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Abstract 
 
Linear programming problems with trapezoidal fuzzy numbers have recently attracted much 
interest. Various methods have been developed for solving these types of problems. Here, 
following the work of Ganesan and Veeramani and using the recent approach of Mahdavi-Amiri 
and Nasseri, we introduce the dual of the linear programming problem with symmetric 
trapezoidal fuzzy numbers and establish some duality results. The results will be useful for post 
optimality analysis. 
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1. Introduction 
 
Fuzzy set theory has been applied to many disciplines such as control theory and operations 
research, mathematical modeling and industrial applications. The concept of fuzzy mathematical 
programming on general level was first proposed by Tanaka et al. (1984) in the framework of the 
fuzzy decision of Bellman and Zadeh (1970). Afterwards, many authors considered various types 
of fuzzy linear programming problems and proposed several approaches for solving them, for 
instance see Chanas (1983), Maleki et al. (2000), Mahdavi-Amiri and Nasseri (2006, 2007), 
Ebrahimnejad et al. (2010a, 2010b) and Nasseri and Ebrahimnejad (2010a, 2010b). Chanas 
(1983) showed an application of parametric programming techniques in fuzzy linear 
programming and obtained the set of solutions maximizing the objective function, being 
analytically dependent on a parameter. Vasant (2003) investigated an industrial application of 
interactive fuzzy linear programming through the modified S-curve membership function using a 
set of real life data collected from a Chocolate Manufacturing Company. Safi et al. (2007) 
introduced some definitions in the geometry of two-dimensional fuzzy linear programming.  
 
After defining the optimal solution based on these definitions, they used the geometric approach 
for obtaining optimal solution(s) and showed that the algebraic solutions obtained by 
Zimmermann method and our geometric solutions are the same.  Vijay et al. (2007) introduced a 
generalized model for a two person zero sum matrix game with fuzzy goals and fuzzy payoffs 
via fuzzy relation approach and then showed that it was equivalent to two semi-infinite 
optimization problems.  
 
Some authors used the concept of comparison of fuzzy numbers for solving fuzzy linear 
programming problems; see Chanas (1983), Maleki et al. (2000) and also Mahdavi-Amiri and 
Nasseri (2006, 2007). Nevertheless, usually in such methods authors define a crisp model which 
is equivalent to the fuzzy linear programming problem and then use optimal solution of the 
model as the optimal solution of the fuzzy linear programming problem. Some authors 
considered types of linear programming problems in which the variables and the right-hand-sides 
of the constraints are fuzzy parameters, [Maleki et al. (2000), Ganesan and Veeramani (2006) 
and also Mahdavi-Amiri and Nasseri (2006, 2007)].  
 
Maleki et al. (2000) defined an auxiliary problem called the fuzzy number linear programming 
for solving linear programming with fuzzy variables based on linear ranking functions. 
Ebrahimnejad and Nasseri (2009) used the complementary slackness for solving both fuzzy 
number linear programming problem and linear programming problems with fuzzy variables. 
Also, Ebrahimnejad et al. (In press) used the bounded primal simplex method for solving 
bounded linear programming with fuzzy cost coefficients.   
 
The study of duality theory for fuzzy parameter linear programming problems has attracted 
researchers in fuzzy decision theory. The duality of fuzzy parameter linear programming was 
first studied by Rodder and Zimmermann (1980). Verdegay (1984) defined the fuzzy dual 
problem with the help of parametric linear programming and showed that the fuzzy primal and 
dual problems both have the same fuzzy solution under some suitable conditions. The fuzzy 
primal and dual linear programming problems with fuzzy coefficients were formulated by using 
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the fuzzy scalar product proposed in Wu (2003). Bector and Chandra (2002) discussed duality in 
fuzzy linear programming based on a modification of the dual formulation stated by Rodder and 
Zimmermann (1980). Inuiguchi et al. (2003) studied fuzzy linear programming duality in the 
setting of fuzzy relations. Ramik (2005) discussed a class of fuzzy linear programming problems 
based on fuzzy relations and a new concept of duality and deduced the weak and strong duality 
theorems. Ganesan (2006) established the concept of duality in fuzzy linear programming 
problems. Mahdavi et al. (2006, 2007) have established duality results and developed a primal 
simplex algorithm for solving linear programming problems with trapezoidal fuzzy variables by 
use of ranking functions for comparison of fuzzy numbers. Nasseri and Ebrahimnejad (2009) 
generalized the dual simplex algorithm for solving linear programming with fuzzy numbers. 
Also, Ebrahimnejad et al. (2010a) extend the primal-dual algorithm for solving linear 
programming with fuzzy variables. Ebrahimnejad and Nasseri (2010) developed the bounded 
dual simplex method for solving fuzzy number linear programming problems.  
 
