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Abstract 
 

In this paper, a six dimensional nonlinear mathematical model is proposed to study the effect of the 
density of cloud droplets (formed due to the presence of vapors in the atmosphere) on the removal of 
pollutants, both gaseous and particulate, from the atmosphere. We assume that there exist six nonlinearly 
interacting phases in the atmosphere i.e. the vapor phase, the phase of cloud droplets, the phase of 
raindrops, the phase of gaseous pollutants, the phase of particulate matters and the phase of gaseous 
pollutants absorbed in raindrops. It is further assumed that the dynamics of the system undergo ecological 
type growth and nonlinear interactions. The model is analyzed qualitatively using the stability theory of 
ordinary differential equations and computer simulations. By analyzing the model, it is shown that under 
appropriate conditions, gaseous pollutants and particulate matters would be removed from the atmosphere 
and their respective equilibrium levels would depend upon the intensity of rain caused by cloud droplets, 
emission rate of pollutants, the rate of raindrops falling on the ground, etc.  It is pointed out that, if due to 
unfavorable atmospheric conditions cloud droplets are not formed, rain may not occur and pollutants 
would not be removed.  
 
Keywords:  Gaseous pollutants, particulate matters, cloud droplets, raindrops, stability, 

simulation 
 
AMS-MSC 2010 No.: 34D20, 93A30  



AAM: Intern. J., Vol. 8, Issue 2 (December 2013)                                                                                                     417                              
          

   

1. Introduction 
 
Environmental pollution has been recognized as a most challenging problem for developed and 
developing countries due to the increasing quantities of gaseous pollutants and particulate 
matters emitted into the atmosphere from different sources like industrial emissions, household 
discharges, vehicular exhausts, etc. Precipitation scavenging due to rain is one of the most 
important mechanisms for removal of pollutants from the atmosphere. Under appropriate 
atmospheric conditions, cloud droplets are formed due to cooling water vapor. Rain/precipitation 
occurs when growing cloud droplets are transformed into raindrops which may then remove 
pollutants (both gaseous and particulate matters) from the atmosphere. It is noted here that the 
density of the raindrops depends upon the density of cloud droplets; the denser the cloud, the 
more intense is the rain fall. In the atmosphere, during rain, gaseous pollutants are removed by 
the process of absorption by raindrops falling on the ground while particulate matters are 
removed by process of impaction.  
 
Several experimental investigations have been made to study the removal of pollutants from the 
atmosphere by precipitation [Davies (1976), Sharma et al. (1983), Kleinman et al. (1992), 
Pandey et al. (1992), Pillai et al. (2001), Goncalves et al. (2002), Ravindra et al. (2003), Moore 
et al. (2007)]. For example, Davies (1976) studied the removal of sulfur dioxide by precipitation 
in an industrial area of Sheffield, U.K. and found significant reduction in its concentration after 
rain. Pandey et al. (1992) measured the concentrations of ozone, nitrogen dioxide, sulfur dioxide 
and the total suspended particulate matters (TSP) in the urban area of Varanasi city in India 
during 1989 and found a decrease in their concentrations in the rainy season. Pillai et al. (2001) 
studied wet deposition and dust fall in the city of Pune, India and emphasized the importance of 
wet removal. Goncalves et al. (2002) investigated atmospheric scavenging processes considering 
a numerical simulation through the model Regional Atmospheric Modeling System (RAMS) 
coupled with a one-dimensional below-cloud scavenging model in order to simulate in-cloud and 
below-cloud scavenging processes in the Serra Do Mar region in southeastern Brazil. The 
average concentration of three chemical species, 

34 , NOSO  and 
4NH  found in rain water, 

scavenged from the atmosphere, have been predicted. The variation in the spatial pattern of 
criteria air pollutants ),,( 322 ONOSO  before and during the initial rain of the monsoon at 

Shahdara National Ambient Air Quality Monitoring (NAAQM) station in Delhi, India in 1999 is 
studied and a considerable decrease in the air pollutants concentration after the initial and 
subsequent rain of the monsoon is obtained, Ravindra et al. (2003).  
 
