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Abstract 
 
The paper presents an analytical solution for the dispersion of a solute in a conducting 
immiscible fluid flowing between two parallel plates in the presence of a transverse magnetic 
field. The fluids in both the regions are incompressible, electrically conducting and the transport 
properties are assumed to be constant. The channel walls are assumed to be electrically 
insulating. Separate solutions for each fluid are obtained and these solutions are matched at the 
interface using suitable matching conditions. The results are tabulated for various values of 
viscosity ratio, pressure gradient and Hartman number on the effective Taylor dispersion 
coefficient and volumetric flow rate in the absence and in the presence of chemical reactions. It 
is found that the solute is dispersed relative to a plane moving with the mean speed of flow with 
an effective Taylor diffusion coefficient which decreases with an increase in magnetic field with 
or without chemical reactions. The validity of the results obtained for conducting two fluid 
model is verified by comparison with the available one-fluid model and the values tally very 
well. 
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Nomenclature 
 
B  - constant 

0B  - applied magnetic field 

iC  - concentration of the solute         

iD  - molecular diffusion coefficient   

D  - ratio of molecular diffusion coefficient,  2 1/D D  

E  - electric load parameter  

0E  - applied electric field        

h  - distance between the plates 

iK  - first-order reaction rate constant  

L  - typical length along the flow direction 

iQ  - volumetric flow rate   

iU        - velocity 

iu  - non-dimensional average velocity 

iu  - non-dimensional velocity   

dP

dX
 - pressure gradient 

M  - Hartman number           
m  - viscosity ratio,  2 1   

n  - density ratio,  1 2   

p  - non-dimensional pressure gradient 
 
Greek symbols  
  - dimensionless length 

i    - dimensionless reaction rate parameters  

i  - wall catalytic parameter  

i  - dynamic viscosity   

ei  - electrical conductivities 

r  - ratio of electrical conductivity 

i  - density of the fluid  

 
Subscripts 
1, 2  - quantities for region-1 and region-2, respectively 
 
 
1. Introduction 

 
The dispersion of a soluble matter in a non-conducting viscous fluid flowing in a circular pipe 
under laminar conditions has been discussed by Taylor (1953, 1954a, b). He has shown that 
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relative to a plane moving with the mean speed of the flow, the solute is dispersed with an 
apparent diffusion coefficient 2 2 48xR V D , where R , xV  and D  are the radius of the pipe, the 

average velocity and the molecular diffusion coefficient respectively. Taylor has further shown 
that this condition is valid, when 4 6.9xL R V R D  . Aris (1956), while extending Taylor’s 

analysis has shown that the rate of growth of the variance of the solute distribution is 
proportional to the sum of the molecular diffusion coefficient and the Taylor diffusion 
coefficient. His analysis incidentally removes the above restrictions of Taylor.  Fan and Hwang 
(1965) have extended Taylor’s analysis to a non-Newtonian fluid obeying the power law model 
due to Ostwald-de Waele. Further Fan and Wang (1966) have analyzed the dispersion of a solute 
in the laminar flow of the Bingham plastic and the Ellis model in a pipe. 
 
The study of hydromagnetic convection with heat transfer being important in the design of MHD 
generators, cross-field accelerators, shock tubes, pumps and cooling system of reactors have 
been investigated by several authors. A comprehensive review of these works was given by 
Romig (1964). Gershuni and Zhukhovitskii (1958) have investigated convective MHD flow in a 
vertical channel when the wall temperatures are constant while Yu (1965) has investigated the 
same problem when the plate temperatures vary linearly with vertical distance. Recently there 
are some experimental and theoretical studies on hydrodynamic and hydromagnetic aspects of 
two phase flows available in the literature. The interest in these types of problems stems from 
their abundance in technological applications such as MHD power generators, thermo-nuclear 
power generations and nuclear engineering. Lohrasbi and Sahai (1988) dealt with two-phase 
MHD flow and heat transfer in a parallel-plate channel. Malashetty and Leela (1991, 1992) 
analyzed the Hartmann flow characteristics of two-fluids in a horizontal channel. A two-phase 
MHD flow and heat transfer in an inclined channel was investigated by Malashetty and 
Umavathi (1997).  
 
Malashetty et al. (2000, 2001) analyzed the problem of fully developed two-fluid MHD flow 
with or without applied electric field in an inclined channel. Chamkha (2000) considered the 
steady, laminar flow of two viscous, incompressible electrically conducting and heat generating 
or absorbing immiscible fluids in an infinitely long, impermeable parallel-plate channel filled 
with a uniform porous medium. Recently Prathap Kumar et al. (2011) analyzed the mixed 
convective flow and heat transfer in a vertical channel with one region filled with conducting 
fluid and another region with non-conducting fluid. For measuring flow rate, velocity etc. tracer 
elements are introduced into the concerned flows and the study of dispersion of these solutes 
introduced is therefore very important. Such studies were initiated by Taylor (1953, 1954a). Aris 
(1956) further elaborated on such studies. Mazumbar (1981) has studied Taylor dispersion for a 
natural convective flow through a vertical channel when the plate temperatures vary linearly with 
vertical distance. 
 
All the investigations mentioned above deal with flows where the solute does not chemically 
react with the liquid through which it is dispersed. But in practice we have to deal with a wide 
variety of problems where the diffusion of the solute takes place with simultaneous chemical 
reactions, for example hydrolysis of ester, gas absorption in an agitated tank with chemical 
reaction and so on (Bird et al., 1960). Cleland and Wilhelm (1956) discussed the problem of a 
finite first-order homogeneous reaction in a pipe under laminar flow conditions by a finite 
difference method. He supported his results with experimental data. Katz (1959) investigated the 
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effect of homogeneous reaction at the wall on the concentration profiles, while combined first 
order heterogeneous and homogeneous reactions were studied by Walker (1962) and Solomon 
and Hudson (1961). Mandal et al. (1983) analyzed the effect of dispersion coefficient on the 
mean concentration distribution using the generalized dispersion model of Gill and 
Sankarsubramanian (1972). Shivakumar et al. (1987) studied the effect of time dependent 
dispersion coefficient on the concentration distribution. Dutta et al. (2006) reviewed the effect of 
commonly micro fabricated channel cross sections on the Taylor-Aris dispersion of solute slugs 
in simple pressure-driven flow systems. Suvadip Paul and Mazumder (2008) presented the 
longitudinal dispersion of passive contaminant released in an incompressible viscous fluid 
flowing between two infinite parallel flat walls, in which the flow is driven by the application of 
both the periodic pressure gradient and the oscillation of upper plate in its own plane with a 
constant velocity. 
 
