revenue to the harvesting agency + the net economic 

revenue to the regulatory agency 

 

    =  
1

pqB
c E

mE nB

 
 

  
.   

Thus, our aim is to solve the maximization problem 

0

( )
1

t pqB
J e c E t dt

mE nB





  
  

  
 ,  (11) 

subject to the state equation (5a)-(5c) and to the control constraints 

 

min max    . (12)   

 

In equation (11),   is the instantaneous rate of the annual discount. 

 

To solve the maximization problem, we adopt Pontryagin’s Maximum Principle. The 

Hamiltonian function H is given by 

 

2

1 1 2

2

2 1 2 3 0

( ) 1
1 1

( )
       + ( ) 1 ( ) ,

1

t pqB B qEB
H e c E t rB NB NB

mE nB K mE nB

N qB p
t sN NB NB t E c

L mE nB

   


    

     
                 

       
                

  (13)    

 

where ,  1,2,3i i   are adjoint variables. 

The optimal control will be a combination of bang-bang control and singular control as H  is 

linear in the control variable  in equation (13). 

H  will be maximized under the control set (12), if 

30 =0.
H





 


 (14)  

This is a necessary condition for the singular control to be optimal. Using the Maximum 

Principle, we get 

31 2,   ,   .
dd dH H H

dt B dt N dt E

   
     

  
  (15)   
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From the previous equations we get  

 

1

2

1 1 2 2 1 22

(1 )

(1 )

2 (1 )
          1 2 2 ,

(1 )

td mE E
pqe

dt mE nB

B qE mE
r N NB N NB

K mE nB



     

 
 

 

  
        

   

  (16a)       

2 22
1 1 2 2 1 2

2
1 ,

d N
B B s B B

dt L


     

  
         

  
 (16b)                      

3
12 2

(1 ) (1 )
0

(1 ) (1 )

td pqB nB qB nB
e c

dt mE nB mE nB


   

    
    

. (16c) 

 

Using equations (5a)-(5c), we can re-write these previous equations as follows: 

 

 

1

2

1 2 2 1 22

(1 )

(1 )

          + 2 ,
(1 )

td mE E
pqe

dt mE nB

rB qnEB
NB N NB

K mE nB



    

 
 

 

 
    

  

 (17a)    

 
22

1 1 2 2 ,
d sN

B B
dt L


   

 
      

 
 (17b)                                           

   
2

1

(1 )

(1 )

t c mE nB
e p

qB nB

    
  

 
. (17c) 

The shadow price along the singular path is 
2

1

(1 )
( ) ( ) .

(1 )

t c mE nB
t t e p

qB nB

 
  

   
 

  

Putting the value of 
1  in equation (17b), we get an equation  

2
2 2 2

td
A B e

dt


   , (18a)  

where 

2

sN
A

L
 ,  

2
2

2 1 2

(1 )
( )

(1 )

c mE nB
B p B B

qB nB
 

  
   

 
. 

The solution of this equation is  

2

2
2

2 0 1 2

(1 )
( )

(1 )
( )

t
A t e c mE nB

K e p B B
sN qB nB

L



  



   
    

 

.           
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Now, when t  , then 2

te  is bounded if 
0 0K  . Thus,  

2
2

2 1 2

(1 )
( )

(1 )
( )

te c mE nB
p B B

sN qB nB

L



  



   
    

 

. (18b)   

Putting the value of 
2  in equation (17a), we get 

 

1
3 1 3

td
A B e

dt


   , (19a) 

 

where     

 3 2 2(1 )

rB qnEB
A NB

K mE nB


 
   

  
, 

 
2

2

1 2 1 2

3 2

(1 )
( )( 2 )

(1 )(1 )

(1 )

c mE nB
p B B N NB

qB nBpqE mE
B

sNmE nB

L

   



   
    

     
    

  
  

 .   

 

The solution of equation (19a) can be written as 

 

4 3
1 1

3

t
A t B e

K e
A








 


,     

 

Now, when t  , then 1

te  is bounded if 
1 0K  . Thus, 

 

3
1

3

tB e

A








 


 . (19b) 

 

From equation (17c) and (19b), we get 

 
2

3

3

(1 )
0.

(1 )

Bc mE nB
p

qB nB A 

  
   

  
 (20) 

 

This equation gives us the optimal level of resource biomass and population, i.e., 

,  and .B B N N E E      Then tax   is given by 

(1 )
c

p mE nB
qB

  



      . (21) 
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7. Hopf-Bifurcation 
 

Mathematical analysis of the present model suggests that the system has six equilibrium points 

out of which some are stable and some unstable. Since the model is highly non-linear, it is 

interesting to explore the non-linear behaviour of the system in the form of existence of limit 

cycle and Hopf bifurcation. The characteristic polynomial for the system at *P  is given in 

equation (7). 