In addition, a new method for solving linear programming with symmetric trapezoidal fuzzy 
numbers (FLP) has been proposed by Ganesan and Veeramani (2006). The proposed method can 
solve the FLP problem without converting it to a crisp linear programming problem.  
Ebrahimnejad et al. (2010b) generalized their method for solving bounded FLP problems. 
Nasseri and Mahdavi-Amiri (2009), extended their results and proved the optimality theorem and 
then define the dual problem. In that study, they gave some duality results as a natural extension 
of duality results for linear programming problems with crisp data given by Bazaraa (2005). 
Here, we derive some another important results. In particular, our main contributions here are the 
establishment of duality and complementary slackness.  
 
The rest of paper is organized as follows. In Section 2, we first give some necessary notations 
and definitions of fuzzy set theory. Then we provide a discussion of fuzzy numbers. The 
definition of the fuzzy linear programming problem is given in Section 3. Section 4 explains the 
notion of fuzzy basic feasible solution. We establish duality for the fuzzy linear programming 
problem in Section 5 and deduce the duality results. We conclude in Section 6. 
 
 
2.  Preliminaries 
 
We review the fundamental notions of fuzzy set theory, initiated by Bellman and Zadeh (1970). 
 
Definition 2.1. A fuzzy number a~ on ܴ (real line) is said to be a symmetric trapezoidal fuzzy 
number, if there exist real numbers ܽ
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We denote a symmetric trapezoidal fuzzy number a~ by ( , , ),L Ua a a   where ),(   UL aa

is the support of a~ and ],[ UL aa its core, and the set of all symmetric trapezoidal fuzzy numbers 
by ) R(F . 
 
Let ),,(~ UL aaa  and ),,(

~
UL bbb  be two symmetric trapezoidal fuzzy numbers. Then the 

arithmetic operations on a~ and b
~

are given by [Ganesan and Veeramani (2006)]: 
 

),,(
~~   UULL bababa , 

 
),,(

~~   LUUL bababa , 

 

),)
2

)(
2
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2

)(
2

((
~~  UU

ULULULUL
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w
bbaa
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 , 

where  
 

2
12 tt

w


 , },,,{min1
UULUULLL babababat  and },,,{max2

UULUULLL babababat  . 

 
From the above definition, it can be seen that 
 

),,(~;,0  UL aaaR    
 
and 

 
),,(~;,0   LU aaaR . 

 
Note that depending upon the need; one can also use a smaller w  in the definition of 
multiplication involving symmetric trapezoidal fuzzy numbers. 
 
Definition  2.2.  Let ),,(~ UL aaa  and ),,(

~
UL bbb  be two symmetric trapezoidal fuzzy 

numbers. Define the relations ػ and ൎ as given below: 
 
a~ ػ b

~
if and only if 

 

i)    2

)()(

2

)()(  


 ULUL bbaa
, in this case we may write ba

~~ , 

 

ii)   or  LL
ULUL
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,
22

 and UU ba  , 
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iii)  or LL
ULUL

ab
bbaa







,
22

, UU ba   and   . 

Note that in cases (ii) and (iii), we also write ba
~~   and say that a~ and b

~
are equivalent. 

 
Remark 2.1. Two symmetric trapezoidal fuzzy numbers ),,(~ UL aaa  , ),,(

~
UL bbb  are 

equivalent if and only if
22

ULUL bbaa 



. 

 
For any trapezoidal fuzzy number a~ we define a~ b ؼ

~
if there exist 0 and 0 such that a~  ؼ

),,(  . We also denote ),,(  by 0
~

. We note that 0 ෩ is equivalent to 0෨ ൌ ሺ0,0,0ሻ. Naturally, 

one may consider  0෨ ൌ ሺ0,0,0ሻ as the zero symmetric trapezoidal fuzzy number. 
 
Remark  2.2. If 0

~~x , then x~ is said to be a zero symmetric trapezoidal fuzzy number.  
 
It is to be noted that if 0

~~x , then 0
~~x but the converse need not be true. If x~ ؉ 0

~
 (that is x~ is 

not equivalent to 0
~

), then it is said to be a non-zero symmetric trapezoidal fuzzy number.  
 
