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Abstract 
 
A joint model for multivariate responses with potentially non-random missing values on a 
stochastic process is proposed. A full likelihood-based approach that allows yielding maximum 
likelihood estimates of the model parameters is used. Sensitivity of the results to the assumptions 
is also investigated. A common way to investigate whether perturbations of model components 
influence key results of the analysis is to compare the results derived from the original and 
perturbed models using a general index of sensitivity (ISNI). The approach is illustrated by 
analyzing a finance data set. 
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1.   Introduction 
 
Financial data with possibility of missing values, are pervasive and research on analyzing them 
needs to be promoted. Covariates, often relevant to the study at hand are not considered for 
reasons of parsimony. Specific financial time series which may be useful predictors are omitted 
from the analysis because they are either entirely missing or only partially observed. Continuous 
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time models in finance, typically diffusions may (or may not) provide a reasonable model for the 
fluctuations in prices of a given asset. In any case these prices, even if the market were 
essentially perfect, are only observed at specific times when trades are made. This may be of 
little consequence for highly liquid equities and benchmark bonds, but is a much more 
significant issue with thinly traded or illiquid assets.  
 
Although most modern models for interest rates, bond yields, equity prices, etc. are continuous 
time multivariate models, these are the very models most susceptible to problems associated with 
asynchronous trading and missing data. DeCesare (2006), for example, describes data set from 
consists of one minute discretized tick data from the Toronto Stock Exchange (TSE) dated on 
February 2, 2005 on three bank stocks: the Bank of Nova Scotia (BNS), Royal Bank (RY) and 
Bank of Montreal (BMO). The data consist of 392 time points with 12, 51 and 45 missing values 
for BNS, RY and BMO, respectively. A stock price at a particular time point is reported missing 
if no sales were made in the last minute of trading on that stock.  
 
The Black- Scholes Model was the first and is the most widely used model for pricing options. 
The Black- Scholes (1973) used the equilibrium Capital Asset Pricing Model (CAPM) to derive 
an equation for the option price and had the insight that they could assume for valuation purposes 
the option had expected return equal to the riskless rate. The assumptions underlying the Black 
and Scholes option pricing model are as follows: 
 (a)  The market is arbitrage free. 
 (b) Frictionless and continuous markets. There are no transaction cost such as differential taxes, 

trading takes place continuously, assets are infinitely divisible, unlimited borrowing and 
short selling are allowed and borrowing and lending rates are equal. 

 (c)  The riskless instantaneous interest rate is constant over time. 
 (d) The dynamics for the price of the risky traded asset S  (which pays no dividends) are given 

by  
 

[log( )] = ,t td S dt dW                                                                                                         (1) 

 
where   is the instantaneous expected rate of return on assets S ,   is its instantaneous 
volatility, both constants and W is a standard dimensional Brownaian motion process. 

 (e)  Investors prefer more to less, agree on 2 and dynamics (1). 
 
The model and associated call and put option formulas have revolutionized finance theory and 
practice and the surviving inventors Merton and Scholes received the nobel prize in economics in 
1997 for their contributions. Black and Scholes (1973) and Metron (1971) introduced the key 
concept of dynamic hedging whereby the option pay off is replicated by a trading strategy in the 
underlying asset. They derive their formula under lognormal dynamics for the asset price 
( )(log tS ). Suppose that there are various segments of the components of tS  that are missing. 

This happens, for example, if tS  is the price of various assets and these prices are only observed 

at specific discrete trading times. Imputation (or conditional simulation) of the missing pieces of 
the sample paths of tS  is discussed in several settings. When tS  is a Brownian motion the 

conditioned process is a tied down Brownian motion. 
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Rubin (1976), Little and Rubin (2002), Diggle and Kenward (1994) made important distinctions 
between the various types of missing mechanisms for each of the above mentioned patterns. 
They define the missing mechanism as missing completely at random (MCAR) if missingness is 
dependent neither on the observed responses nor on the missing responses, and missing at 
random (MAR) if, given the observed responses, it is not dependent on the missing responses. 
Missingness is defined as non-random if it depends on the unobserved responses. From a 
likelihood point of view MCAR and MAR are ignorable but not missing at random (NMAR) is 
non-ignorable. 
  
