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Abstract 
 
The purpose of this study is to give a Hermite polynomial approximation for the solution of mth 
order linear differential-difference equations with variable coefficients under mixed conditions. 
For this purpose, a new Hermite collocation method is introduced. This method is based on the 
truncated Hermite expansion of the function in the differential-difference equations. Hence, the 
resulting matrix equation can be solved and the unknown Hermite coefficients can be found 
approximately. In addition, examples that illustrate the pertinent features of the method are 
presented and the results of the study discussed. 
 
Keywords: Hermite polynomials, Hermite polynomial solutions, differential-difference     

equations, approximation method 
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1.  Introduction 
 
In recent years, the differential-difference equations, treated as models of some physical 
phenomena, have been receiving considerable attention. When a mathematical model is 
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developed for a physical system, it is usually assumed that all of the independent variables, such 
as space and time are continuous. Usually, this assumption leads to a realistic and justified 
approximation of the real variables of the system. However, there are some physical systems for 
which, this continuous variable assumption cannot be made. Since then, differential difference 
equations have played an important role in modeling problems that appear in various branches of 
science, e.g., mechanical engineering [Funaro (1990), Guo (1999a, 2000a)], condensed matter 
[Spanier (1987), Tang (2000), Xiong (2007), Zhou (2006)], biophysics and control theory 
[Zhang (2006), Ocalan (2009, Zhu (2008)].  
 
Differential–difference equations occur wherever discrete phenomena are studied or differential 
equations discretized. The problems considered in this paper possess positive shifts (termed 
delays). However, there are other problems where one can have both positive as well as negative 
shifts (termed delay and advance, respectively). Recently, a number of different methods 
associated with orthogonal systems for solving higher-order differential-difference equations; the 
inverse scattering method [Ablowitz (1976), Fox (1971)], Hirota’s bilinear form [Hu (2002)], 
tanh-method [Fan (2001)], Jacobian elliptic function method [Dai (2006)], numerical techniques 
[Emler (2001,2002)], differential transformation method [Arikoglu (2006), Karakoc (2009)]  and 
Taylor polynomial method [Gulsu (2005, 2005a)] have been given.  
 
In this paper, the basic ideas of the above studies are developed and applied to the mth-order 
linear differential-difference equation with variable coefficients [Saaty (1981)]:           
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and the solution is expressed in the form 
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where )(tH n denotes the Hermite polynomials, )0( Nnan   are unknown Hermite 

coefficients, and N is any chosen positive integer such that mN  . Here, )(tPk , )(* tPj   and f(t) 

are functions defined on  atb, the real coefficients  ikikik cba ,,   and  i  are appropriate 

constants. 
 
The rest of this paper is organized as follows. We describe the formulation of Hermite functions 
required for our subsequent development in section 2. Higher-order linear differential-difference 
equation with variable coefficients and fundamental relations are presented in Section 3. The 
Hermite collocation method is used. The method of finding approximate solution is described in 
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Section 4. To support our findings, we present the results of numerical experiments in Section 5. 
Section 6 concludes this paper with a brief summary. Finally some references are supplied at the 
end. 
 
 
2.  Properties of the Hermite Polynomials 
 
The general form of the Hermite polynomials of nth degree is given as 
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where N = n/2 if n is even and N = (n-1)/2 if n is odd. Note that this can also be written, when n = 
2, 3, …, as  
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Explicit expressions for the first few Hermite polynomials are 
                             

 1)(0 tH ,                                  ttH 2)(1  , 
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We finally mention that the Hermite polynomials )(xH n  satisfy the Hermite differential 

equation 
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In the present application, an approximate solution in terms of linear combination of Hermite 
polynomials of the following form is assumed: 
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3.  Fundamental  Relations 
 
Let us consider the mth-order linear differential-difference equation with variable coefficients (1) 
and find the matrix form of each term in the equation. We also convert the solution )(ty   defined 

by a truncated Hermite series (3) and its derivative )()( ty k  to m 
 

AH )()( tty  ,  AH )()( )()( tty kk  ,                                                                                    (6) 
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where 
                                                   

)](...)()([)( 00 tHtHtHt NH
 

 
and 

 
T

Naaa ]...[ 10A . 
 