It is, also, to be noted that if x~ ؉ 0

~
, then x~ ് 0

~
. But, the converse need not be true. If x~ 0 ؼ

~
 ( x~

ػ 0
~

) and x~ ؉ 0
~

, then is said to be a positive (negative) symmetric trapezoidal fuzzy number and 
is denoted by 0

~~x  ( 0
~~x ).  

 
Now if a~ , b

~
)( RF , it is easy to show that if a~ b ؼ

~
, then ba

~~  ؼ 0
~

. 
 
 
The following lemma immediately follows from Definition 2.1. 
 
Lemma 2.1. If a~ , b

~
)( RF and Rc  such that c ് 0 ,  then 

 
abba ~~~~  , 

and 

 
)

~
(~~

)~()
~~( bcabacbac  . 

 
 
The two following results are taken from Ganesan and Veeramani (2006) and we omit the 
proofs. 
 
Lemma 2.2. For any trapezoidal fuzzy number a~ , b

~
and )(~ RFc  , we have 

 
)

~~~~()
~~(~ bcacbac  , 

and 
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)

~~~~()
~~(~ bcacbac  . 

 
Lemma 2.3. If a~ , b

~
)( RF , then 

 
The relation ػ is a partial order relation on the set of symmetric trapezoidal fuzzy numbers. 
The relation ػ is a linear order relation on the set of symmetric trapezoidal fuzzy numbers. 
For any trapezoidal fuzzy number a~ and b

~
, if a~ ػ b

~
, then a~ ػ ba

~~)1(   ػ b
~

, for all 10,  . 

 
Here, we give some new results. 
 
Lemma 2.4. If a~ , b

~
)( RF , then 

 
  ba

~~ ػ 0
~

, if and only if a~ ؼ 0
~

and b
~

ػ 0
~

 or a~ ػ 0
~

and b
~

ؼ 0
~

. 

  ba
~~ ػ 0

~
, if and only if a~ ؼ 0

~
and b

~
ؼ 0

~
 or a~ ػ 0

~
and b

~
ػ 0

~
. 

  a~ ػ b
~

, if and only if a~ ؼ b
~

 , for any .,0 R   
 
Proof:  
 
It is straightforward. 
 
Lemma 2.5. If a~ , cb ~,

~
)( RF such that a~ ػ b

~
, then 

 
If c~ ؼ 0

~
, then ac ~~ ػ bc

~~ , 

and 
If c~ ػ 0

~
, then ac ~~ ؼ bc

~~ . 

 
 
Proof:   
 
From a~ ػ b

~
, we have ab ~~

 ؼ 0
~

. Hence, from Lemma 2.4, we have )~~
(~ abc  ؼ 0

~
, if  c~ ؼ 0

~
  

and )~~
(~ abc  ػ 0

~
, if  c~ ػ 0

~
. Now results follow from Lemma 2.2.  

 
Lemma 2.6. If a~ , cb ~,

~
)( RF such that ba

~~  and c~ ؉ 0
~

, then we have bcac
~~~~  . 

 
 
Proof:  
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Let ),,(~ UL aaa  , ),,(
~

UL bbb   and ),,(~ UL ccc  . Since ba
~~  and c~ ؉ 0

~
, 

22

ULUL bbaa 




and .0
2


 UL cc

 So, it follows that )
2

)(
2

()
2

)(
2

(
ULULULUL bbccaacc 




. Therefore, from 

Remark 2.1, we have bcac
~~~~  .  

 
 
3.   Fuzzy Linear Programming 
 
Consider the following fuzzy linear programming problem.  
 
Example 3.1. Assume that a company makes two products. Product 1P  has a profit of around 
$40 per unit and product 2P  has a profit of around $30 per unit. Each unit of 1P  requires twice as 
many labor hours as each available labor hours are somewhat close to 500 hours per day, and 
may possibly be changed due to special arrangements for overtime work. The supply of material 
is almost 400 units of both products, 1P  and 2P , per day, but may possibly be changed according 
to past experience. The problem is, how many units of products 1P  and 2P  should be made per 
day to maximize the total profit?  
 