Several researchers have studied the phenomenon of the removal of pollutants by precipitation 
scavenging due to rain, snow or fog using mathematical models [Hales et al. (1973), Slinn 
(1977), Kumar (1985), Arora et al. (1991)]. In particular, Hales et al. (1973) proposed a model 
for predicting the rain washout of gaseous pollutants from the atmosphere. Some approximations 
for the wet and dry removal of particles and gases from the atmosphere have also been presented, 
Slinn (1977). An Eulerian model has been studied to describe the simultaneous process of 
removal of trace gas from the atmosphere and its absorption in raindrops by considering the 
precipitation scavenging of the gas present below the cloud, Kumar (1985). Kumar (1986), 
further, extended the above model by taking into account the process of absorption of multiple 
species and chemical reactions within the droplets. 
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Some investigations have been conducted to study the phenomenon of removal of gaseous 
pollutants and particulate matters using nonlinear mathematical models [Pandis and Seinfeld 
(1990), Naresh (2003), Naresh et al. (2007), Shukla et al. (2008a, b), Naresh and Sundar (2007, 
2010)]. In this regard, Naresh et al. (2007) presented a nonlinear mathematical model to study 
the removal of gaseous pollutants and particulate matters from the atmosphere of a city by 
precipitation. They have shown that, under appropriate conditions, gaseous pollutants and 
particulate matters can be washed out from the atmosphere. Naresh and Sundar (2007) studied an 
ecological type nonlinear mathematical model for the removal of gaseous pollutants and two 
distinct particulate matters (smaller and larger particulate matters) by rain to see the effect of 
precipitation on the equilibrium levels of these pollutants in the atmosphere. Shukla et al. 
(2008a) presented a mathematical model for the removal of a gaseous pollutant and two 
particulate matters (one being formed from gaseous pollutants) by rain but did not consider the 
effect of vapour or cloud droplets phase. Shukla et al. (2008b) further modeled and analyzed a 
nonlinear mathematical model for the removal of gaseous pollutants and particulate matters from 
the atmosphere by precipitation considering the effect of cloud density but did not consider the 
effect of vapor phase.  
 
In the above mentioned models, the vapor phase forming cloud droplets has not been taken into 
account to model the phenomenon of removal of pollutants from the atmosphere by precipitation 
[Sundar and Naresh (2012)]. They (2012) studied the removal of primary gaseous pollutants 
forming secondary species, from the atmosphere by precipitation due to rain with the assumption 
that the growth of raindrops is directly proportional to the density of cloud droplets, which are 
formed due to presence of vapor phase in the atmosphere. It may be noted that clouds form when 
atmospheric water vapor condenses into small liquid droplets. The phenomenon of interaction of 
gaseous pollutants with raindrops depends upon the temperature of gaseous pollutants. Due to 
high temperature of gaseous pollutants the depletion of raindrops may also take place by 
evaporation, thus enhancing the growth of vapors.  
 
Therefore, in this paper, we propose and analyze a nonlinear mathematical model for the removal 
of gaseous pollutants and particulate matters from the atmosphere by precipitation incorporating 
the vapor phase with the above considerations. The proposed model study is limited to the 
situations with certain underlying assumptions. However, various generalizations can be made in 
further studies. For example, the interaction of one phase with the other can be taken in a more 
general form then a simple law of mass action as in the present study with recycling phenomena. 
The rate of emission of gaseous pollutants and particulate matters are taken to be constant and 
homogeneously distributed as the atmosphere is assumed to be calm but the effects of 
convection, wind speed and diffusion can also be incorporated in the modeling study. The 
chemical characteristics of gaseous pollutants and particulate matters and their chemical affinity 
with water whether in the form of rain or cloud droplets can also be taken into account in further 
studies. 
 