The above investigations were confined to chemical reactions taking place under steady state 
conditions. Gupta and Gupta (1972) discussed the unsteady dispersion of a solute with 
simultaneous chemical reaction in a laminar flow of liquid flowing between two parallel plates 
using Taylor’s approach.  
 
One of the important factors is to study how the external magnetic field influences the 
dispersion. The paper presents a study of dispersion of a solute with or without chemical reaction 
of immiscible electrically conducting fluids between two parallel plates in the presence of an 
external magnetic field. In the absence of the Hartman number, and considering the same viscous 
fluid in both the regions we obtain the case discussed by Gupta and Gupta (1972). 
 
 
2.  Mathematical Formulation 

 
The physical configuration considered in this study is shown in Figure 1.  

 
 

Consider the laminar flow of two conducting immiscible fluids between two parallel plates 
distant 2h  apart, taking X -axis along the mid-section of the channel and Y -axis perpendicular 

Region-1 

h  

h  

Region-2 
0 

X

Y

Figure 1. Physical configuration 

0B  
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to the walls. Region-1  0h Y    is filled with the conducting fluid of conductivity 1e , 

density 1 , and viscosity 1 , whereas region-2  0 Y h   is filled with another conducting 

fluid of conductivity 2e , density 2 , viscosity 2 . A uniform magnetic field 0B  is applied 

perpendicular to the flow field. The fluids in both the regions are Newtonian fluids.   
 
It is assumed that the flow is steady, laminar, fully developed, and that fluid properties are 
constant.  Further it is also assumed that the magnetic Reynolds number is very small so that the 
induced magnetic field can be neglected in comparison with the applied magnetic field. The flow 
in both regions is assumed to be driven by a common constant pressure gradient. Under these 
assumptions, the governing equations of motion for incompressible fluids are 
 
Region-1  
 

2
21

1 1 0 12
0  e

d U dP
B U

dXdY
  .                                     (1) 

 
Region-2 
 

2
22

2 2 0 22
0  e

d U dP
B U

dXdY
  ,                                     (2) 

 
where 0B  is the applied magnetic field, e i  are the conductivities of the fluids, iU  are the       

X -component of fluid velocities and P  is the pressure.  The subscript i  (=1, 2) denote the 
values for region-1 and region-2 respectively. 
 
The boundary conditions on velocity are no-slip conditions requiring that the velocity must 
vanish at the walls. In addition, continuity of velocity and shear stress at the interface is assumed.  
With these assumptions, the boundary and interface conditions on velocity become 
 

1 0U at Y h   , 

2 0U at Y h  ,                                                             

1 2 0U U at Y  , 

1 2
1 2 0

dU dU
at Y

dY dY
   .                          (3) 

  
Using the non-dimensional parameters,  
 

Y

h
  , 1

1 1
1

h
u U




 , 2
2 2

2

h
u U




 , 
X

x
h

 , 
2

1 1( / )
 

P
p

h 
, 1

0
1

eM B h



 ,                      (4) 

 
the equations in (1) to (3)  become 
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Region-1 
 

2
21

12
0



  
d u dp

M u
dxd

,                                      (5) 

 
Region-2 
 

2 2
2

22
0



  rd u Mdp
u

dx md




.                                     (6) 

1 0 at 1u    , 

2 0 at 1u   ,                                                           

21 2
1 2 , at 0

du du
u mnu m n

d d


 
   ,             (7) 

 
where  
 

2

1

m



  , 1

2

n



 ,  2

1

e
r

e





 ,  and 




dp

p
dx

. 

 
Solutions of (5) and (6) using boundary and interface conditions (7) are 
 

   1 1 2 2
cosh sinh  

p
u a M a M

M
  ,                                                         (8) 

 

   2 3 4 2
cosh sinh  

p
u a B a B

B
  .                                                                     (9) 

 
From (8) and (9) the average velocities become 
 

 
0

1 1

1

1

2
u u d



  ,                                 (10) 

and  

 
1

2 2

0

1

2
u u d  .                         (11) 

 
Case 1a: Diffusion of a Tracer in the Absence of First-Order Chemical Reaction 
 
The equation for the concentration 1C  of the solute for the region-1 satisfies: 

 
2 2

1 1 1 1
1 1 2 2

C C C C
u D

t X X Y

    
       

.                                          (12) 
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Similarly, the equation for the concentration 2C  of the solute for the region-2 satisfies: 

 
2 2

2 2 2 2
2 2 2 2

C C C C
u D

t X X Y

    
       

,                                          (13) 

 
in which 1D  and 2D  are the molecular diffusion coefficients (assumed constants) for the region-

1 and region-2, respectively.  
 
If we now consider convection across a plane moving with the mean speed of the flow, then 
relative to this plane the fluid velocities are given by: 
 
Region-1 
 

   1 1 1 2 1cosh sinhxu u u a M a M l      .                                                 (14) 

 
Region-2 
 

   2 2 3 4 2cosh sinhxu u u a B a B l      ,                                                 (15) 

 
where u  is the sum of average velocities of region-1 and region-2. 
 