Let 1

~x , 2
~x denote the number of units of products 1P , 2P  made in one day, respectively. Then, the 

problem can be formulated as the following fuzzy linear programming problem: 
 

max ݖ̃   40෪ݔଵ  30෪ݔଶ

.ݏ .ݐ ଵݔ      ଶݔ ع 400෪

ଵݔ2      ଶݔ ع 500෪

,ଵݔ         ଶݔ غ 0෨

 

 
The supply of material and the available labor hours are close to 400 and 500, and hence are  
modeled as (400, 410, 8) and (495, 515, 5), respectively. Also the profits for 1P  and 2P  which 
are close to $40 and $30 respectively are modeled as (38, 42, 2) and (29, 32, 1). The 
corresponding fuzzy linear programming problem may then be modeled as follows: 
 

max ݖ̃   ሺ38, 42, 2ሻݔଵ  ሺ29, 32, 1ሻݔଶ
.ݏ .ݐ ଵݔ      ଶݔ ع ሺ400,410,8ሻ

ଵݔ2      ଶݔ ع ሺ495, 515,5ሻ
,ଵݔ         ଶݔ غ 0෨

 

 
Now, in general, a fuzzy linear programming (FLP) problem is defined as [see Ganesan and 
Veeramani (2006)]: 
 

max ݖ̃  ݔ̃ܿ
.ݏ .ݐ ݔܣ  ෨ܾ

ݔ غ 0෨,
                                                                                                                        (1) 
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where ෨ܾ א ሺܨሺRሻሻ, ܿ̃ א ሺܨሺRሻሻ and A א ܴൈ (݇݊ܽݎሺܣሻ ൌ ݉) are given and ݔ א  ሺRሻ is toܨ
be determined. 
 
Definition 3.1. We say that a fuzzy vector ݔ א  ሺRሻ is a fuzzy feasible solution to the problemܨ
(1) if ݔ satisfies the constraints of the problem. 
 
Definition 3.2. A fuzzy feasible solution ݔכ א  ሺRሻ is a fuzzy optimal solution for (1), if for allܨ
fuzzy feasible solution ݔ for (1), we have ܿ̃ݔ ع   .כݔ̃ܿ
 
A method for solving the FLP problem has been given by Ganesan and Veeramani (2006). They 
stated some results and proposed a new method for solving the FLP problem without converting 
it to a crisp linear programming problem. Here we extend their results by introducing the dual of 
the FLP problem, and establish the duality theory on fuzzy linear programming with symmetric 
trapezoidal fuzzy numbers. 
 
 
4.  Fuzzy Basic Feasible Solution 
 
Here, we explore the concept of fuzzy basic feasible solution for FLP problems. Consider the 
FLP problem, 
 

max ݖ̃  ݔ̃ܿ
.ݏ .ݐ ݔܣ ൎ ෨ܾ

ݔ غ 0,෩
                                                                                                                        (2) 

 
where the parameters of the problem are as defined in (1).  
 
Let ܣ ൌ ሾܽሿൈ. Assume ݇݊ܽݎሺܣሻ ൌ ݉. Partition ܣ as ሾܤ    ܰሿ where ܤ, ݉ ൈ ݉, is 
nonsingular. It is obvious that rank(B)=m. Let ݕ be the solution to ݕܤ ൌ ܽ. It is apparent that 
the basic solution 
  

ݔ ൌ ሺݔభ
, . . . , ݔ

ሻ் ൎ ଵିܤ ෨ܾ, ேݔ ൎ 0෨                                                                                   (3) 
  
is a solution of ݔܣ ൌ ෨ܾ. In fact the basic solution is ݔ ൌ ሺݔ

ேݔ   ்
்ሻ். In this case, if ݔ غ 0෨ , 

then this basic solution will be feasible and the corresponding fuzzy objective value will be 
ݖ̃ ൎ ܿ̃ݔ, in which ܿ̃ ൌ ሺܿ̃భ

, . . . , ܿ̃
ሻ.  

 
Now, corresponding to every index ݆ , 1  ݆   ݊ , define 
 

ݖ̃  ൎ ܿ̃ݕ ൎ ܿ̃ିܤଵ
ܽ                                                                                                            (4) 

 
Observe that for any basic index ݆, ݆ ൌ ,ܤ ሺ݅ ൌ 1, . . . , ݉), we have ିܤଵ

ܽ ൌ ݁ where ݁ ൌ
ሺ0, … ,0,1,0, … ,0ሻT is the ݅th unit vector, since ݁ܤ ൌ ൣ ܽభ

, … , ܽ
, … , ܽ

൧݁ ൌ  ܽ
ൌ  ܽ. 