If   is the bifurcation parameter, then for some
cr  , the necessary and sufficient conditions 

for Hopf Bifurcation to occur are  

 

3

3 3 3

31. ( ) 0, ( ) 0

2. ( ) ( ) ( ) ( ) 0 and

3. Re 0, 1, 2, 3

cr

cr

cr cr cr cr

j

crA C

f A B C

d
j

d
 

 

   






 

  

 
  

 

   (22) 

The condition 
3 3 3 0f A B C    results in the equation in   having one of the root as

cr . Since 

we have 
3 0B   at 

cr  , there exists an interval containing 
cr , say  ,cr cr      for some 

0   for which 0cr    such that 
3B  remains positive  for  ,cr cr      . Thus, for 

 ,cr cr       the characteristic polynomial of P
 cannot have real positive roots.  For  

cr   we get 

 

  2
3 3 0B A    . (23)  

 

This has three roots 1 3 2 3 3 3, ,i B i B A        . 

 

For  ,cr cr      , the roots of characteristic polynomial are of the general forms 

 

         1 1 1 2 2 2 3 3
,  ,  .i i A                  

 

The third condition can be verified as follows: 

Substituting     1 1j i       into (23) and taking its derivative, we have  

 

         

         

1 1

1 1

0,

0,

R S T

S R U

      

      

   

   

  

 

where 
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           

         

               

           

2

1 1 1 2

1 1 1 1

2 2

1 1 2 1 3 1 1

1 1 1 2 1

2

13 2 3 ,

6 2 ,

,

2 .

R d d

S d

T d d d d

U d d

        

       

          

        

   

 

      

  

 

 

Hence, 

 

2 2
Re 0

crcr

j
d SU RT

d R S   



 


 



 
 
 

, 

 

as         0
cr cr cr cr

S U R T      and also    3 3 0cr crA     . Thus, we can state the 

following theorem. 

 

Theorem 6. 

 

Under the assumptions given in equation (22), there is a simple Hopf bifurcation at equilibrium 

point P  at some critical value of the parameter   given by the equation   0crf   . 

 

8.  Numerical Simulations 
 

In this section, we present numerical simulation results. For the model system (2a)-(2c), we 

choose the following set of values for the parameters  

0 1

2 1 2

1.6,  1.2,  100,  100,  25,  1,  1,  0.001,

0.0001,  0.01,  0.0001,  7,  0.1,  4,  1,

r s K L p q

c m n

 

   

       

      
 (24) 

with initial conditions (0) 5, (0) 25, (0) 10.B N E    

For the above set of values of the parameters, condition (6) for the existence of the interior 

equilibrium is satisfied. Thus, the positive equilibrium point * * * *( , , )P B N E is given by 

* * *41.2666,  148.5799,  26.1311.B N E     

We also note that all the conditions of Theorem 4 are satisfied for the set of parameters chosen in 

(24). Thus the equilibrium point * * * *( , , )P B N E is locally asymptotically stable. 
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Figure 1. Time series for B, N and E for the set of values of parameters given in equation (24) 

  

The time series of B, N and E are presented in Figure 1. This Figure shows that B, N and E 

increase as time increases and finally settle down at their steady states. It is also observed here 

that the increase in the population density is much more in comparison to the increase in the 

density of B and E. 

It may be pointed out that values of parameters chosen in (24) satisfy local stability conditions 

but they do not satisfy global stability conditions. 

Now we choose the following set of values for the parameters: 

0 1

2 1 2 1

1.6,  3,  100,  100,  0.5,  0.01,  0.1,  0.001,

0.0001,  0.01,  0.0001,  0.001,  0.1,  4,  1,  1,

r s K L p q

c m n c

 

   

       

       
 (25)  

with different initial conditions.   

  

Figure 2. Stable solution in BNE- plane for the set of values of parameters given in equation (25) 
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These values of parameters satisfy the global stability conditions of Theorem 5. The trajectories 

of B, N and E with various initial values are plotted in Figure 2. From this Figure, we note that 

all the trajectories starting from the various initial conditions converge to the equilibrium point
*(54.6889,111.7918,40.7652)P . This shows that *P is asymptotically stable. 

 

In this model we observe that 
1 2 1 2, ,  and     are important parameters governing the dynamics 

of the system. 