Standard methods of analysis based on the strong and unverifiable assumption of missing at 
random mechanism could be highly misleading. A way out of this problem is to model both 
responses and the missing mechanisms jointly. One can then use a direct estimation process to fit 
a non-ignorable model for the data. As there is always little information about the missing 
process, these models lead to challenging calculations or even unidentifiability problem. Another 
alternative is sensitivity analysis, in which one estimates models under a range of assumptions 
about non-ignorability parameters to study the impact of these parameters on key inferences. 
Some previous authors have carried out this type of sensitivity analysis exactly for specific 
complete and missing data models [Bahrami Samani and Ganjali (2008) and Baker et al. (1993)], 
whereas others have proposed approximate analysis that assess sensitivity in the neighborhood of 
the ignorable model [Berridige and Dos Santos (1996), Catalano and Ryan (1992) and Cox and 
Wermuth (1992)].  
 
We want to apply the approximate sensitivity analysis of Cox and Wermuth (1992) who 
introduced a general index of sensitivity to non-ignorability (ISNI) to measure sensitivity of key 
inferences in a neighborhood of MAR model needless of fitting a complicated NMAR model. 
They presented this index for univariate generalized linear models. Recently, Diggle and 
Kenward (1994) applied ISNI methodology to examine non-ignorability for univariate 
longitudinal non-Gaussian data. However, since in practice, statistical analysis involving 
responses of both discrete and continuous types are extremely common, in this paper we will 
extend ISNI methodology to analyze multivariate longitudinal mixed data subject to non-
ignorable dropout. 

  
There is a class of models that is particularly well-suited to the treatment of missing or 
incomplete data, these are the multivariate processes which are transformations of a Gaussian 
process. This includes multivariate Brownian motion of these under a transformation of time 
(sometimes referred to as a subordinated Brownian motion), as well as common stationary 
parameter   and diffusion matrix  . Kofman and Sharpe (2003) provided a small survey of 
papers in financial journals which explicitly recognized the presence of missing data. Using 
multiple imputation in the analysis of incomplete observations in Finance. Malhotra (1987) 
applied market research data with incomplete information on the dependent variable DeCesare 
(2006) used imputation of the missing pieces of the sample paths of Brownian motion is 
discussed in several setting and applied in financial data, who assume an ignorable missing 
mechanism, for these data. In the presence of a (possibly large) number of missing observations, 
these estimators can not be used. In theory, of course, since the joint distribution of all of the data 
(observed and unobserved) is multivariate normal, we could obtain the parameters of the 
conditional distribution of the unobserved given the observed data. 
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In this paper a general multivariate model simultaneously handling response and non-response in 
Brownian motion with potentially non random missing values in responses is presented. This 
model also considers a probit model. The presented model simultaneously considers probit 
regression models to allow the examination of the missing mechanisms. The remainder of this 
paper is organized as follows: Section 2 states the model and its likelihood in the general case 
with and without the assumption of a non-ignorable dropout. Section 3 derives ISNI calculation 
in the above mentioned model where there is a vector of nonignorability parameter. Section 4 
applies the methodology and simulation to the Finance data. Finally some concluding remarks 
are given in Section 5. 
 

 
2.    Model and Likelihood  

  
2.1  Complete Data Model  
 
The p dimensional multivariate Brownian motion ))(),...,((=)( 1 tXtXtX p  process with drift 

and diffusion parameters given by ),(=    and expressed with a stochastic differential 
equation:  

1

2( ) = ( )dX t dt dW t   

for a standard p dimensional multivariate Brownaian motion process W , where 2

1

  denotes a 

matrix square root of   and )(tX  is multivariate normal distribution with p
p R),...,(= 1   

mean and   is pp  matrix covariance. Component of )(tX  at times ntttt <...<<< 210  is 

observed. For the moment assume that the time points 0t , ..., nt  are equally spaced, and denote 

the common time increment as )( 1 ii tt . The natural approach taken by many authors is to use 

an Euler approximation of the process which is of the form  
 

),)(,)()(()(| 11001
  iijiiitit

tttttXNtXX   

 
where 0=)( 0tX . Given the data the matrix of natural sufficient statistics used in estimating 

),(=    is easily constructed by appealing to the independent increments property. Let 

)(= ijij tXX , jiijij XXY 1,=  , ni 1,...,=  and pj 1,...,=  . The model takes the form: 

  

1= ( ) ,    = 1,..., ,  = 1,..., ,ij i i j ijY t t i n j p  
                                                                       (2)

 

 
where random vectors ),...,(= 1 ipii   are independent with multivariate norma with zero mean 

and   )( 1ii tt  matrix covariance. 