Thus, ݆ ൌ , ሺ݅ܤ ൌ 1, . . . , ݉ሻ, we have 
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ݖ̃  െ ܿ̃ ൎ ܿ̃ିܤଵ

ܽ െ  ܿ̃ ൎ  ܿ̃ ݁ െ ܿ̃ ൎ ܿ̃ െ ܿ̃ ൎ 0෨  .                                                          (5) 
 
The following theorem characterizes optimal solutions. The converse part of the result needs the 
nondegeneracy assumption of the problem, where all fuzzy basic variables corresponding to 
every basis ܤ are nonzero (and hence positive). 
 
Theorem 4.1. (Optimality conditions). Assume the fuzzy variable linear programming problem 
(2) is nondegenerate and ܤ is a feasible basis. A fuzzy basic feasible solution כݔ෪ ൌ ଵିܤ ෨ܾ غ
0෨, ෪כݔ  ே ൎ 0෨  is optimal to (2), if and only if כݖ෩ ൌ ܿ̃ିܤଵ

ܽ غ ܿ̃  for all ݆ , 1  ݆   ݊ . 
 
 
Proof:  
 

Suppose ݔכ ൌ ሺכݔ෪
்

෪ேכݔ   
்

ሻ் is the fuzzy basic feasible solution of (1) corresponding to the 
basis ܤ, where כݔ෪  ൌ ଵିܤ ෨ܾ, ෪ேכݔ ൎ 0෨ . Then, the corresponding fuzzy objective value is: 
 

෩כݖ ൎ כݔ̃ܿ ൎ ܿ̃כݔ෪ ൎ  ܿ̃ିܤଵ ෨ܾ.                                                                                        (6) 
 
On the other hand, for any fuzzy basic feasible solution ݔ to (2), using the general solution 
corresponding to basis ܤ, we have ݔ ൎ ଵିܤ ෨ܾ െ  ݔ N for the appropriateݔଵNିܤ N. Thus, for any 
fuzzy basic feasible solution to (2), we have 
 

ݖ̃ ൎ ݔ̃ܿ ൎ ܿ̃ݔ  ܿ̃NݔN ൎ  ܿ̃൫ିܤଵ ෨ܾ െ N൯ݔଵNିܤ  
 

ൎ ܿ̃ିܤଵ ෨ܾ െ ∑ ሺܿ̃ିܤଵ
ܽ െ  ܿ̃ሻݔ


ୀଵ ൎ ܿ̃ିܤଵ ෨ܾ െ ∑ ሺכݖ෩ െ  ܿ̃ሻݔ


ୀଵ . 

 
Hence, using (5) and (6) we have 
 

ݖ̃ ൎ ෩כݖ െ ∑ ሺכݖ෩ െ ܿ̃ሻݔஷ
 .                                                                                                 (7) 

 
Now, if for all ݆, 1  ݆  ෩כݖ ,݊ غ ܿ̃, then for all ݔ we have ሺכݖ෩ െ  ܿ̃ሻݔ  and so we obtain 
∑ ሺכݖ෩ െ  ܿ̃ሻݔ୨ஷB

غ 0෨ . Therefore it follows from (7) that ̃ݖ ෩כݖ ع  and thus ݔכ is optimal solution.  
 
For “only if” part, let ݔכ be a fuzzy optimal basic feasible solution to (2). For ݆ ൌ , ሺ݅ܤ ൌ
1, . . . , ݉ሻ, from (5) we know that כݖ෩ െ  ܿ̃ ൎ 0෨ . From (7) it is obvious that if corresponding to 
any nonbasic variable ݔ we have כݖ෩ ع ܿ̃, then we can enter ݔ into the basis and obtain an 
objective value bigger than כݖ෩  (because the problem is nondegenerate and ݔכ

 ظ 0෨  in the new 

basis). This is a contradiction to כݖ෩  being optimal. Hence, we must have כݖ෩ غ ܿ̃ , 1  ݆   ݊ .  
 
 
Now we state some results proven in Ganesan and Veeramani (2006). Below, suppose ܻ ൌ
 .ܤ ଵN corresponding to a basisିܤ
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Theorem 4.2. Let ݔ ൌ ଵିܤ ෨ܾ be a fuzzy basic feasible solution of (2). If for any column ܽ in ܣ 
which is not in ܤ, the condition ̃ݖ െ  ܿ̃ ط 0෨  holds and ݕ  0 for some ݅, ሺ݅ ൌ 1, . . . , ݉ሻ, then it 
is possible to obtain a new fuzzy basic feasible solution by replacing one of the columns in ܤ by 

ܽ . 
 