On the one hand, it is well known [Sansone (1991)] that the relation between the powers nt  and 
the Hermite polynomials  )(tH n  is 
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By using the expression (7) and (8) and taking n = 0, 1,…, N, we find the corresponding matrix 
relation as follows 
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 and for even N, 
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Then, by taking into account (6) we obtain 
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To obtain the matrix )(t(k)X  in terms of the matrix )(tX , we can use the following relation: 
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Similarly, by substituting the matrix forms (11) and (12) into (6) we have the matrix relation 
                                               

AMBX 1)( )()(  Tkk ty .                                                                                                     (14) 
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To obtain the matrix )( kt X  in terms of the matrix )(tX , we can use the following relations: 
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Consequently, by substituting the matrix forms (11) and (15) into (6), we have the matrix 
relation of solution 
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and by means of (6), (11) and (15), the matrix relation is 
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4.  Method of Solution 
 
In this section, we consider a high order linear differential-difference equation in (1) and 
approximate to solution by means of finite Hermite series defined in (3). The aim is to find 
Hermite coefficients, that is, the matrix A. For this purpose, substituting the matrix relations (11) 
and (15) into equation (1) and then simplifying, we obtain the fundamental matrix equation 
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By using in equation (19) collocation points it  defined by 
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we get the system of matrix equations  
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or briefly the fundamental matrix equation 
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Hence, the fundamental matrix equation (22) corresponding to equation (1) can be written in the 
form 
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Here, Equation (23) corresponds to a system of ( 1)N   linear algebraic equations with unknown 

Hermite coefficients Naaa ,...,, 10 . We can obtain the corresponding matrix forms for the 

conditions (2), by means of the relation (14), 
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Thus, the matrix A  (and thereby the coefficients 0 1, , , Na a a ) is uniquely determined. Also the 

Eq. (1) with conditions (2) has a unique solution. This solution is given by truncated Hermite 
series (3).   
 
We can easily check the accuracy of the method. Since the truncated Hermite series (3) is an 
approximate solution of equation (1), when the solution )(tyN  and its derivatives are substituted 
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in equation (1), the resulting equation must be satisfied approximately; that is, for   
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If 0)( tEN , when N  is sufficiently large enough, then the error decreases. 

 
5.   Illustrative Examples 
 
In this section, several numerical examples all of which were performed on the computer using 
Maple 9 are given to demonstrate the accuracy and effectiveness of the method. The absolute 
errors in Tables are the values of )()( tyty N  at selected points. 

 
Example 1. 
 
We first consider the second order linear differential-difference equation with variable 
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If these matrices are substituted in (22), we obtain the linear algebraic system. This system yields 
the approximate solution of the problem. The result with N = 6(1)8 using the Hermite collocation 
method discussed in Section 3 and also the exact values of )exp(ty  are shown in Table1.  
 

Table1. Error analysis of Example 1 for the t value 
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               Figure 1. Numerical and exact solution             Figure 2. Error function of Example1 for                   
                of the Example1 for N=6,7,8                             various N                                                                          
 
Figure 1 shows the resulting graph of solution of Example1 for N = 6,7,8  and  it is compared 
with exact solution. In Figure 2, we plot error function for Example 1. 
               
 
Example 2. 
 
Let us find the Hermite series solution of the following second order linear differential-
difference equation  
                                 

)2sin()1sin()cos()2()1()()(')(''  ttttytytytyty  
 
with 0)0(,1)0(  yy . The exact solution of this problem is tty sin)(  . Using the procedure in 
Section 3 and taking N=8, 9 and 10 the matrices in equation (22) are computed. Hence linear 
algebraic system is gained. This system is approximately solved using the Maple 9. We display a 
plot of absolute difference exact and approximate solutions in Figure 3 and error functions for 