  
The likelihood function of ),...,(= 1 nYYY  is 
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where ,))(),...,((=)( 1 ipii tXtXtX ),...,(= 1 ipii YYY , )()(=)(= 1 ijijijij tXtXtYY  and the 

maximum likelihood estimator of   and   are easily, respectively, determined as:  

 

1

)(
=ˆ

 ii

i

tt

tY
 

 
and 
 

1 1

=1 1

ˆ ˆ[ ( ) ( )] [ ( ) ( )]1ˆ = .
n

i i i i i i

i i i

Y t t t Y t t t

n t t

  



   


  

 
 
2.2.  Incomplete Data Model  
  
Suppose we partially observe the process at times ntt ,...,0 . In other words, we observed at last 

one vector component of )(tX  at each of the given times and for simplicity we will take )( 0tX  

to be observed. Typically, when missing data occur in an outcome, assume ),...,(=
1


ipyiyiy RRR  

as the indicator vector of responding to iY  and 
ijyR is defined as 

 
0     

=
1       .

ij

yij
ij

if y is not observed
R

if y is observed





 

 
We consider Bernoulli distribution for 

ijyR with success probability of begin observed 

dependents on the outcome ijY  according to a specified link function, follows: 

  

, , 0 1 1 0 , 1 , ( ) = [ ( = 1| , , , )] = ( ) ' ' ,ij Y i obs i mis i i j i obs i misij
logit logit P R Y Y t t Y Y         

 
where  
 

Cy
obs

y
misij

y
obs JJobservedisyjJ )(=},:{= , },{= ,

y
obsijobsi JjYY   , },{=  ,

y
misijmisi JjYY  .  

 
Supposed the 1g  elements of iY  is observed, and the 2g  elements of iY  is missing, so 
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},...,{=
11 g

y
obs ooJ , },...,{=

21 g
y
mis MMJ , ),...,(=

1
0100 goo   and ),...,(=

2
1111 gMM  . 

 
 The joint model takes the form: 
  

1

, , 0 1 1 0 , 1 , 

= ( ) ,    = 1,..., ,  = 1,...,
,

[ ( = 1| , , , )] = ( ) ' '
ij i i j ij

Y i obs i mis i i j i obs i misij

Y t t i n j p

logit P R Y Y t t Y Y

 






 
      

                                   (3)

 

 
where 0  and 1  lead to observed and missing mechanism in which the parameter estimates of 

the ijY  could be obtained ignoring the missing mechanism (provided disjoint parameter spaces 

for response models and the missing mechanism). The vector of   and   should be estimated. 
 
 To obtain the log likelihood function as follows, 
 

=1 { : }

{ : }

( ) = [log( ( )) log( ( { = 1}| )

log( ( { = 0}| ).

n

i y iij
yi i y is observed j Jij obs

y iij
yi y is not observed j Jij mis

l f y P R y

P R y





 



 






 

 
Suppose  the 1g  elements of iY  is observed, so },...,{=

11 g
y

obs ooJ  and the 2g  elements of iY  

is missing, so },...,{=
21 g

y
Mis MMJ . Let }|1={=

iY
ijyRij II  and }|0={=

iY
ijyRij JJ   

=1

1
1

21 11 , 11 1
{ : } = 2

1
1

21 11 , 11 1
{ : } = 2

( ) {log( ( ))

log[ ( ) { ( ) (1 ( ),...,1 ( )) })]

log[ ( ) { ( ) (1 ( ),...,1 ( )) }]},
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i

og
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M g

iM ij iM i j
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l f y
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�

 

 
where 21  and 21  are a row vector consisting of the entries 
 

 )()()(=),( ihijihijihij IEIEIIEIIcov   and  

)()()(=),( ihijihijihij JEJEJJEJJcov  , 11,...,= jh   

 
and 11  and 11  are a 1)(1)(  jj  matrix with ),( ji  element ),( kh IIcov  and ),( kh JJcov , 

1,1  jkh .  
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3.   Derivation of ISNI 
  
We considered estimation of a vector parameter   of the distribution of an outcome variable 

),...,(= 1 nYYY , whose independent components ),...,(= 1 ipi YYYi  have densities ),( iiMVN   , 

1=  iii tt . An incomplete data assumes that the probability of begin observed dependents on 

the outcome ijY  according to a specified link function, follows: 