Corollary 4.1. If ݔ ൌ ଵିܤ ෨ܾ is a fuzzy basic feasible solution of (2) with ݖ ൎ ܿ̃ݔ as the fuzzy 
value of the objective function and if ݔҧ be another fuzzy basic feasible solution with zത ൎ cതݔҧ 
obtained by admitting a nonbasic column vector ܽ into the basic for which and for ̃ݖ െ  ܿ̃ ط 0෨  
holds and ݕ  0 for some ݅, ሺ݅ ൌ 1, . . . , ݉ሻ, then zത غ ෦ݖ  . 
 
Theorem 4.3. Let ݔ ൌ ଵିܤ ෨ܾ be a fuzzy basic feasible solution of (2). If there exists an ܽ in ܣ 
which is not in ܤ such that ̃ݖ െ  ܿ̃ ط 0෨  andݕ ൏ 0, for all݅, ሺ݅ ൌ 1, . . . , ݉ሻ, then the fuzzy linear 
programming problem (2) has an unbounded solution. 
 
 
5.  Duality 
 
 5.1. Formulation of the Dual Problem 
 
Definition 5.1. For the primal FLP problem 
 

 
FLP:           max ݖ̃  ݔ̃ܿ
.ݏ                 .ݐ ݔܣ ع ෨ܾ

ݔ غ 0෨
                                                                                                          (8) 

 
define the dual problem (DFLP problem) as follows: 
 

DFLP:           min ݑ  ݓ ෨ܾ
.ݏ                    .ݐ ܣݓ غ ܿ̃

ݓ غ 0෨.
                                                                                                        (9) 

 
Relationships between FLP and DFLP problems. We shall discuss here the relationships between 
the FLP problem and its corresponding dual. 
 
Lemma 5.1. The dual of the DFLP problem is the FLP problem. 
 
Proof: 
 
Since the DFLP problem is a fuzzy linear programming problem, we may consider Definition 5.1 
for its dual. We write the DFLP problem as follows: 
 

   max ሺെ෨ܾTሻݓ T

.ݏ   .ݐ ሺെ்ܣሻݓ T ع െܿ̃T

ݓ T غ 0෨.

                                                                                                     (10) 
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Now, using the column vector ݔ as the fuzzy dual variable, the dual of (10) is: 
 

     min ்ሺെܿ̃ሻ்ݔ ൎ െܿ̃ݔ
.ݏ   .ݐ ሻ்ܣ்ሺെݔ غ െ෨்ܾ

்ݔ غ 0෨.

                                                                                                      (11) 

 
This is the same as problem (8).  
 
Remark  5.1. Lemma 5.1 indicates that the duality results can be applied to any one of the 
primal or dual problem posed as the primal problem. 
 
Theorem 5.1 (Weak duality.) If ݔ and ݓare feasible solutions to FLP and DFLP problems, 
respectively, then ܿ̃ݔ ع ෨ܾݓ . 
 
Proof:  
 
Multiplying ݔܣ ع ෨ܾ on the left by ݓ غ 0෨  and ݓܣ غ ܿ̃ on the right by ݔ غ 0෨  and using 
Lemma 2.5 (i), we get then ܿ̃ݔ ع ݔܣݓ ع  ෨ܾݓ. 
 
Corollary 5.1. If ݔ and ݓ  are feasible solutions to FLP and DFLP problems, respectively, and 
then ܿ̃ݔ ൎ ෨ܾݓ, then ݔ and ݓ are optimal solutions to their respective problems.  
 
Proof: 
 
It is straightforward, using Theorem 5.1.  
 
The following corollary relates unboundeness of one problem to infeasibility of the other. We 
use the definition below. 
 
Definition 5.2. We say FLP problem (or DFLP problem) is unbounded if feasible solutions exist 
with arbitrary large (or small) fuzzy objective value. 
 
Corollary 5.2. If any one of the FLP or DFLP problem is unbounded, then the other problem has 
no feasible solution. 
 
Proof: 
 
It is straightforward, using Theorem 5.1 [see Ganesan and Veeramani (2006)].  
 
 
We are now ready to present the strong duality result. 
 
Theorem 5.2. (Strong duality). If any one of the FLP or DFLP problem has an optimal solution, 
then the other problem has an optimal solution and the two optimal fuzzy objective values are 



AAM: Intern. J., Vol. 05, Issue 2 (December 2010) [Previously, Vol. 05, Issue 10, pp. 1467 – 1482]                     381 
 

equal. (In fact, if ݔכ is an optimal solution of the primal problem then the fuzzy vector ݓכ ൎ
ܿ̃ିܤଵ, where ܤ is the optimal basis corresponding to ݔכ, is an optimal solution of the dual 
problem.) 
 