2. Mathematical Model 
 
In this study, our main aim is to emphasize the role of the density of cloud droplets (caused by 
water vapors) on the removal of gaseous pollutants and particulate matters from the atmosphere 
by rain. It is noted here that, when rainfall occurs (due to condensation of cloud droplets), 
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raindrops interact with gaseous pollutants and particulate matters and remove them from the 
atmosphere. To model the phenomenon, the following assumptions are made: 
 

1. In the atmosphere, water vapor is formed naturally. 
2. The growth rate of cloud droplets is in direct proportion to the density of water vapor. 
3. The growth rate of raindrops is in direct proportion to the density of cloud droplets. 
4. The depletion of raindrops takes place due to chemical interaction with gaseous 

pollutants and by other natural processes.  
5. The rate of emission of gaseous pollutants and particulate matters is taken to be constant, 

though it may be a function of time. 
6. The atmosphere, under consideration, is assumed to be calm and therefore the effects of 

convection and diffusion in the atmosphere have not been taken into account.  
7. If the pollutant species (gaseous) are hot, the raindrops upon interaction with these 

gaseous pollutants get vaporized and a fraction of it may re-enter the atmosphere 
enhancing the growth of the vapor phase.   

 
Let )(tCv , )(tCd and )(tCr be the densities of water vapor, cloud droplets and raindrops in the 

atmosphere respectively, )(tC  and )(tC p be the cumulative concentrations of gaseous pollutants 

and particulate matters in the atmosphere and )(tCa be the concentration of gaseous pollutants in 

absorbed phase. Let Q  and pQ  be the cumulative emission rates of gaseous pollutants and 

particulate matters with their natural depletion rates C  and pp C  respectively. It is assumed 

that the absorption of gaseous pollutants by raindrops is proportional to the concentration of 
gaseous pollutants and the density of raindrops (i.e. rCC ) with its natural depletion rate 
coefficient k. Further, the removal of gaseous pollutants in absorbed phase due to falling 
raindrops on the ground is assumed to be proportional to the density of raindrops as well as to the 
concentration of gaseous pollutants in absorbed phase (i.e., ra CC ).  

 
Thus, the dynamics of the system is governed by the following nonlinear differential equations, 
 

CCrCq
dt

dC
rv

v
10   ,                                             (2.1) 

dv
d CC

dt

dC
0  ,                                              (2.2) 

CCrCrCr
dt

dC
rrd

r
10  ,                                             (2.3)  

rCCCQ
dt

dC   ,                                                         (2.4) 

rppppp
p CCCQ

dt

dC
  ,                                                        (2.5) 

raar
a CCCkCC

dt

dC
  ,                                                        (2.6)                  
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with  
 

0)0(,0)0(,0)0(,0)0(,0)0(,0)0(  aprdv CCCCCC . 

 
In the model, let q be the rate of formation of vapors and vC0 the depletion of vapor phase 

caused by natural factors as well as by formation of cloud droplets. Let   )( 0  be the 

growth rate of cloud droplets (formed due to the presence of vapor phase) and dC0  the depletion 

of cloud droplets caused by natural factors as well as by formation of raindrops. Let  r  ( 0r ) 

be the growth rate of raindrops (due to cloud droplets) and 0r  its natural depletion rate 

coefficient.  
 
The depletion of raindrops is assumed to be in direct proportion to the number density of 
raindrops as well as the concentration of gaseous pollutants (i.e., CCr r1 ) and a part of it (i.e., 

CCr r1 , 10   ) may re-enter the atmosphere enhancing the growth of vapors. The 

constants , p  and k are the natural removal rate coefficients ofC , pC and aC  respectively and 

the constants , p and   are the removal rate coefficients of C , pC and aC respectively due to 

interactions with rC . All the constants considered here are taken to be non-negative.  
 
It is remarked here that if 1r  is very large for a given concentration C , due to unfavorable 

atmospheric conditions, 
dt

dCr  may become negative. In such a case, no raindrops formation 

would take place and pollutants would not be removed from the atmosphere. It is also remarked 
here that, if due to unfavorable atmospheric conditions, there is no cloud formation, rain may not 
occur and the pollutants would not be removed from the atmosphere. 
 
In the following, we analyze the nonlinear model (2.1) – (2.6) by using the stability theory of 
differential equations.  