  

, , 0 1 1 0 , 1 , [ ( = 1| , , , )] = ( ) ' ' .Y i obs i mis i i j i obs i misij
logit P R Y Y t t Y Y        

 
The index of sensitivity to nonignorability (ISNI) measured the the extent to which the maximum 
likelihood estimation (MLE) of   for a given vector 1  of the nonignorability parameter 

[denoted as )(ˆ
1  depends on 1 ] Specifically, it measures the sensitivity of )(ˆ

1  to small 

departures of 1  from its MAR vector of zero. Troxel et al. (1998) defined ISNI as the derivative 

of ̂  with respect to 1  at 0=1 , i.e.,  
 

.|
)(ˆ

= 0=1
1

1



T

ISNI  

 

One obtains )(ˆ
1  from a Taylor- series expansion of the log likelihood around 0

ˆ=   (the 

MLE of   assuming ignorability). A large ISNI implies subtantial sensitivity. 
 
To measure the sensitivity of the MLEs when the )( ,misiYdim  dimensional vector of 1  is 

perturbed around the ignorable model ( 0=1 ), assume )(ˆ
1  as the MLE of   for a fixed 1  in 

a neighborhood of 0=1 . Hence, (0)̂  is the MLE for   in the ignorable model. The 

difference (0)ˆ)(ˆ
1   is a sensible measure of the sensitivity when 1  is perturbed around the 

ignorable model. Having a vector of non-ignorability parameter 1 , we need to adjust ISNI 
proposed by Troxel et al. (1998) 
  

2 2
11

ˆ=0 (0)1
1 1

ˆ ( )ˆ( ) = | = [ ] | .
T T T

L L
ISNI 

 

   
 

                                                                 (4)
 

 
These index vectors measure sensitivity of the MLEs to perturbations in the individual 
nonignorability parameters. Also we can approximate the MLE of a scalar smooth function (.)f  

of   using the first order Taylor series expansion around 0=1  as follows:  
 

1
ˆ1 =0 1(0) 1

1

ˆ ( )ˆ ˆ( ( )) ( (0)) | | ,
T T

f
f f 

  
         

 

 



AAM: Intern. J., Vol. 6, Issue 1 (June 2011) [Previously, Vol. 6, Issue 11, pp. 1830 – 1844]                                  97 
 

where 0=1
1

1 |
)(ˆ



T

 is the sensitivity vector defined in (4). It is clear that we need to know the 

values of 1  to approximate the effect of non-ignorability on )ˆ(f  such as q1=1 , 2= gq , 

which assumes that the effect of different responses on the MLEs for moderately large 
nonignorability is the same. However, when there are no preferable direction, we would want to 
take the direction where the sensitivity is greatest among all possible perturbations whose norm 

is q :  

 

.
)(ˆ

=))ˆ((

1/2

0=1(0),ˆ1

1










TT

f
qfISNI  

 
To derive the formulas in the case of Brownian motion, then we have: 
  

2 2
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2 1
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  }]}.

 

To obtain 
T

L


2

 one can use the Hessian matrix of   under the MAR model. For calculating 

1

2


 L

, the Monte Carlo methods of approximating integrals can be utilized to calculate 

corresponding conditional expectations. 
  
Because ISNI depends on the units of measurement of ijY , Troxel et al. (1998) proposed a scale 

free measure called the sensitivity transformation c , defined as 
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1

2 ˆ( ) ( )ˆ( ) = ,
ˆ( )

ijvar Y SE
c

ISNI





 

 

where )ˆ(SE  is the standard error (SE) of ̂ . Large values of c  suggest that sensitivity ocurrs 
only in cases of extreme nongnorability, whereas small values suggest that sensitivity may be a 
problem even when the nonignorability is modest. Troxel et al. (1998) have suggested using 

1<c  as a cutoff value for important sensitivity.  
 
 
4.   Simulation 
 
A simulation study was used to investigate coverage of 95 percent confiedence intervals for 
estimates obtained by the complete data model (model 2) and incomplete data model (model 3). 
Let us suppose that ),(= (2)(1) SSX  represents the logarithm of stock price as is postulated under 
the Black-Scholes options pricing model. Two different sets of simulations were considered. In 
the first set, data were generated from: 
 
We generated from a bivariate Brownian motion ),(= 21 XXX  with drift 50)(0.100,0.0=  and 
covariance matrix:  
 

0.060 0.700
= .