Introducing the dimensionless quantities 
 

1 1 1 1 2 2 2 2
1 1 1 2 2 2

1 1 2 2

, , , , ,
t L x u t t L x u t

t t
t u L t u L

   
 

      ,                               (16) 

 
and using (14) and (15), the equations (12) and (13) (assuming that  
 

2 2
1 1
2 2

C C

X Y

 


 
 and   

2 2
2 2
2 2

C C

X Y

 


 
)  

 
become: 
 
Region-1 
 

2
11 1 1 1

2 2
1 1

1 xuC C D C

t L h  
  

 
  

.                                                  (17) 

 
Region-2 
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2
22 2 2 2

2 2
2 2

1 xuC C D C

t L h  
  

 
  

,                                               (18) 

 
where L  is the typical length along the flow direction. Following Taylor (1953), we now assume 
that partial equilibrium is established in any cross-section of the channel so that the variations of 

1C  and 2C  with   are calculated from (17) and (18) as: 

 
Region-1 
 

2 2
1 1

12
1 1

x

C Ch
u

D L 
 




.                                                            (19) 

 
Region-2 
 

2 2
2 2

22
2 2

x

C Ch
u

D L 
 




.                                                                      (20) 

 
To solve these equations we use the following boundary conditions,  
 

1 0
C







 at  1     and  2 0
C







   at  1  .                                              (21) 

 
Equations (19) and (20) are solved exactly for 1C  and 2C  which are given by  

 
Region-1 
 

    21 2 1
1 1 1 22 2

cosh sinh
2

a a l
C Z M M b b

M M
         

 
.                               (22) 

 
Region-2 
 

    23 4 2
2 2 3 42 2

cosh sinh
2

a a l
C Z B B b b

B B
         

 
,                     (23) 

 
where 2b  and 4b  being constants to be determined using the entry conditions (following 

Rudraiah and Ng, 2007) and the values of 2b  and 4b  are taken as zero for the present evaluation. 

 
The volumetric flow rates at which the solute is transported across a section of the channel of 
unit breadth 1Q (region-1) and 2Q  (region-2) using (16), (17) and (22), (23), respectively, are 

given by 
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0 0

1 1 1 1 11 1

1 1

x xQ h C u d Z h C u d 
 

    ,                                                            (24) 

and 
1 1

2 2 2 2 22 2

0 0

x xQ h C u d Z h C u d     ,                                                               (25) 

 
where   
 

    2
1 2 1

11 12 2

cosh sinh

2

a M a M l
C b

M M

  
     , 

and 

    2
3 4 2

22 32 2

cosh sinh

2

a B a B l
C b

B B

  
     . 

 
 
Following Taylor (1953), we assume that the variations of 1C  and 2C  with   are small 

compared with those in the longitudinal direction, and if 1mC  and 2mC  are the mean 

concentration over a section, 1 1C    and 2 2C    are indistinguishable from 1 1mC    and 

2 2mC    respectively so that equations (24) and (25) may be written as:  

 
Region-1 
 

* 1
1 1

1

mC
Q D




 


.                                     (26) 

 
Region-2 
 

* 2
2 2

2

mC
Q D




 


.                                                (27) 

 
The fact that no material is lost in the process is expressed by the continuity equation for 1mC  and 

2mC , namely 

 
Region-1 
 

11

1

2 mCQ

t


 
 

.                                          (28) 

 
Region-2 
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22

2

2 mCQ

t


 
 

.                                     (29) 

 
Equations (28) and (29) using equations (24) and (25) become 
 
Region-1 
 

2*
1 11

2
12

m mC CD

t 
 


 

.                                        (30) 

 
Region-2 
 

2*
2 22

2
22

m mC CD

t 
 


 

,                              (31) 

 
which are the equations governing the longitudinal dispersion, where 
 

 
02 2

*
1 11 1 1

1 11

, , , ,
2 2

  x r

h h
D C u d F M p m n

D D
  , 

and 

 
02 2

*
2 12 1 2

2 21

, , , ,
2 2

  x r

h h
D C u d F M p m n

D D
  . 

 
Equations (30) and (31) are the well-known heat conduction equations which can be solved 
easily for a given initial conditions. 
 
Case 1b: Diffusion of a Tracer in the Absence of First Order Chemical Reaction and for 

Purely Viscous Fluid (Two-Fluid Model) 
 
To validate the results of the present model, the problem is solved in the absence of magnetic 
field and compared with the results of Gupta and Gupta (1972).  
 
The non-dimensional equations of motion for incompressible, viscous fluids are: 
 
Region-1 
 

2
1

2
0



 
d u dp

dxdy
.                                     (32) 

 
Region-2 
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2
2

2
0



 
d u dp

dxdy
.                                     (33) 

 
The boundary and interface conditions are defined as in (7). Using (7) in (32) and (33), the 
solutions become 
 

2

1 1 22
  

p
u a a

  ,                         (34) 

and 
2

2 3 42
  

p
u a a

  .                         (35) 

 
The average velocities become: 
 

1
1 2

1

2 6 2
    
 

ap
u a ,                         (36) 

and 

3
2 4

1

2 6 2
    
 

ap
u a .                                    (37) 

 
The solutions of (19) and (20) in the absence of magnetic field 0B  yields: 

 
3 22 4

1 1 1
1 1 01

1 1 24 6 2

 
       

C a lch p
C b C

D L

  


,                          (38) 

and 
3 22 4

32 2
2 3 02

2 2 24 6 2

 
       

aC lch p
C b C

D L

  


,                          (39) 

 
where 01C  and 02C  being constants to be determined using entry conditions. 

 
The volumetric rates at which the solute is transported across a section of the channel of unit 
breadth 1Q  (region-1) and 2Q  (region-2) and the evaluation of effective dispersion coefficients 

iiF  are evaluated as explained in the case 1a. The values of  , ,iF p m n  are computed for 

different values of the dimensionless parameters ip  and m  and are shown in Table 4. 

 
Case 1c: Diffusion of a Tracer in the Absence of First Order Chemical Reaction and for 

Purely Viscous Fluid (One-Fluid Model). 
 
The non-dimensional equation of motion is 
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2

2

d u dp

d dx
 ,                          (40) 

 
along with boundary conditions  
 

0 1u at    .                                    (41) 
 
The solution of (40) is  
 

2(1 ) 2u p    . 
 