 
 

3. Boundedness of Solutions 
 
To analyze the model (2.1) – (2.6), we need the bounds of the dependent variables involved in 
the dynamical system. For this, we state the region of attraction in the form of following lemma,  
 
Lemma 3.1 
 
Let the initial conditions be 0)0(,0)0(,0)0(,0)0(,0)0(,0)0(  aprdv CCCCCC  for all 

0t , then the set  
 














p

p
p

m
a

m
rdvaprdv

Q
C

Q
CC

q
CCCCCCCCC


0,0,0:),,,,,(  
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attracts all solutions initiating in the interior of the positive octant, where 
},,{min 000 rrm    and },{min km   .  

 
Proof: 
 
From equations (2.1) – (2.3), we have 
 

CCrCrCrCqCCC
dt

d
rrdvrdv 1000 )1()()()(    

 

rdv CrCrCq 000 )()(    

 
)( rdvm CCCq   , 

 
where  
 

},,{min 000 rrm   . 

 
Thus, we have 
 

m
rdv

t

q
CCC





)sup(Lim . 

 
Again, from equations (2.4) and (2.6), we have 
 

raaa CCCkCQCC
dt

d   )(  

 
aCkCQ    

 
)( am CCQ   , 

 
where  
 

},{min km   . 

Thus, we have, 
m

a
t

Q
CC





)sup(Lim . Similarly, from equation (2.5), we get, 

p

p
p

t

Q
C





)sup(Lim . Hence, the lemma.  
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4.   Equilibrium and Stability Analysis 
 

The model has only one equilibrium namely ),,,,,( *******
aprdv CCCCCCE , where 

***** ,,,, prdv CCCCC  and *
aC are the positive solutions of the following algebraic equations: 

 

0

1

0

1 )(





 rrr

v

CfCrqCCrq
C





 ,                                            (4.1) 

  

)}({ 1
000

rrvd CfCrqCC 






 ,                                            (4.2) 

  
010  CCrCrCr rrd ,                                               (4.3) 

  

)( r
r

Cf
C

Q
C 





,                                              (4.4) 

  

rpp

p
p C

Q
C

 
  ,                                              (4.5) 

 

r

rr

r

r
a Ck

CfC

Ck

CC
C













)(
.                                  (4.6) 

  
To show the existence and uniqueness of *E , we write equation  (4.3) as follows: 
 

rrrr Cr
r

CfCr
qr

CF 0
00

1
00

1)()( 















.                                           (4.7) 

It is known that 0)( rCF has a unique root in  , if 0)0( F , 0








m

q
F


 and 0)(  rCF  in 

this region. 
 
It can be easily checked from equation (4.7) that  
 

0)0( F  and 0








m

q
F


. 

 
Also from equation (4.7) we note that 
 

01
)(

)(
00

2
1

0 
























 r

C

QCr
rCF

r

r
r , since 0r , 0   and 10   . 
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Hence, there exists a unique root (say *
rC ) in 

m
r

q
C


0  without any condition. Using *

rC  we 

can evaluate **** ,,, pdv CCCC  and *
aC  from equations (4.1), (4.2), (4.4), (4.5) and (4.6), 

respectively. 
 
In the following, we check the characteristics of various phases with respect to relevant 
parameters. 
 
From equations (4.1) – (4.4), we have 
 

0)(
00

011
00

2
0 














 qr

CrQrQrq
r

Cr rr .                               (4.8)

  
 
4.1.  Variation of C  with q   
 
Differentiating equation (4.8) with respect to ‘ q ’ we get: 
 

0

)(

00

2
0

00 












qr
Cr

CC
r

dq

dC

r

rr
r . 

 
This implies that, the density of raindrops )( rC  increases as the rate of formation of water vapor 

)(q  increases in the atmosphere. Also, from equation (4.4), we note that 0
rdC

dC . 

Now, 0
dq

dC

dC

dC

dq

dC r

r

, since 0
dq

dCr . 

 
Therefore, the concentration ( C ) of gaseous pollutants decreases as the rate of formation of 
vapors (i.e. q ) increases. 
 
4.2. Variation of C  with   
 
Differentiating equation (4.8), with respect to   we get: 
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0

})({

00

2
0

1
00 












 qr
Cr

CQCrCq
r

d

dC

r

rrr
r .  