t Exact 
Solution 

    
    N=6 

  
 Ne=6 

Present Method 
     N=7         Ne=7 

 
N=8 

 
Ne=8 

0.0 1.000000 1.000000 0.000000 0.999999 0.00000 0.999999 0.300E-9 
0.1 1.105171 1.105193 0.227E-4 1.105174 0.391E-5 1.105169 0.127E-5 
0.2 1.221403 1.221493 0.907E-4 1.221421 0.185E-4 1.221398 0.439E-5 
0.3 1.349859 1.350057 0.199E-3 1.349906 0.478E-4 1.349508 0.797E-5 
0.4 1.491825 1.492161 0.336E-3 1.491919 0.951E-4 1.491814 0.102E-4 
0.5 1.648721 1.649206 0.484E-3 1.648883 0.162E-3 1.648712 0.903E-5 
0.6 1.822119 1.822738 0.619E-3 1.822368 0.249E-3 1.822116 0.225E-5 
0.7 2.013753 2.014469 0.711E-3 2.014106 0.353E-3 2.013764 0.122E-4 
0.8 2.225541 2.226271 0.730E-3 2.226009 0.468E-3 2.225576 0.360E-4 
0.9 2.459603 2.460248 0.645E-3 2.460189 0.586E-3 2.459673 0.702E-4 
1.0 2.718282 2.718711 0.429E-3 2.718975 0.693E-3 2.718396 0.114E-3 
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various N is shown in Figure 4. The solution of the linear differential difference equation is 
obtained for N = 8, 9, 10.  
                     

 
Table2. Error analysis of Example 2 for the t value 
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        Figure 3. Numerical and exact solution                         Figure 4. Error function of Example 2 for 
                           of the Example 2 for N=8,9,10                                        various N 

 
Example 3. 
 
Let us find the Hermite series solution of the first order linear differential difference equation 
                                                        

3)2()1()()(' 2  tttytytyty  
 
with condition 
 

0)0( y  
 
and the exact solution is tty  2 . Using the procedure in Section 3, we find the approximate 
solution of this equation which is the same as the exact solution.  

t Exact 
Solution 

    
    N=8 

  
 Ne=8 

Present Method 
     N=9             Ne=9 

 
N=10 

 
Ne=10 

0.0 0.000000 0.000000 0.000000 0.30E-13 0.300E-13 0.68E-13 0.68E-13 
0.1 0.099833 0.099833 0.388E-6 0.099833 0.622E-8 0.099833 0.971E-7 
0.2 0.198669 0.198669 0.129E-5 0.198669 0.151E-6 0.198668 0.414E-6 
0.3 0.295520 0.295517 0.221E-5 0.295520 0.767E-6 0.295519 0.976E-6 
0.4 0.389418 0.389415 0.255E-5 0.389420 0.214E-5 0.389416 0.178E-5 
0.5 0.479426 0.479423 0.164E-5 0.479430 0.457E-5 0.479422 0.283E-5 
0.6 0.564642 0.564643 0.117E-5 0.564650 0.827E-5 0.564638 0.404E-5 
0.7 0.644218 0.644224 0.651E-5 0.644231 0.134E-4 0.644212 0.536E-5 
0.8 0.717356 0.717370 0.148E-4 0.717376 0.199E-4 0.717349 0.666E-5 
0.9 0.783327 0.783353 0.263E-4 0.783354 0.278E-4 0.783319 0.783E-5 
1.0 0.841470 0.841511 0.409E-4 0.841507 0.368E-4 0.841462 0.873E-5 



128                                                                                                                                                    Mustafa Gülsu et al.  
                                                         

 

 
 
6.  Conclusion 
 
In recent years, the study of high order linear differential-difference equation has attracted the 
attention of many mathematicians and physicists. The Hermite collocation methods are used to 
solve the high order linear differential-difference equation numerically. A considerable 
advantage of the method is that the Hermite polynomial coefficients of the solution are found 
very easily using computer programs. Shorter computation time and lower operation count 
results in reduction of cumulative truncation errors and improvement of overall accuracy. 
Illustrative examples are included to demonstrate the validity and applicability of the technique 
which can be performed on the computer using a program written in Maple 9. To get the best 
approximating solution of the equation, we take more forms from the Hermite expansion of the 
functions, that is, the truncation limit N must be chosen large enough. In addition, an interesting 
feature of this method is to find the analytical solutions if the equation has an exact solution that 
is a polynomial function.  
 
Illustrative examples with satisfactory results are used to demonstrate the application of this 
method. Suggested approximations make this method very attractive and contribute to the good 
agreement between approximate and exact values in the numerical example. 
 
As a result, the power of the employed method is confirmed. We are assured of the correctness 
of the obtained solutions by putting them back into the original equation with the aid of Maple. 
This provides an extra measure of confidence in the results. The Hermite expansion method is a 
promising method for investigating exact analytic solutions to linear differential-difference 
equations with some modifications this method can also be extended to the systems of linear 
differential-difference equations with variable coefficients.  
 