Proof:  
 
Assume that the FLP problem has a fuzzy optimal solution, and ݇݊ܽݎሺܣሻ ൌ ݉. Let ݕ غ 0෨ , 
an ݉ ൈ 1 vector, be the fuzzy slack variables for the constraints ݔܣ ع ෨ܾ. The new equivalent 
problem to the FLP problem is: 
 

     max ݖ̃  ݔ̃ܿ
.ݏ     .ݐ ݔܣ  ݕ ൎ  ෨ܾ

,ݔ ݕ غ 0෨.

                                                                                                            (12) 

 

Assume ܤ is the optimal basis matrix and ݔכ ൌ ሺכݔ෪
்

   0෨்ሻ் ൌ ሺ ෨்ܾିܤT, 0෨ሻT  is the fuzzy basic 
optimal solution corresponding to the FLP problem. From Theorem 4.1 we have: 
 

ܿ̃ିܤଵ
ܽ െ  ܿ̃ غ 0෨           ݆ ൌ 1, … , ݊, ݊  1, … , ݊  ݉ 

 
or equivalently, 
 

ܿ̃ିܤଵ
ܽ غ  ܿ̃          ݆ ൌ 1, … , ݊ 

 
ܿ̃ିܤଵ݁ غ  0෨           ݅ ൌ 1, … , ݉. 
 

Hence, we have: 
 

ܿ̃ିܤଵA غ c  
 
ܿ̃ିܤଵ غ 0෨  . 

 
Now, let ݓכ ൎ ܿ̃ିܤଵ. Using the above inequalities, we can write, ݓכA غ c, כݓ غ 0෨  . Thus, ݓכ is a 
feasible solution to the DFLP problem and  
 

כݓ
෨ܾ ൎ ܿ̃ିܤଵ ෨ܾ ൎ ܿ̃כݔ෪ ൎ c ݔכ. 

 
Hence, ݓכ

෨ܾ ൎ c ݔכ. Therefore, the result follows immediately from Theorem 5.1.  
 
We can now state the fundamental theorem of fuzzy linear programming for the FLP and DFLP 
problems. 
 
Theorem 5.3. (Fundamental Theorem). For any FLP problem and its corresponding DFLP 
problem, exactly one of the following statements is true: 
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Both have optimal solutions ݔכ and ݓכ with ݓכ
෨ܾ ൎ c ݔכ  

One problem is unbounded and the other is infeasible. 
Both problems are infeasible. 

 
Proof:  
 
Without lose of the generality, suppose the FLP has an optimal solution such as ݔכ. Thus, based 
on strong duality theorem, the DFLP problem has also optimal solution such as ݓכ with ݓכ

෨ܾ ൎ
c ݔכ.  
 
Now suppose the FLP problem is unbounded, while the DFLP problem is feasible. Let ݔכ and ݓכ 
be the feasible solutions for FLP and DFLP problems, respectively. Thus, by Theorem 5.1, we 
have c ݔכ כݓ غ

෨ܾ. Since the DFLP is unbounded, so we can make the right hand side of this 
inequality sufficiently small, this is a contradiction. Finally, the following FLP problem and its 
corresponding DFLP problem show that both FLP and DFLP problems may be infeasible: 
 

min ݖ̃   ൬
1
2

,
3
4

,
1
4

൰ ଵݔ  ൬
െ19

8
,
െ9
4

,
1
8

൰ ଶݔ

.ݏ .ݐ ଵݔ     െ ଶݔ غ ሺ1,2,
1
2

ሻ

  െݔଵ  ଶݔ غ ሺെ4, െ3,
1
4

ሻ

,ଵݔ         ଶݔ غ 0෨

 

 

max ݑ   ሺ1,2,
1
2

ሻݓଵ  ሺെ4, െ3,
1
4

ሻݓଶ

.ݏ .ݐ ଵݓ     െ ଶݓ ع ൬
1
2

,
3
4

,
1
4

൰

  െݓଵ  ଶݓ ع ൬
െ19

8
,
െ9
4

,
1
8

൰

,ଵݓ         ଶݓ غ 0෨.

 

 
It can easily be checked that both problems are infeasible.  
 