 
This implies that, the density of raindrops )( rC  increases as the growth rate of cloud droplets )(  

increases in the atmosphere.  Again, from equation (4.4), 0
rdC

dC . 

Now, 0
 d

dC

dC

dC

d

dC r

r

, since 0
d

dCr . 

 

Therefore, the concentration (C ) of gaseous pollutants decreases as the growth rate of cloud 
droplets ( ) increases. 

 
4.3. Variation of C  with r   
 
Differentiating equation (4.8), with respect to r  we get: 
 

0

})({

00

2
0

1
00 













qr
Cr

CQCrCq

dr

dC

r

rrr
r . 

 
This implies that the density of raindrops )( rC  increases as the growth rate of raindrops increases 

in the atmosphere.  Again, from equation (4.4), 0
rdC

dC . 

Now 0
dr

dC

dC

dC

dr

dC r

r

, since 0
dr

dCr . 

 

Therefore, the concentration of gaseous pollutants decreases as the growth rate of raindrops ( r ) 
increases. 

 
4.4 Variation of pC with    

From equation (4.5), we note that 0
r

p

dC

dC
. 

Now 0
 d

dC

dC

dC

d

dC
r

r

pp , since 0
d

dCr  
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Therefore, the concentration )( pC of particulate matters decreases as the growth rate of cloud 

droplets ( ) increases. 

Similarly we can also show that 0,0,0,0 
dr

dC

dr

dC

d

dC

dq

dC
apap


, etc. 

 
Thus, from the above analysis, it is noted that the density of raindrops increases but the 
cumulative concentration of gaseous pollutants and particulate matters decreases as the growth 
rate of cloud droplets increases. This decrease in the concentration of pollutants is due to 
increased level of density of raindrops. 
 
We also note that,  

1. If the coefficient   and p  are very large, then 
dt

dC
 and 

dt

dC p  respectively may become 

negative and the pollutants (gaseous and particulate) would be removed from the 
atmosphere. 

 

2. If the coefficient k and   are very large, then 0
dt

dCa
 and the formation of absorbed 

phase is very transient and it may not exist. 
 
To see the stability behavior of *E , we state the following theorems. 

 

Theorem 4.1.  
 

Let the following inequalities   

 

))((
15

4
)( **

10
2**

1 rr CCrrCCr                                   (4.9) 

  











 


 2*

*

2*

*
10

2
1

0
1*

10
2

00

22

3

)(
,

5

)(
min

)(3

4

)(4

15

r

r

C

C

C

Crr

r
k

Crr

r 






                             (4.10)  

 
hold, then *E  is locally stable (See Appendix A for proof). 
 
Theorem 4.2.  
 
If the following inequalities are satisfied inside the region of attraction  , 
 

 0
2**

1 15

4
)( rCCr r  ,                                            (4.11) 
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












22*

0
2

1

0
1

0
2

00

22

)/(3
,

5
min

)(3

4

4

15

mqC

r

r
m

r

r










,                                        (4.12)  

 
then *E is globally asymptotically stable with respect to all solutions initiating in the interior of 
the positive octant (See Appendix B for proof). 
 
The above theorems imply that under certain conditions, the gaseous pollutants and particulate 
matters would be removed from the atmosphere and the removal rate increases as the densities of 
vapors and cloud droplets increase. 
 
Remark:  
 
If 0 , then cloud droplets may not be formed and hence due to non-occurrence of rain,   and 

1r  will be assumed to be zero. In such a case, the inequalities (4.9) – (4.12) are satisfied 
automatically. It shows that, in absence of these parameters, the pollutants would be removed 
from the atmosphere due to gravitational effect (natural removal). 
 
5. Numerical Simulation and Discussion 
 
In this section we present the results of computer simulations of system (2.1) – (2.6) for different 
values of parameters to study the behavior of the model system. For that the system (2.1) – (2.6) 
is integrated numerically with the help of MAPLE 7 by considering the following set of 
parameter values: 
 

7.0,08.0,0002.0,8.0,5 10   rq , 

  
15.0,10,20,07.0,5.0,6.0 00   pQQrr , 

 
55.0,30.0,50.0,25.0,65.0   kpp . 