The average velocity is given by 
 

3u p  . 
 
The concentration equation for one-fluid model using Taylor (1953) becomes: 
 

2 2

2 x

C h C
u

DL 
 


 

,                                          (42) 

 
where  
 

2

2 6x

p p
u


  . 

 

The solution of (42) using boundary conditions 0
C







  at  1   is  

 
2

4 2
024 12

h C p p
C C

DL
 


       

,                            (43) 

 
where 0C  being constant to be determined using entry conditions. 

 
The volumetric flow rate in which the solute is transported across a section of the channel of unit 
breadth is  
 

1 2 2

1

2

945x

h p C
Q h C u d

D




         .                          (44) 

 

Hence, the value for  *D  can be written as 
2 2 2

945

h p

D
 by comparing with Fick’s law of diffusion 

which agrees with the results of Wooding (1960) where p  is the non-dimensional pressure 
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gradient. *D  is also  the effective dispersion co-efficient  obtained by Gupta and Gupta (1972) in 
the absence of chemical reactions. 
 
Case 2a: Diffusion of a Tracer in the Presence of Homogeneous First-Order Chemical 

Reaction. 
 
The physical model and the assumptions made in case 1a are true here, except that we have the 
chemical reaction. In this case we assume that the chemical reaction is first order and it occurs 
under such conditions that the gas film resistance is negligible. This means that the reaction term 
is 1KC  (region-1) and 2KC  (region-2) -3 -1mol cm s , which represents the volume rate of 

disappearance of the solute due to chemical reaction. Here K  represents the first-order reaction 
rate constant. 
 
The velocity and average velocity are exactly the same as in (8) to (11). The equations for 
concentration, instead of (12) and (13) are: 
 
Region-1 
 

2 2
1 1 1 1

1 1 1 12 2

C C C C
u D K C

t X X Y

    
        

.                                                        (45) 

 
Region-2 
 

2 2
2 2 2 2

2 2 2 22 2

C C C C
u D K C

t X X Y

    
        

.                                            (46) 

 
Along with the boundary condition (21), the continuity of concentration and continuity of mass 
flux at the interface is considered to evaluate the integrating constants. That is,  
 

1 2 2
1 2

1

and at 0
C D C

C C
D


 

 
  

 
.                                                        (47) 

                   
Following the analysis of case 1, the non-dimensional form of (45) and (46) are: 
 
Region-1 
 

2 2
21 1

1 1 12
1 1

x

C Ch
C u

D L


 
 

 
 

.                                                         (48) 

 
Region-2 
 

2 2
22 2

2 2 22
2 2

x

C Ch
C u

D L


 
 

 
 

,                                              (49) 
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where  
 

1 1 1h K D   and 2 2 2h K D  . 

 
The solutions of (48) and (49) become: 
 
Region-1 
 

       1 2 21
1 1 1 2 1 1 2 2 2

1 1

cosh sinh
cosh sinh

a M a M l
C b b Z

M

 
  

 
 

     
.                  (50) 

 
Region-2 
 

        2
3 4 2

2 3 2 4 2 2 2 2 2
2 2

cosh sinh
cosh sinh

a B a B l
C b b Z

B

     
 

 
     

.                     (51) 

 
The expressions for 1C  and 2C  can also be written as 

 
2 2

1 2
1 11 12

1 1 2 2

C Ch h
C C C

D L D L 
 

 
 

 and 
2 2

1 2
2 21 22

1 1 2 2

C Ch h
C C C

D L D L 
 

 
 

. 

 
The volumetric flow rates at which the solute is transported across a section of the channel of 
unit breadth 1Q (region-1) and 2Q  (region-2) using (14), (15) and (50), (51), respectively, are 

given by 
 
Region-1 
 

 
0

1 1 1 11 12

1

xQ h C u d Q Q


    .                                        (52) 

 
Region-2 
  

 
1

2 2 2 21 22

0

xQ h C u d Q Q    ,                            (53) 

 
where  
 

0

11 1 11 1

1

xQ Z h C u d


   , 
0

12 2 12 1

1

xQ Z h C u d


   ,  
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1

21 1 21 2

0

xQ Z h C u d   , 
1

22 2 22 2

0

xQ Z h C u d   .   

 
Following the procedure explained in case 1 and using the fact that no material is lost in the 
process expressed by the continuity equation for 1C  and 2C , given by (50) and (51), we obtain 

an effective dispersion coefficient *D  in the form: 
 

 
02 2

*
11 11 1 11 1 2

1 11

, , , , , ,
2 2

  x r

h h
D C u d F M p m n

D D
    , 

 

 
02 2

*
12 12 1 12 1 2

2 21

, , , , , ,
2 2

  x r

h h
D C u d F M p m n

D D
    ,          

 

 
12 2

*
21 21 2 21 1 2

1 10

, , , , , ,
2 2

  x r

h h
D C u d F M p m n

D D
    , 

 

 
12 2

*
22 22 2 22 1 2

2 20

, , , , , ,
2 2

  x r

h h
D C u d F M p m n

D D
    .                                                (54) 

 
Values of iiF  are computed for different values of dimensionless parameters such as Hartman 

number M , viscosity ratio m ,  pressure gradient p  and conductivity ratio r  for variations of 

1 2and  . Volumetric flow rate is also computed for variations of Hartman number, viscosity 

ratio, pressure gradient and height of the channel. 
 
 
Case 2b: Diffusion of a Tracer with Combined Homogeneous and Heterogeneous First-

Order Chemical Reaction. 
 
We now discuss the problem of diffusion in a channel with a first-order chemical reaction taking 
place both in the bulk of the fluid as well as at the walls which are assumed to be catalytic.  In 
this case the diffusion equations remain the same as defined in (48) and (49) subject to the 
dimensionless boundary and interface conditions as 
 

1
1 1 0 1

C
C at 




   


, 

2
2 2 0 1

C
C at 




  


,                        (55) 

1 2 0C C at   , 

1 2
1 2 0

C C
D D at 

 
 

 
 

, 
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where 1 1f h   and 2 2f h   are the heterogeneous reaction rate parameters (or wall catalytic 

parameter) corresponding to catalytic reaction at the walls. 
 