 

In Figures (3a), (3b) and (3c), we have plotted the trajectories of B, N and E respectively for 

different values of 
1 . Figure (3a) shows that B increases with time and after little decrease it 

settles down at its equilibrium level. It may also be noted that B decreases as 
1 increases due to 

which N and E also decrease as 
1 increases (see Figures (3b) and (3c)). We also observe that   

increases with time and finally stabilize at its steady state level. E first decreases with time, then 

increases and settle down at its equilibrium level.  

 

The effect of 
2 on B, N and E are shown in Figures (4a), (4b) and (4c) respectively. We notice 

that B, N and E all decrease as 
2  

increases. By comparing Figure (3a) with Figure (4a), Figure 

(3b) with Figure (4b) and Figure (3c) with Figure (4c), we note that 
2  

is a very sensitive 

parameter in comparison to 
1 . 

  
                                  (a)                                                                             (b) 

 
(c) 

Figures 3(a-c). Behavior of B, N and E with time t for different values of 
1  and others values are same as in 

equation (25) 
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                                   (a)                                                                                  (b) 

 

(c) 

Figures 4(a-c).  Behaviour of B, N and E with time t for different values of 
2  and others 

values are same as given in equation (25) 

 

The behavior of B, N and E with respect to time t for different values of 
1  

are shown in Figures 

(5a), (5b) and (5c) respectively. If 
1  increases, then the population N increases and after that it 

settles down at its equilibrium level. We know that the population utilizes the resource for its 

own growth and development. So, if the population increases, then, obviously, the resource 

biomass decreases. Thus if 
1  increases, then B and E decrease and then settle down at its lower 

equilibrium levels. The effect of 
2  

on B, N and E are shown in Figures (6a), (6b) and (6c) 

respectively. From Figure (6b), we note that if 
2  increases then N also increases. N  increases 

very quickly with respect to time t and attains its peak; after that it decreases very quickly and 

settle down at its equilibrium level. Again, B and E decrease as 
2  increases and then attain their 
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respective equilibrium levels. It is also observed here that the dynamics of the system is highly 

sensitive with respect to the parameter 
2 . 

For the optimal harvesting part, we choose the following set of parameters: 

0 1

2 1 2

1.6,  1.2,  100,  100,  25,  1,  1,  0.001,

0.0001,  0.01,  0.0001,  7,  4,  1,  0.1.

r s K L p q

c m n

 

   

       

      
 (26) 

 Solving (20) and (21) with the help of equations (5a)-(5c), we get the optimal values  

 42.908,  151.099,  9.20654 and 11.829.B N E        

The behavior of B, N and E with respect to time t for the differing values of  are given in 

Figures (7a), (7b) and (7c), respectively. We observe that when  increases, B and N initially 

increase, attain the peak and after a slight decrease settle down at their equilibrium level. We also 

note that E decreases as  increases (see Figure (7c)). If   ( 20  ), then E decreases and 

tends to the zero level. This shows that high level of tax will discourage the fisherman and 

fishery will be closed. 

  
                                     (a)                                                                                                                                                                                                                               (b) 

 

 
(c) 

Figures 5(a-c). Behavior of B, N and E with time t for different values of 
1  and others 

values are same as in equation (25) 
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For the existence of periodic solution of the underlying equations (2a)-(2c), we consider the 

following set of values of the parameters for the system: 

0 1 2 1

2

1.6,  0.00292969,  64,  0.5,  1,  1,  

2.75,  1.16875, 0.03125,  0.00146484,  

0.00146484,  0.1875,  0.5,  1.6667.

r s K L p q

c m n

   



     

   

   

 

(27)       

 

For this set of parameters and 0.6  , the equilibrium point 
* * * *( , , )P B N E is given by  

* * *1.2264,  1.1826,  0.3711.B N E     

 

  
(a) (b)  

 
(c) 

Figures 6(a-c).  Behavior of B, N and E with time t for different values of 
2  and others 

values are same as in (25) 
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                                           (a)                                                                              (b) 

 

(c) 

Figures 7(a-c).  Behavior of B, N and E with time t for different values of   and others 

values are same as in equation (26) 

  

For parameter 0.4  , the system has periodic solution (Limit cycle) and as   increase to a value 

0.6, the system converges to the stable equilibrium point
* * * *( , , )P B N E . This is illustrated in 

Figure 8 and Figure 9, respectively. 
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                                    (a) 

 
                                 (b) 

 
                                    (c) 

 
                                     (d) 

Figures 8(a-d). Limit cycle behavior of B, N and E with time t for 0.4   and others values of parameters are 

same as in equation (27) 

 
                                            (a) 