 
The equilibrium *E is calculated as, 
 

,384243.17,292375.7,250607.6 ***  rdv CCC  

  

001553.2,118302.1,746761.1 ***  ap CCC . 

 
Eigenvalues corresponding to *E are obtained as: 
 

740252.0,676462.0,712506.1,872420.6,352455.7,377595.9  . 
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Since all the eigenvalues corresponding to *E are negative, therefore *E is locally asymptotically 
stable. 
 
The global stability behavior of *E  in rd CC   plane is shown in Figure 5.1. In Figures 5.2 – 

5.4, the variation of density of cloud droplets dC , concentration of gaseous pollutants C  and 

particulate matters pC  with time ''t  is shown for different values of rate of formation of vapors 

(i.e., at 5,3,0q ) respectively. From these figures, it is visualized that if the rate of formation of 
vapors is zero i.e., 0q , the density of cloud droplets will be zero (Figure 5.2) and the 
concentration of the gaseous pollutants and particulate matters would increase continuously 
attaining their respective equilibria (Figures 5.3– 5.4).  Further, the density of cloud droplets 
increases but the concentrations of gaseous pollutants and particulate matters decrease as q  

increases. In Figures 5.5 – 5.8, the variation of density of raindrops rC , the concentrations of 

gaseous pollutants C and particulate matters pC , and the concentration of gaseous pollutants in 

absorbed phase aC with time ''t  is shown for different values of growth rate of cloud droplets   

(i.e., at 7.0,6.0,0 ) respectively. From Figure 5.5 at 0 , it is seen that the formation of 
raindrops phase is very transient and may not exist but the density of raindrops increases as the 
growth rate of cloud droplets increases. In Figures 5.6 and 5.7, it is shown that if the growth rate 
of cloud droplets is zero i.e. 0 , the concentrations of gaseous pollutants C  and particulate 
matters pC  increase continuously attaining their respective equilibria and pollutants would not 

be removed from the atmosphere. Further, as the density of cloud droplets increases, the 
concentrations of these pollutants decrease.  
 

 
        Figure 5.1. Global stability in dv CC   plane 
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Figure 5.2. Variation of dC  with time ''t for different values of q  

 

 
Figure 5.3. Variation of C with time  ''t for different values of q  

 
 

 
Figure 5.4. Variation of pC with time ''t for different values of q  
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Figure 5.5. Variation of rC with time ''t for different values of   

 
 

 
Figure 5.6. Variation of C with time ''t for different values of   

 

 
Figure 5.7. Variation of pC with time ''t for different values of   



430                                                                                                                                                     Shyam Sundar et al.                           
 

                
 Figure 5.8. Variation of aC with time ''t for different values of   

 
In Figure 5.8, it is shown that at 0  the formation of the absorbed phase is very transient. It is 
also depicted that the concentration of gaseous pollutants in the absorbed phase (i.e., Ca) 
decreases as the growth rate of cloud droplets increases. Further, if the cloud droplets density is 
very large, the removal of gaseous pollutants as well as particulate matters is quite significant 
due to enhanced rainfall. 
 
In tables 1 and 2, the variation of equilibrium values is shown for different values of rate of the 
formation of vapors q   and the growth rate of cloud droplets respectively. From table 1, it is 
clear that the densities of cloud droplets and raindrops increase as the rate of formation of vapors 
increases but the concentrations of gaseous pollutants and particulate matters decrease. From 
table 2, it is seen that the density of raindrops increases but the concentration of pollutants 
decreases, with increase in the growth rate of cloud droplets. 
 