The solutions of (19) and (20) are same as in (50) and (51). The integrating constants 1 2 3, ,b b b  

and 4b  are obtained using boundary and interface conditions as defined in (55) and given as 

follows:  
 

1 1 11 2 12b Z b Z b  , 2 1 21 2 22b Z b Z b  , 3 1 31 2 32b Z b Z b  , 4 1 41 2 42b Z b Z b  . 

 
The procedure of evaluating the volumetric flow rate and effective dispersion coefficient is same 
as in (52) to (54). 
 
 
Case 2c: Diffusion of a Tracer in the Presence of Homogeneous First-Order Chemical 

Reaction and in the Absence of Magnetic Field for Purely Viscous Fluid (Two- 
Fluid Model). 

 
We justify our results by comparing with the results obtained by Gupta and Gupta (1972) (one 
fluid model) with first order chemical reaction for a purely viscous fluids. 
 
The solutions of velocities and average velocities are same as in (34) to (37). 
 
The solutions of (19) and (20) for purely viscous fluid yields: 
 

     2
1 1 1 2 1 1 1 2 3cosh sinhC b b Z l l l          ,                                           (56) 

and 

     2
2 3 2 4 2 2 4 5 6cosh sinhC b b Z l l l          .                    (57) 

 
The volumetric rates at which the solute is transported across a section of the channel of unit 
breadth 1Q  (region-1) and 2Q  (region-2) and the evaluation of effective dispersion coefficients 

iiF  are evaluated as explained in the case1a. The values of  1 2, , , ,iiF p m n   are computed for 

different values of the dimensionless reaction rate parameters i , ip  and m  and are shown in 

Table 4. 
 
 
Case 2d: The Channel Filled with Only Viscous Fluid (One-Fluid Model) for Homogeneous 

Chemical Reaction. 
 
The solutions of velocities and average velocities are given as in case 1c. 
 
The concentration equation for one-fluid model using Taylor (1953) becomes: 
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2 2
2

2 x

C h C
C u

DL


 
 

 
 

,                                               (58) 

 
where  
 

2

2 6x

p p
u


  . 

 

The solution of (58) using boundary conditions  0
C







  at  1   is: 

  

 
2

2
2 2

cosh
2 6

h C p p p
C A

DL
 

  
        

.                                            (59) 

 
The volumetric flow rate in which the solute is transported across a section of the channel of unit 
breadth is  
 

 1 2 2

2 4 2
1

coth1 1 1

3 45x

h p C
Q h C u d

D




    

 
       
 .                          (60) 

 
Comparing (60) with Fick’s law of diffusion, we find that the solute is dispersed relative to a 
plane moving with the mean speed of the flow with an effective dispersion coefficient D  given 
by 
 

2 2

( )
h p

D F
D

  ,                                     (61) 

 
where  
 

 
2 4 2

coth1 1 1 1
( )

453
F




  
 

    
 

.                                    

 
Values of  F   are computed for different values of the dimensionless reaction rate parameter 

  and are shown in Table 4. When 0  , (61) gives 
 

 
0

2
lim

945
F





 ,                                     (62) 

  

so that the value for D  can be written as 
2 2 2

945

h p

D
, which agrees with the results of Wooding 

(1960), where p  is the non-dimensional pressure gradient. 
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The solution for heterogeneous chemical reaction is also found for two-fluid and one-fluid model 
and the results are shown in Table 4. To further justify the mean velocity for two-fluid and one- 
fluid model the following analysis is made.    
 
For the present problem,  1 0.0647483 u  (equation. 10) and 2 0.0647483 u (equation (11)) 

for 1m , 1p , and 2M .  
 
For one-fluid model the governing equation is 
 

2
2

2
 

d u
M u p

dy
,                                     (63) 

 
where  
 

 2


dp dx
p

h 
, 

 
whose solution is  
 

 
 2

cosh
1

cosh

 
   

 

Mp
u

MM


.                        (64) 

 
The average velocity is  
 

1

1
 u u d .                          (65) 

 
The   1 20.129497   u u u  for 2M  and 1p .  Hence, the mean velocity for two-fluid 

and one-fluid model is the same. 
 
All the constants appeared in the above equations are shown in the Appendix 
 
 
3. Results and Discussion 
 
The dispersion of a solute in a two-fluid flow between two parallel plates in the presence of 
transverse magnetic field is analyzed. The dispersion of a solute is analyzed with or without first 
order chemical reactions following the Taylor diffusion model. 
 
The average velocities in both the regions are evaluated using no-slip conditions at the 
boundaries and continuity of velocity and shear stress at the interface. The volumetric flow rate 



454                                                                                                                         J. Prathap Kumar and J.C. Umavathi 

                                                                                                                          
 

and effective Taylor dispersion coefficient in each region is evaluated for various governing 
parameters. 
 
Case 1: Diffusion of a Tracer in the Absence of First-Order Chemical Reaction. 
 
The effect of the Hartman number M  on the velocity is shown in Figure 2. We observe that an 
increase in the value of the Hartman number M  decreases the velocity. This is the classical 
Hartman effect. Values of effective Taylor dispersion coefficient (ETDC) in each region for 
various values of Hartman number M , viscosity ratio m , pressure gradient p  and ratio of 

electrical conductivity r  is shown in Table-1. It can be seen that the ETDC decreases with 

increase in M . This is to be expected on physical grounds, since the velocity profile becomes 
flatter (Fig. 2) with the increase of Hartmann number M . 
 
As the viscosity ratio m  increases ETDC decreases for values of 1m   and increases in 
magnitude for values of 1m  . This is due to the fact that viscosity ratio m  has significant effect 
on velocity. As m  becomes small, the velocity profiles become flat in region-1 and parabolic in 
region-2 which causes for reduction in F  for values of 1m   and increases F  for values of 

1m  . The values of ETDC,  F  is symmetric for pressure gradient 0p   and for 0p  . 