0.700 0.160

 
  

 
 

  
Supposed 3500=n equidistant data points were simulated with a time step of 1/252=dt  and let 

jiijij XXY 1,=  . The data generated from compelet data were modeled using the following: 

  
1,2=, 1,...,3500=     )(= 1 jittY ijjiiij     

 
with ),( 21 ii   generated from a multivariate normal distribution with zero mean and   )( 1ii tt , 

where 
  

2
1 1 1

2
1 1 2

= ,
   

   
 

  
 

 

 
)(=2

ijj YVar   

 
and  
 

),(= 21 ii YYCorr .  
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Suppose that the first component of X, )( (1)S  is a heavily traded asset and that none of its 

observations are missing. We will assume that the second component of X, )( (2)S  is not traded at 
every time instant giving rise to some missing data. In the second set of simulations, missing 
mechanism was added to each responses, )( ijY  and data were generated from: 

 
Missing data are generated from the missingness mechanism  
 

21102110212
)(=),,,|1=(  iiiiiiiY YYttYYRPlogit     

 
with true parameters (1,1)=),(= 10  , which implies that this missingness mechanism is 

NMAR. The response 2iY  was obtained by second generating a (0,1)uniform  random vector V  

of length n  and then assigning 2iY  is missing if ),,,|1=(< 10212
iiiy YYRPV  and 2iy  is 

observed, otherwise. We assume the percentage of missing values of 2iY  is 28.000% . The data 

generated from incompelet data were modeled using the following: 
  

1

1 2 0 1 1 2 0 1 1 22

= ( )      = 1,...,3500 , = 1,2

  ( = 1| , , , ) = ( ) .

ij i i j ij

Y i i i i i ii

Y t t i j

logit P R Y Y t t Y Y

 

    




 

  
 

 
The vector of   and   should be estimated. The models (1) and (2) were fitted using nlminb  
from R  to assure that the same numerical algorithms were used to maximize the likelihoods. 

  
Results of using model (Section 2.1) is given in Table I. The complete data maximum likelihood 
estimates based on the uncensored data can be easily calculated and are displayed in Table I. In 
Table I, the diffusion coefficient is estimated quite well. The finer our observation of the process 
the closer to the true value we can expect our estimate to be. In the limit, observating a 
continuous path of any time length would lead to perfect estimation of the diffusion coefficient 
which is a consequence of the quadratic variation of the process. The same is not true for the 
drift. As expected, the estimates of the drift parameters are very poor with relatively large 
standard errors because our estimate of drift is based used only one observed sample path of the 
process. In fact it depends values of this path and these can be quite variable. 

  
Table I. Results of the simulation study for complete data 

  Parameter   1    2
1    2    2

2    

 Model (3)            
 Real Value   0.100   0.060  0.050   0.160  0.700  

Est.  0.048   0.062   -0.021   0.163  0.720  
S.E.   0.067   0.001   0.010   0.003  0.002  

  
 
Table II presents the estimates of the parameters of the incomplet data with assumption of 
NMAR. The results are summarized as follows. The parameter estimates by the model are close 
to the true values of the parameters.   
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        Table II. Results of the simulation study for incomplete data with assumption of NMAR 

  Parameter   1    2
1    2    2

2  
0  1   

 Model (3)              
 Real Value   0.100   0.060  0.050   0.160  0.700 1.000 1.000  

Est.  0.059   0.073   0.034   0.167  0.842 1.003 1.006  
S.E.   0.068   0.004   0.015   0.045  0.064  0.073 0.059 

 
5.   Application 

  
5.1  Data and Model 
 
Toronto Stock Exchange (TSX) is the largest stock exchange in Canada, the third largest in 
North America and the seventh largest in the world by market capitalisation. Based in Canada's 
largest city, Toronto, it is owned by and operated as a subsidiary of the TMX Group for the 
trading of senior equities. A broad range of businesses from Canada, the United States, Europe, 
and other countries are represented on the exchange. In addition to conventional securities, the 
exchange lists various exchange-traded funds, split share corporations, income trusts and 
investment funds. The Toronto Stock Exchange is the leader in the mining and oil   gas sector; 
more mining and oil   gas companies are listed on Toronto Stock Exchange than any other 
exchange in the world. The data set consists of one minute discredited tick data the Toronto 
Stock Exchange(TSE) dated on February 2, 2005 on three bank stocks: the Bank of Nova Scotia 
(BNS), Royal Bank (RY) and Bank of Montreal (BMO). The data consist of 392 time points with 
12, 51 and 45 missing values for BNS, RY and BMO, respectively. A stock price at a particular 
time point is reported missing if no sales were made in the last minute of trading on that stock. 
 