Table 1. Variation of dC , rC , C  and pC  with rate of formation of water vapor q  

   
q   3  4  5  6 

 

dC          4.3756                5.8340         7.2923         8.7507 

rC          1.3205       7.5497       17.3842       27.6315 

C        19.8342       3.9546         1.7467         1.1043 

pC        10.9857       2.4845         1.1183         0.7109 

 
          Table 2. Variation of rC , C  and pC  with growth rate of cloud droplets  

 
   0.5  0.6  0.7  0.8 

    

rC      3.9719              10.2561                17.3842               24.6904 

C   7.3213  2.9340  1.7467  1.2346 

pC   4.4723  1.8594  1.1183  0.7939 
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6. Conclusion 
 
In this paper, an attempt has been made to study the role of cloud droplets, caused by water 
vapors, on the removal of gaseous pollutants and particulate matters from the atmosphere using a 
nonlinear mathematical model. The model is analyzed using the stability theory of differential 
equations and numerical simulations. It is shown, analytically and numerically, that the density 
of raindrops increases while the cumulative concentrations of gaseous pollutants and particulate 
matters decrease as the growth rate of cloud droplets increases. It has also been shown 
numerically that the densities of cloud droplets and raindrops increase while the concentrations 
of gaseous pollutants and particulate matters decrease as the rate of formation of water vapor 
increases. Further, the magnitude of pollutants removed by rainfall depends upon the intensity of 
rain caused by cloud droplets formation, but the remaining equilibrium amount would depend 
upon the rate of emission of pollutants, the rate of formation of water vapors, the growth rate of 
cloud droplets and raindrops, the rate of falling raindrops on the ground and other interaction 
parameters. It has also been shown that if there is no cloud formation, raindrops may not be 
formed and pollutants would not be removed from the atmosphere. The results, so obtained, are 
qualitatively in line with the experimental observations, Davies (1976), Sharma (1983), and 
Pandey et al. (1992). 
 
Acknowledgements: 
 
Authors are thankful to the anonymous reviewers for their constructive comments and 
suggestions which helped us improve and finalize the manuscript. The financial support received 
from University Grants Commission, New Delhi, India through project F. No. 39-33/2010(SR) 
for this research to the authors (SS & RN) is gratefully acknowledged. 
 
 

REFERENCES 
 
Arora, U., Gakkhar, S. and Gupta, R.S. (1991). Removal model suitable for air pollutants emitted 

from an elevated source, Appl. Math. Model, Vol. 15,  pp. 386-389. 
Davies, T. D. (1976). Precipitation scavenging of sulfur dioxide in an industrial area, Atmos. 

Environ., Vol. 10, pp. 879-890. 
Goncalves, F. L. T., Ramos, A. M., Freitas, S., Silva Dias, M. A. and Massambani, O. (2002). In-

cloud and below-cloud numerical simulation of scavenging processes at Serra Do Mar 
region, SE Brazil, Atmos. Environ., Vol. 36, pp. 5245-5255. 

Hales, J. M., Wolf, M. A. and Dana, M. T. (1973). A linear model for predicting the washout of 
pollutant gases from industrial plume, AICHE Journal, Vol. 19, pp. 292-297. 

Kleinman, L. I., Daum, P. H. and Berkowitz, C. (1992). Effects of in-cloud processes upon the 
vertical distribution of aerosol particles: Observations and numerical simulations, 
Precipitation Scavenging and Atmosphere Surface- Exchange, (Eds., Schwartz S.E. and 
Slinn W.G.N.), Hemisphere Pub. Corp., Richland, Washington, U.S.A, Vol. 1, pp. 359 -369.  

Kumar, S. (1985). An Eulerian model for scavenging of pollutants by rain drops,  Atmos. 
Environ., Vol. 19, pp. 769-778. 



432                                                                                                                                                     Shyam Sundar et al.                           
 

Kumar, S. (1986). Reactive scavenging of pollutants by rain: a modeling approach, Atmos. 
Environ., Vol. 20, pp. 1015 – 1024. 

Moore, K. F., Sherman, D. E., Reilly, J. E. and Collett, J. L. (2004). Drop size dependent 
chemical composition in cloud and fog, part 1, observations, Atmos. Environ., Vol. 38, No. 
10, pp. 1389-1402. 

Naresh, R. (2003). Qualitative analysis of a nonlinear model for removal of air pollutants, Int. J. 
Nonlinear Sciences and Numerical Simulation, Vol. 4, pp. 379-385. 

Naresh, R., Sundar, S. and Shukla, J.B. (2007). Modeling the removal of gaseous  pollutants and 
particulate matters from the atmosphere of a city, Nonlinear Analysis: Real World  
Applications, Vol. 8, pp. 337-344. 