Further as p  increases, F  increases for values of 0p   and decreases as p  increases for values 
of 0p  . This is due to the fact that as p  increases for values of 0p  , velocity increases 

which causes an increase in F . (It should be noted here that p  is defined as 
dp

dx



 ). The ratio 

of electrical conductivity 2

1

e
r

e





 

 
 

 reduces the ETDC in both the regions for values of 1r   

and increases for values of 1r  . It is also observed from Table 1 that the values of 1F  and 2F  

for different values of M  and p  are equal, because when 1r   and 1m    imply for 

considering the two-fluids having the same conductivity and viscosity. 
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Figure 2. Velocity profiles for different values of Hartman number M  
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The effects of the Hartmann number M , the viscosity ratio m , the pressure gradient p  and the 
height of the channel h  on the volumetric flow rate Q  is shown in Figure 3.  As the Hartmann 
number increases the volumetric flow rate decreases for 3M   and remains constant for 3M  .  
The volumetric flow rate remains almost constant for values of viscosity ratio m  up to 2 and 
increases for values of 2m   as m  increases.  The volumetric flow rate is symmetric for 
negative and positive values of the pressure gradient p and the optimal flow rate is attained in 
the absence of a pressure gradient.  As the height ratio h  increases the flow rate decreases in 
magnitude. 
 
The results obtained (two-fluid model) in the absence of first order chemical reactions agree with 
the results obtained by Gupta and Chatterjee (1968) for the effect of Hartmann number on 
effective Taylor dispersion co-efficient.  That is, as M  increases F  decreases.  Letting 0M   
and fixing 1, 1m p   and 1h   (i.e., considering same fluid in both the regions) we obtain the 
results of Gupta and Gupta (1972) in the absence of first order chemical reactions which are also 
the results of Wooding (1960) as shown in Table 4. 
 
 Table 1: Values of ETDC for variations of Hartman number, viscosity ratio, pressure gradient and 

conductivity ratio in the absence of first order chemical reaction. 

M   1 , , ,rF M m p   2 , , ,rF M m p   , , ,rF M m p  

0.1 0.0010491 0.0010491 0.0020982 
2 1.2587E-4 1.2587E-4 2.5174E-4 
4 1.0046E-5 1.0046E-5 2.0092E-5 
6 1.4882E-6 1.4882E-6 2.9764E-6 
8 3.3776E-7 3.3776E-7 6.7552E-7 
m   
0.1 1.8799E-4 3.9672E-4 5.8471E-4 
0.5 -1.81E-5 6.0698E-5 4.2598E-5 
1 1.2587E-4 1.2587E-4 2.5174E-4 
2 -2.4809E -0.001616 -0.001865 
3 -0.003563 -0.012556 -0.016119 
4 -0.012059 -0.044209 -0.056268 
p   

-15 0.0283211 0.0283211 0.0566422 
-10 0.0125871 0.0125871 0.0251743 
-5 0.0031468 0.0031468 0.0062936 
0.1 1.2587E-6 1.2587E-6 2.5174E-6 
5 0.0031468 0.0031468 0.0062936 
10 0.0125871 0.0125871 0.0251743 
15 0.0283211 0.0283211 0.0566422 

r   

0.1 6.6905E-4 0.067592 0.068262 
0.5 2.4622E-4 8.5864E-4 0.001105 
1 1.2587E-4 1.2587E-4 2.5174E-4 
2 1.9672E-4 1.53E-4 3.4972E-4 
3 3.2215E-4 1.8199E-4 5.0414E-4 
4 4.3116E-4 1.9476E-4 6.2592E-4 
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Figure 3.  Volumetric flow rate Q  versus Hartman number M , viscosity ratio m , pressure gradient p  and 

height of the channel h  in the absence of first order chemical reaction 
 
 
Case 2: Diffusion of a Tracer in the Presence of Combined Homogeneous and 

Heterogeneous First-Order Chemical Reaction. 
 
The effects of the viscosity ratio m , the pressure gradient p , the Hartman number M , the 

conductivity ratio r  and the reaction rate parameter   on ETDC for homogeneous first order 

chemical reaction is displayed in Table 2. As the reaction rate parameter   1 2    

increases, ETDC increases in both the regions for all values of m , p , M  and r . This is due to 

the fact that, increase in   signifies that increasing number of moles of solute undergoing 
chemical reaction results in a drop in dispersion coefficient. As the viscosity ratio m  increases, 
the total effective dispersion coefficient 1 2( )F F F   decreases for values of 1m   and 

increases for 1m  . F  decreases as p  increases for 1p   and increases as p  increases for 
values of 1p  .  As the Hartmann number M   increases ETDC decreases in both the regions.  

As the conductivity ratio r  increases, F  decreases for values of 1r   and increases for 

1r  . 
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Table 2:  Values of ETDC for variations of reaction rate parameter, Hartman number, viscosity ratio, pressure 

gradient and conductivity ratio in the presence of first order chemical reaction 
 0.1m   1m   

   1 1 2,F     2 1 2,F     1 2,F     1 1 2,F     2 1 2,F     1 2,F    

0.4 8.00589E-6 1.49616E-4 1.57622E-4 9.8934E-6 9.8934E-6 1.97868E-5 
0.8 8.35876E-6 1.36619E-4 1.44978E-4 9.46219E-6 9.46219E-6 1.89244E-5 
1.2 8.50548E-6 1.20835E-4 1.29341E-4 8.82393E-6 8.82393E-6 1.76479E-5 
1.6 8.30537E-6 1.05557E-4 1.13862E-4 8.06677E-6 8.06677E-6 1.61335E-5 
2.0 7.82051E-6 9.20293E-5 9.98498E-4 7.27065E-6 7.27065E-6 1.45413E-5 
  2m   5 p  