 
 

REFERENCES 
 
 
Arikoglu, Ozkol I. (2006). Solution of difference equations by using differential transform 

method, Appl. Math. Comput. 174, 1216–1228. 
Ablowitz, M. J., Ladik, J.F. (1976). A nonlinear difference scheme and inverse scattering, Stud. 

Appl. Math. 55, 213–229. 
Dai, C. and Zhang, J. (2006). Jacobian elliptic function method for nonlinear differential–

difference equations, Chaos, Soliton Fract. 27, 1042–1047. 
Elmer, C.E., Van Vleck, E.S. (2001). Travelling wave solutions for bistable differential–

difference equations with periodic diffusion, SIAM J. Appl. Math. 61, 1648–1679. 
Elmer, C.E., Van Vleck, E.S. (2002). A variant of Newton’s method for solution of traveling 

wave solutions of bistable differential–difference equation, J. Dyn. Differen. Equat. 14, 493–
517. 

Fox, L., Mayers, D.F., Ockendon, J.R. and Tayler, A.B. (1971). On a functional differential 
equation, J. Inst. Math. Appl. 8, 271–307. 



AAM: Intern. J., Vol. 6, Issue 1 (June 2011) [Previously, Vol. 6, Issue 11, pp. 1856 – 1869]                                  129 

 

Fan, E.(2001). Soliton solutions for a generalized Hirota–Satsuma coupled KdV equation and a 
coupled MKdV equation, Phys. Lett. A, 282, 18–22. 

Funaro, D., O. Kavian, O. (1990). Approximation of some diffusion evolution equations in 
unbounded domains by Hermite function, Math.Comp. 57, 597-619. 

Gulsu, M. and Sezer, M. (2005). A method for the approximate solution of the high-order linear 
difference equations in terms of Taylor polynomials, Intern. J. Comput. Math. 82 (5), 629-
642. 

Gulsu, M. and Sezer, M. (2005a). Polynomial solution of the most general linear Fredholm 
integro differential-difference equations by means of Taylor matrix method, Complex 
Variables, 50(5), 367-382. 

Guo, B.Y. (1999). Error estimation of Hermite spectral method for nonlinear partial differential 
equation, Math. Comp. 68, 1067-1078. 

Guo, B.Y. (2000). Jacobi spectral approximation and its applications to differential equations on 
half line, J. Comput. Math. 18, 95-112. 

Hu, X.B., Ma, W. X. (2002). Application of Hirota’s bilinear formalism to the Toeplitz lattice 
some special soliton-like solutions, Phys. Lett. A, 293,161–165. 

Karakoc, F. and Bereketoglu, H. (2009). Solutions of delay differential equations by using 
differential Transform method, Int. J. Comput. Math. 86, 914-923. 

Ocalan, O. and Duman, O. (2009). Oscillation analysis of neutral difference equations with 
delays, Chaos, Solitons & Fractals 39(1), 261-270. 

Saaty, T.L. (1981). Modern Nonlinear Equations, Dover publications, Inc., New York. 
Sansone, G. (1991). Expansion in Laguerre and Hermite Series, Dover Press, New York. 
Spanier, J. and Oldham, K.B. (1987).The Hermite polynomials Hn(x), Washington DC. 
Tang, X.H. and Yu, J.S. and Peng, D.H. (2000). Oscillation and nonoscillation of neutral 

difference equations with positive and negative coefficients, Comput. Math. Appl. 39, 169–
181. 

Xiong, W., Liang, J. (2007). Novel stability criteria for neutral systems with multiple time 
delays, Chaos, Solitons & Fractals 32, 1735–1741. 

Zhou, J., Chen, T. and Xiang, L. (2006). Robust synchronization of delayed neural networks 
based on adaptive control and parameters identification, Chaos, Solitons & Fractals 27, 905–
913. 

Zhang, Q., Wei, X. and Xu, J. (2006). Stability analysis for cellular neural networks with 
variable delays, Chaos, Solitons & Fractals 28, 331–336. 

Zhu, W. (2008). Invariant and attracting sets of impulsive delay difference equations with 
continuous variables, Comp. and Math. with Appl. 55 (12), 2732-2739. 

 