Naresh, R. and Sundar, S. (2007). A nonlinear dynamical model to study the removal of gaseous 
and particulate pollutants in a rain system, Nonlinear Analysis: Modelling and Control, Vol. 
12, No. 2, pp. 227-243 

Naresh, R. and Sundar, S. (2010). Mathematical modelling and analysis of the removal of 
gaseous pollutants by precipitation using general nonlinear interaction, Int. J. Appl. Math. 
Comp., Vol. 2, No. 2, pp. 45-56. 

Pandey, J., Agrawal, M., Khanan, N., Narayanan, D. and Rao, D. N. (1992).  Air pollution 
concentrations in Varanasi, India, Atmos. Environ., Vol. 26 B, pp. 91-98. 

Pandis, S. N. and Seinfeld, J.H. (1990). On the interaction between equilibration  process and 
wet or dry deposition, Atmos. Environ., Vol. 24 A, No.9, pp. 2313-2327. 

Pillai, A., Naik, M. S., Momin, G., Rao, P., Ali, K., Rodhe, H. and Granat, L. (2001).  Studies of 
wet deposition and dustfall at Pune, India, Water, Air and Soil Pollution, Vol. 130, No. (1-4), 
pp. 475-480. 

Ravindra, K., Mor, S., Kamyotra, J. S.  and Kaushik, C. P. (2003). Variation of spatial pattern of 
criteria air pollutants before and during initial rain of monsoon, Environ. Model. Assess., 
Vol. 87, No. 2, pp. 145-53.  

Sharma, V. P., Arora, H. C. and Gupta, R. K. (1983). Atmospheric pollution studies at Kanpur- 
suspended particulate matter, Atmos. Environ., Vol. 17, pp. 1307-1314. 

Shukla, J. B., Misra, A. K., Sundar, S. and Naresh, R. (2008a). Effect of rain on removal of a 
gaseous pollutant and two different particulate matters from the atmosphere of a city, Math. 
Comput. Model., Vol. 48, pp. 832-844. 

Shukla, J. B., Sundar, S., Misra, A. K. and Naresh, R. (2008b). Modelling the removal of 
gaseous pollutants and particulate matters from the atmosphere of a city by rain: Effect of 
Cloud Density, Environ. Model. Assess., Vol. 13, pp. 255-263. 

Sundar S. and Naresh R. (2012). Role of vapor and cloud droplets on the removal of primary 
pollutants forming secondary species from the atmosphere: A modeling study, Int. J. 
Nonlinear Sc., Vol.14, pp.131-141.  

Slinn, W. G. N. (1977). Some approximations for the wet and dry removal of particles and gases 
from the atmosphere, Water, Air and Soil Pollution, Vol. 7, pp. 513-543. 

 
 

Appendix A 
 

Proof of Theorem 4.1.  
Using the following positive definite function in the linearized system of (2.1) – (2.6), 



AAM: Intern. J., Vol. 8, Issue 2 (December 2013)                                                                                                     433                              
          

   

 

)(
2

1 2
16

2
15

2
14

2
13

2
12

2
11 aprdv CkCkCkCkCkCkV  ,                             (A.1) 

 
where  111111 ,,,,, aprdv CCCCCC are small perturbations from *E , as follows 
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Differentiating (A.1) with respect to ''t we get, in the linearized system corresponding to *E  
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Now V  will be negative definite under the following conditions: 
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the inequalities (A.2) – (A.9) reduce to 
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which are same as stated in the theorem. Thus, V  will be negative definite provided the 
conditions (4.9) – (4.10) are satisfied showing that V is a Liapunov function and hence the 
theorem. 

 
Appendix B 

 
Proof of Theorem 4.2.  
 
Using the following positive definite function, 
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Differentiating with respect to t, we get: 
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Now, U  will be negative definite under the following conditions: 
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Maximizing the LHS and minimizing the RHS and choosing the constants such that: 
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which are the same as stated in the theorem. Thus, U  will be negative definite provided the 
conditions (4.11) – (4.12) are satisfied inside the region of attraction   showing that U is a 
Liapunov function and hence the theorem.   
 

 