0.4 6.297E-5 2.11697E-5 8.41398E-5 2.47335E-4 2.47335E-4 4.9467E-4 
0.8 5.85902E-5 2.08786E-5 7.94688E-5 2.36555E-4 2.36555E-4 4.73109E-4 
1.2 5.29001E-5 2.01194E-5 7.30195E-5 2.20598E-4 2.20598E-4 4.41196E-4 
1.6 4.69458E-5 1.88913E-5 6.58371E-5 2.01669E-4 2.01669E-4 4.03338E-4 
2.0 4.12782E-5 1.73595E-5 5.86377E-5 1.81766E-4 1.81766E-4 3.63532E-4 
  0.1p  5p  

0.4 9.8934E-8 9.8934E-8 1.97868E-7 2.47335E-4 2.47335E-4 4.9467E-4 
0.8 9.46219E-8 9.46219E-8 1.89244E-7 2.36555E-4 2.36555E-4 4.73109E-4 
1.2 8.82393E-8 8.82393E-8 1.76479E-7 2.20598E-4 2.20598E-4 4.41196E-4 
1.6 8.06677E-8 8.06677E-8 1.61335E-7 2.01669E-4 2.01669E-4 4.03338E-4 
2.0 7.27065E-8 7.27065E-8 1.45413E-7 1.81766E-4 1.81766E-4 3.63532E-4 
  0.1M   5M   
0.4 0.00103000 0.00103000 0.00206514 3.56801E-6 3.56801 E-6 7.13602 E-6
0.8 9.86023E-4 9.86023E-4 0.00197205 3.41511 E-6 3.41511 E-6 6.83022 E-6
1.2 9.17199E-4 9.17199E-4 0.00183440 3.18869 E-6 3.18869 E-6 6.37737 E-6
1.6 8.35679E-4 8.35679E-4 0.00167136 2.91988 E-6 2.91988 E-6 5.83976 E-6
2.0 7.50142E-4 7.50142E-4 0.00150028 2.63695 E-6 2.63695 E-6 5.27390 E-6

  10M   0.1r   

0.4 1.00268 E-7 1.00268 E-7 2.00536 E-7 2.68126E-4 1.74734E-4 4.42859E-4 
0.8 9.63199 E-8 9.63199 E-8 1.92640 E-7 2.3091E-4 1.57484E-4 3.88394E-4 
1.2 9.04596 E-8 9.04596 E-8 1.80919 E-7 1.88526E-4 1.37013E-4 3.25539E-4 
1.6 8.34778 E-8 8.34778 E-8 1.66956 E-7 1.50963E-4 1.17758E-4 2.68721E-4 
2.0 7.60945 E-8 7.60945 E-8 1.52189 E-7 1.20901E-4 1.01186E-4 2.22087E-4 
  1r   2r   

0.4 9.8934E-6 9.8934E-6 1.97868E-5 1.04941E-5 1.63515E-5 2.68456E-5 
0.8 9.46219E-6 9.46219E-6 1.89244E-5 9.62562E-5 1.41923E-5 2.38179E-5 
1.2 8.82393E-6 8.82393E-6 1.76479E-5 8.56359E-5 1.17153E-5 2.02789E-5 
1.6 8.06677E-6 8.06677E-6 1.61335E-5 7.52492E-5 9.49710E-5 1.7022E-5 
2.0 7.27065E-6 7.27065E-6 1.45413E-5 6.59314E-5 7.69917E-5 1.42923E-5 
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Table 3:  Values of ETDC for variations of wall catalytic parameter, Hartman number, viscosity ratio, pressure 
gradient and conductivity ratio in the presence of first order chemical reaction 
 0.1m   1m   

   1 ,i iF     2 ,i iF     ,i iF     1 ,i iF     2 ,i iF     ,i iF    

2 8.80015E-6 1.25461E-4 1.34261E-4 8.97079 E-6 8.97079 E-6 1.79416E-5 
4 1.06137E-5 1.09507E-4 1.20121E-4 8.22100 E-6 8.22100 E-6 1.6442E-5 
6 1.15313E-5 1.0242E-4 1.13951E-4 7.96109 E-6 7.96109E-6 1.59222E-5 
8 1.20341E-5 9.8707E-5 1.10741E-4 7.83936 E-6 7.83936E-6 1.56787E-5 
10 1.23509E-5 9.64181E-5 1.08769E-4 7.76877 E-6 7.76877E-6 1.55375E-5 
  2m   5 p  

2 5.42686E-5 2.04981E-5 7.47668E-5 2.2427E-5 2.2427E-5 4.48539E-5 
4 4.7363E-5 2.06885E-5 6.80515E-5 2.05525E-5 2.05525E-5 4.1105E-5 
6 4.4527E-5 2.09914E-5 6.55185E-5 1.99027E-5 1.99027E-5 3.98054E-5 
8 4.3087E-5 2.11933E-5 6.42803E-5 1.95984E-5 1.95984E-5 3.91968E-5 
10 4.22133E-5 2.1331E-5 6.35443E-5 1.94219E-5 1.94219E-5 3.88438E-5 
  0.1p  5p  

2 8.97079E-8 8.97079 E-8 1.79416E-7 2.2427E-5 2.2427E-5 4.48539E-5 
4 8.22100 E-8 8.22100 E-8 1.64420 E-7 2.05525E-5 2.05525E-5 4.1105E-5 
6 7.96109 E-8 7.96109 E-8 1.59222 E-7 1.99027E-5 1.99027E-5 3.98054E-5 
8 7.83936 E-8 7.83936 E-8 1.56787 E-7 1.95984E-5 1.95984E-5 3.91968E-5 
10 7.76877 E-8 7.76877 E-8 1.55375 E-7 1.94219E-5 1.94219E-5 3.88438E-5 
  0.1M   5M   
2 9.35748E-4 9.35748E-4 0.00187150 3.23731E-6 3.23731 E-6 6.47463 E-6 
4 8.65498E-4 8.65498E-4 0.00173100 2.95774 E-6 2.95774 E-6 5.91549 E-6 
6 8.41145E-4 8.41145E-4 0.00168229 2.86083 E-6 2.86083 E-6 5.72166 E-6 
8 8.2974E-4 8.2974E-4 0.00165948 2.81544 E-6 2.81544 E-6 5.63089 E-6 
10 8.23126E-4 8.23126E-4 0.00164625 2.78912 E-6 2.78912 E-6 5.57824 E-6 