 
                                              (b) 

 
                                         (c) 

 
                                               
                                            (d) 

Figures 9(a-d). Limit cycle behavior of B, N and E with time t for 0.6   and others values of parameters are 

same as in equation (27) 
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9. Conclusions 

This paper analyzed a model of resource biomass and population in which both are growing 

logistically. The resource biomass, which has commercial importance, is harvested according to 

a realistic non-linear catch-rate function. The population utilizes the resource for its own growth 

and development. The harvesting effort is taken to be a dynamical variable and taxation as a 

control variable. Here we discussed the existence of equilibria, local stability by Eigenvalue 

method and Routh-Hurwitz criteria and global stability using the Liapunov direct method. 

It has been shown that the positive equilibrium point *P exists if the tax on per unit harvested 

biomass is less than a threshold value. This threshold value depends on the selling price per unit 

biomass, the fixed cost of harvesting per unit of effort and the equilibrium value of resource 

biomass. This point *P is locally and globally asymptotically stable under certain conditions. 

When the population utilizes the resource biomass for its growth and development and the 

resource is harvested, then equation (6) gives the range of the tax which may be used by a 

regulatory agency. The maximum sustainable yield (MSY), 
MSYh  has been computed for our 

model system. It has been found that 0

4
MSY

rK
h   obtained by Clark (1976) is a special case of 

MSYh  which was proposed in this paper. Then, bionomic equilibrium has been obtained and we 

observed that for this model the bionomic equilibrium point exists under certain condition. 

Choosing an appropriate Hamiltonian function and using Pontryagin's Maximum Principle, we 

analyzed the optimal harvesting policy. 

Finally, numerical simulation experiments were carried out with the help of MATLAB 7.1. It 

was observed that 
2 2 and   are very sensitive parameters in comparison to 

1 1 and   . An 

optimal level of tax   to be imposed by the regulatory agency has been suggested. It has been 

shown that if   , then E decreases and goes to the zero level but B and N increase with 

respect to time t. Thus the regulatory agency should keep   , so that one can maintain the 

resource and population at an optimal level. 

The present system can also become unstable under certain parametric values once the 

conditions of Routh-Hurwitz criteria the violated as shown in Figure 8. The Hopf-bifurcation 

analysis with respect to the parameter  , suggests that  under certain conditions, imposing a tax 

by the regulatory agency per unit resource biomass to protect the over-exploitation of the 

resource could decide the fate of the system in terms of stability and unstability. 
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APPENDIX A 

 

Proof of Theorem 5: 
 

Consider a positive definite function about *P : 

 

* * * * * *

1 2* * *
ln ln ln

B N E
W B B B k N N N k E E E

B N E

     
             
     

,    (A1)     

where 
1k  and

2k  are positive constants. 

Differentiating W with respect to time t along the solutions of model (2), a little algebraic 

manipulation yields 

* 2 * * * 2

11 12 22

* 2 * * * 2

11 13 33

* 2 * * * 2

22 23 33

1 1
( ) ( )( ) ( )

2 2

1 1
            ( ) ( )( ) ( )

2 2

1 1
             ( ) ( )( ) ( ) ,

2 2

dW
a B B a B B N N a N N

dt

a B B a B B E E a E E

a N N a N N E E a E E

       

      

      

        (A2) 

 

where 

 
*

*

11 2 * *(1 )(1 )

r nqE
a N

K mE nB mE nB


 
   

    
, 

1
22 0,

k s
a

L
   

*

2 0
33 * *

( )
0

(1 )(1 )

k mq p B
a

mE nB mE nB

 
 

   
, 

*

12 1 2 1 1 1 2 ( )a B k k B B           , 

23 0a  , 
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**

2 0
13 * * * *

( )(1 )(1 )

(1 )(1 ) (1 )(1 )

k q p mEq nB
a

mE nB mE nB mE nB mE nB

   
   

        
. 

 

Sufficient conditions for 1dW

dt
to be negative definite are that the following inequalities hold: 

 

11 0,a   (A3) 

2

12 11 22 ,a a a  (A4) 

2

13 11 33,a a a  (A5) 

2

23 22 33.a a a  (A6) 

 

Clearly, (A6) holds as 
23 0.a    

 

If we choose  
*

2 *

0

(1 )

( )(1 )

nB
k

p mE 




 
, then condition (A5) is satisfied. 

Again (9a)   (A3) and (9b)   (A4). Thus, 
1W is a Liapunov function for all solutions initiating 

in the interior of the positive orthant whose domain contains the region of attraction , proving 

the theorem. 

 