 
Theorem 5.4. (Complementary Slackness). Suppose ݔכ and ݓכ are feasible solutions of the FLP 
problem and its corresponding dual, the DFLP problem, respectively. Then, ݔכ and ݓכ  are 
respectively optimal if and only if 
 

ሺݓכA െ cሻ ݔכ ൎ 0෨ , ሺݓכሺb෨ െ Aݔכሻ ൎ 0෨                                                                                   (13) 
 
 Proof: 
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 being feasible solutions of the FLP and DFLP problems, respectively, we have כݓ and כݔ
כݔܣ ع ෨ܾ and ݓܣכ غ ܿ̃. Multiplying ݔܣכ ع ෨ܾ on the left by ݓכ غ 0෨  yields ݓݔܣככ ع כݓ

෨ܾ. Also, 
multiplying ݓܣכ غ ܿ̃ on the right by ݔכ غ 0෨ , yields ݓݔܣככ غ  :Therefore, we will have  . כݔ̃ܿ
 

כݓ
෨ܾ. غ כݔܣכݓ غ  (14)                                                                                                            כݔ̃ܿ

 
 On the other hand, since ݔכ and ݓכ  are respectively optimal solutions to the primal and dual 
problems, then by Theorem 5.2 we have ݓכ

෨ܾ ൎ כݔܣכݓ ൎ  :and (14) must be written as כݔ̃ܿ
 

ሺݓכA െ cሻ ݔכ ൎ 0෨ ൫b෨כݓ , െ Aݔכ൯ ൎ 0෨.     
 
The converse of the theorem follows from the fact that ሺݓכA െ cሻ ݔכ ൎ 0෨  and ݓכሺb෨ െ Aݔכሻ ൎ
0෨ imply that ݓכ

෨ܾ. ൎ    .follows from Corollary 5.1 כݓ and כݔ  Therefore, optimality of .כݔ̃ܿ
 
Remark 5.2. The complimentary slackness condition (13) is equivalent to (below, തܽ refers to 
the ݅th row and തܽ refers to the ݆th column of A): 

  
כݓ ܽ ظ  ܿ̃  ฺ כݔ ൎ 0෨     ݔ  ݎכ ظ 0෨  ฺ כݓ ܽ ൎ  ܿ̃  ݆ ൌ 1, … , ݊, 

 
ܽݔכ ط  ෨ܾ

  ฺ כݓ ൎ 0෨     ݓ  ݎכ ظ 0෨  ฺ ܽݔכ ൎ  ෨ܾ
  ݅ ൌ 1, … , ݉. 

 
 
For an illustration of the above discussion, we give an example. 
 
Example 5.2. Consider the following FLP problem: 
 

max ݖ̃   ሺ5, 7, 1ሻݔଵ  ሺ7, 9, 1ሻݔଶ
.ݏ .ݐ ଵݔ14      ଶݔ21 ع ሺ31,46,2ሻ

ଵݔ35    ଶݔ28 ع ሺ53, 80,3ሻ
,ଵݔ                 ଶݔ غ 0෨

 

 
min ݑ   ሺ31,46,2ሻݓଵ  ሺ53, 80,3ሻݓଶ

.ݏ .ݐ ଵݓ     െ ଶݓ غ ሺ5, 7, 1ሻ
 െݓଵ  ଶݓ غ ሺ7, 9, 1ሻ
,ଵݓ         ଶݓ غ 0෨.

 

 

One can find the fuzzy optimal solution of the FLP problem as ݔଵ ൎ ሺହ


, ଼


, ଵ

ସଽ
ሻ, ݔଶ ൎ ሺ1, ଵ


, ସ

ସଽ
ሻ 

with the optimal objective value z ൎ ሺ


, ଵଷ଼


, ଵଽ

ସଽ
ሻ. Hence, if we let ݓ ൎ ܿ̃ିܤଵ, we obtain 

ଵݓ ൎ ሺଵ


, ଶହ

ସଽ
, ଽ

ସଽ
ሻ, ݓଶ ൎ ሺିଷ

ସଽ
, ଵ


, ହ

ସଽ
ሻ. This is the optimal solution of the DFLP problem with its 

optimal objective value as ݑ ൎ ሺି

ସଽ
, ଵହସ

ସଽ
, ସଶଵ

ସଽ
ሻ.  

 
Therefore, using Definition 2.2(ii), both problems have optimal solutions and the two optimal 
fuzzy objective values are equal. 
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6. Conclusion 
 
We established the dual of a linear programming problem with symmetric trapezoidal fuzzy 
numbers and developed some duality results for the fuzzy primal and fuzzy dual problems. The 
duality results include weak and strong duality, and complementary slackness. These results 
would be useful for post optimality analysis. 
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