  10M   0.1r   

2 9.13367 E-8 9.13367 E-8 1.82673 E-7 1.9335E-4 1.51182E-4 3.44532E-4 
4 8.26084 E-8 8.26084 E-8 1.65217 E-7 1.19893E-4 1.64294E-4 2.84187E-4 
6 7.95827 E-8 7.95827 E-8 1.59165 E-7 8.88153E-5 1.67752E-4 2.56567E-4 
8 7.81657 E-8 7.81657 E-8 1.56331 E-7 7.28403E-5 1.69096E-4 2.41936E-4 
10 7.73439 E-8 7.73439 E-8 1.54688 E-7 6.30865E-5 1.6978E-4 2.32867E-4 

  1r   2r   

2 8.97079 E-6 8.97079 E-6 1.79416E-5 9.42998 E-6 1.18866E-5 2.13166E-5 
4 8.22100 E-6 8.22100 E-6 1.6442E-5 1.06612E-5 7.14330 E-6 1.78044E-5 
6 7.96109 E-6 7.96109E-6 1.59222E-5 1.10628E-5 5.16619 E-6 1.6229E-5 
8 7.83936 E-6 7.83936E-6 1.56787E-5 1.12445E-5 4.15603 E-6 1.54005E-5 
10 7.76877 E-6 7.76877E-6 1.55375E-5 1.13477E-5 3.54119 E-6 1.48889E-5 

 
From Table 3, we find the variations of ETDC and the wall catalytic parameter  , on viscosity 

ratio m , pressure gradient p , Hartmann number M  and conductivity ratio r  for fixed value of 

homogeneous reaction rate parameter 1 2( )    . As the wall catalytic parameter 

1 2( )     increases, ETDC decreases for all values of ,m p  and M  (similar results 

observed for homogeneous chemical reaction).  Further the effects of ,m p  and M  on ETDC are 
the similar results observed for homogeneous chemical reaction. The effect of viscosity ratio m , 
pressure gradient p  Hartmann number M  and height of the channel on the volumetric flow rate 
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for both homogeneous and heterogeneous chemical reaction shows the similar result as observed 
for the diffusion without chemical reaction (case 1) and hence not shown graphically. The effects 
of Hartmann number on the ETDC, reaction rate parameter and wall catalytic parameter for 
homogeneous and heterogeneous chemical reactions of the present model (two-fluid) agree with 
Sundhanshu et al. (1976) (one-fluid model).  That is, as the Hartman number M  increases, the 
reaction rate parameter  , wall catalytic parameter   and ETDC decreases. Letting 

0, 1M m   and 1p   agree with the results of Gupta and Gupta (1972) as shown in Table 4. 
 

Table 4: Values of effective dispersion coefficient for purely viscous fluid 

 Two-fluid model (present model) 
One-fluid model 

Gupta and Gupta (1972) 
 In the absence of first-order chemical reaction 
m p   1 ,F m p   2 ,F m p   ,F m p   ,F m p  

1 0.0010582 0.0010582 0.0021164 0.0021164 
 In the presence of first-order homogeneous chemical reaction 

   1 1 2,F     2 1 2,F     1 2,F     F   

0.4 0.0010099 0.0010099 0.0020199 0.00201987 
0.8 9.1846E-4 9.1846E-4 0.0018369 0.00183692 
1.2 8.2952E-4 8.2952E-4 0.0016590 0.00165904 
1.6 7.474E-4 7.474E-4 0.0014948 0.00149480 
2 6.70579E-4 6.70579E-4 0.0013412 0.00134116 

 
In the presence of first-order combined homogeneous and heterogeneous 

chemical reaction 

   1 ,i iF     2 ,i iF     ,i iF     ,F    

2 8.48463E-4 8.48463E-4 0.00169693 0.0016969 
4 8.30289E-4 8.30289E-4 0.00166058 0.0016606 
6 8.22866E-4 8.22866E-4 0.00164573 0.0016457 
8 8.18832E-4 8.18832E-4 0.00163766 0.0016377 
10 8.16298E-4 8.16298E-4 0.00163260 0.0016326 

 
 
5. Conclusions 

 
1. The ETDC decreases with an increase in the Hartman number with or without chemical 

reactions. 
2. The ETDC decreases for 1m  , 1r   and 1p   whereas it increases for 1m  , 1r   

and 1p   as m , p  and r  increases in the presence or in the absence of chemical 

reactions.  
3. As the homogeneous reaction rate increases, the ETDC decreases for all values of the 

viscosity ratio, the pressure gradient, the Hartman number and the conductivity ratio. A 
Similar effect was observed on wall catalytic parameter. 

4. The results for the two-fluid model agree with the results for the one-fluid models of 
Gupta and Chatterjee (1968), Sudhanshu et al. (1976) and Gupta and Gupta (1972).                                   
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Appendix 
 
Case 1: Diffusion of a Tracer in the Absence of First-Order Chemical Reaction. 
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Case 1b: Diffusion of a Tracer in the Absence of First Order Chemical Reaction and for 

Purely Viscous Fluid (Two-Fluid Model) 
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Case 2a: Diffusion of a Tracer in the Presence of Homogeneous First-Order Chemical 

Reaction. 
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Case 2b: Diffusion of a Tracer with Combined Homogeneous and Heterogeneous First-

Order Chemical Reaction 
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Case 2c: Diffusion of a Tracer in the Presence of Homogeneous First-Order Chemical 

Reaction in the Absence of Magnetic Field for Purely Viscous Fluid (Two-Fluid 
Model). 
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