We use a joint model similar to the one proposed in Section 2 along with a logistic model for the 
non-dropout indicator for the TSE data set which can be summarized as follows:  
  

, 1 ,

, 1 ,

, 1 ,

= ( )

= ( )

= ( )

i BNS i i BNS i BNS

i RY i i RY i RY

i BMO i i BMO i BMO

Y t t

Y t t

Y t t

 

 

 







 

 

 

 

 
and 
  

, , , 0 1 2 1,

0 1 , 2 ,

  ( = 1| , , , , ) = ( )Y i BNS i RY i BMO i i BMOi BNS

iBNS i RY i BMO

logit P R Y Y Y t t

Y Y Y

   

  



  
 

, , , 0 1 2 1,

0 1 , 2 ,

  ( = 1| , , , , ) = ( )Y i BNS i RY i BMO i i BMOi RY

iBNS i RY i BMO

logit P R Y Y Y t t

Y Y Y

   

  



  
 

, , , 0 1 2 1,

0 1 , 2 ,

  ( = 1| , , , , ) = ( )

,

Y i BNS i RY i BMO i i BMOi BMO

iBNS i RY i BMO

logit P R Y Y Y t t

Y Y Y
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where  
 

 
)()(= 1,  iiBNSi tBNStBNSY , )()(= 1,  iiRYi tRYtRYY and )()(= 1,  iiBMOi tBMOtBMOY .  

 
Let  

),,,,,,,(= 2102102101   

 
lead to observed and missing mechanism in which the parameter estimates of the BNS , RY  and 
BMO  could be obtained ignoring the missing mechanism (provided disjoint parameter spaces 
for response models and the missing mechanism). The vector of BNS , RY , BMO , 2

BNS , 2
RY , 

2
BMO , RYBNS , , BMOBNS ,  and BMORY ,  should be estimated. The dropout mechanism would be 

ignorable if 0=1 . The log likelihood function for the above non-ignorable model could be 

obtained from appendix in which the joint distribution of RYiBNSi YY ,, ,  and BMOiY , . 

 
According to Table III, all the model parameters are not highly sensitive to even little non-
ignorability which reveals the need for examining the ignorability assumption before conducting 
a simple MAR analysis.  

 
         Table III. Results of using model data 

  Parameter  E. S.  S.E.  ISNI   c  

BNS   -0.760   2.700 -4.371   0.617  

RY   1.755   3.280  4.391   0.746  

BMO   - 1.700   2.300   -4.428 0.519  
2
BNS ,  0.025   0.001  0.147  0.006  

2
RY   0.039   0.003  0.008 0.375  

2
BMO    0.018   0.001  -0.005  0.200  

RYBNS , ,  0.002   0.001  -0.703  0.001  

BMOBNS ,   0.001   0.001  0.167  0.005  

BMORY ,    0.001   0.002  -1.620  0.001  

0   0.043   0.056  0.601  0.003  

1   0.005   0.006  0.176  0.010  

2    0.003   0.012  1.789  0.067  

0 ,  0.054   0.031  0.654  0.021  

1   0.006  0.005  0.148  0.003  

2    0.023   0.032  -1.450  0.001  

0   0.076   0.039  -0.444  0.005  

1   0.002   0.001  0.132  0.005 

2    0.009   0.004  -1.321  0.007  
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6.   Conclusion 
 
Increasing application of Finance data studies reveals the improvements needed for modelling 
such data. One common vexing problem in these kinds of studies is the individual dropout which 
may be non-ignorable and hence a MAR analysis might not be appropriate. Examining the non-
ignorability of the dropout before drawing inferences could prevent both wrong simple MAR or 
unnecessary complicated NMAR analysis. In this paper we have extended the ISNI measure to 
assess the likely effect of non-ignorable dropout for multivariate Brownian motion.  
 
 

Appendix 
 
Likelihood for Incomplete Data Model with Assumption of NMAR 
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Now, the expectation on the right hand can be approximated as (vide, Harry,1995). We have, 
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Let  
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The log-likelihood is  
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