
528 

 

Available at 
http://pvamu.edu/aam 

Appl. Appl. Math. 

ISSN: 1932-9466 
 

Vol. 9, Issue 2 (December  2014),  pp. 528 - 540 

Applications and Applied 

Mathematics:  

An International Journal 

(AAM) 

 

 
Applying GMDH-type Neural Network and Particle warm  

Optimization for Prediction of Liquefaction  

Induced Lateral Displacements 

 
 

Reza Ahmadi Jirdehi
 

Department of Engineering 

Kasra Institute, Ramsar, Iran 
ahmadi@kasraramsar.ac.ir  

 

Hamidreza Talebi Mamoudan 

Department of Engineering 

Islamic Azad University 

Langroud Branch, Langroud, Iran 

h_talebi@iaul.ac.ir  

 

Hossein Hassanpanah Sarkaleh
 

Department of applied Mathematics  

Islamic Azad University 

Rudsar and Amlash Branch, Rudsar, Iran 

Hossein.hassanpanah@yahoo.com 
 

 

Received: May 4, 2014; Accepted: September 17, 2014 
 

 

Abstract 
  

Lateral spreading and flow failure are amongst the most destructive effects of liquefaction. 

Estimation of the peril of lateral spreading requires characterization of subsurface conditions, 

principally soil density, fine content, groundwater conditions, site topography and seismic 

characteristics. In this paper a GMDH-type neural network and particle swarm optimization is 

developed for prediction of liquefaction induced lateral displacements. Using this method, a new 

model was proposed that is suitable for predicting the liquefaction induced lateral displacements. 

The proposed model was tested before the requested calculation. The data set which is contains 

250 data points of liquefaction-induced lateral ground spreading case histories from eighteen 

different earthquakes was divided into two parts: 70% were used as training and 30% were used 

as a test set, which were randomly extracted from the database. After initially testing  on the 

input_output process, the predicted values were compared with experimental values to evaluate 

the performance of the group method of data handling neural network method. 
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  Lateral displacement. 
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1. Introduction 

Liquefaction occurs in saturated sand deposits, due to excess pore water pressure increase, during 

earthquake induced cyclic shear stresses. Thus,  can cause serious to destructive damage to 

structures. The liquefaction mechanism includes ground subsidence, flow failure and lateral 

spreading, among other effects. Perhaps one of the earliest observed cases of lateral spreading is 

the San Francisco 1906 earthquake, Youd et al. (2002). Lateral spreading involves the movement 

of relatively intact soil blocks on a layer of liquefied soil toward a free face or incised channel. It 

can also induce different forms of ground deformation, which can be very destructive, in the 

vicinity of natural and artificial slopes. A number of approaches have been proposed for 

prediction of the magnitude of lateral ground displacements under various conditions. Al 

Bawwab (2005) has categorized the methods into the following four groups: 

 

(1) Numerical analyses in the form of finite element and/or finite difference techniques. 

 

(2)  Simplified analytical methods. 

 

(3)  Soft computing techniques. 

 

(4)  Empirical methods, developed, based on the assessment of either laboratory test data 

or statistical analyses of lateral spreading case histories.  

 

Numerical and analytical methods have been widely used in geo-mechanics to simulate the 

patterns of kinematic behavior under various loadings. The success of such methods is highly 

dependent on the constitutive model and the input parameters. The finite element or finite 

difference methods are perhaps the most widely used numerical methods. However, these 

procedures are highly dependent on material parameters that are usually difficult to estimate, and, 

as a result, limited success has been achieved in producing results that are comparable to field 

observations, Javadi et al. (2006). Analytical models have also contributed to the development of 

knowledge in this field. A number of simplified analytical models have been utilized to simulate 

liquefaction induced lateral spreading. The Sliding Block Model, Newmark (1965), Yegian et al. 

(1991), Baziar at al. (1992), Jibson (1994), Minimum Potential Energy Model, Towhata et al. 

(1992), Tokida et al. (1993), Shear Strength Loss and Strain Re-hardening Model, Bardet et al. 

(1999), and the Viscous Model, Hamada et al. (1994) are examples of this approach. In Hamada 

et al. (1986), Youd and Perkins (1987), Bardet et al. (1999), Youd et al. (2002) and Kanibir 

(2003) the authors have introduced empirical correlations and Multi-Linear Regression (MLR) 

models for the assessment of liquefaction induced lateral spreading. In Zhang et al. (2004), the 

authors have introduced a „„Lateral Displacement Index (LDI)‟‟ calculated by integration of the 

maximum shear strain over potentially liquefiable layers, and then have used it in a couple of 

simple correlations for „„free-face‟‟ and „„ground slope‟‟ cases. Liu and Tesfamariam (2012) have 

investigated different types of models to predict the lateral spread displacement over a free-face 

and ground-slope conditions. Jafarian et al. (2012) have used computational fluid dynamic to 

predict liquefaction-induced lateral deformation of an infinite earth slope. In Kalantary et al. 

(2013), the authors have proposed the robust counterpart of the least squares model to quantify 

the effect of uncertainties on the evaluation of model parameters. 
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Artificial Neural Networks (ANNs) have been used for modeling induced displacement by 

Bartlet and Youd (1992). ANNs are nonlinear and highly flexible models that have been 

successfully used in many complicated systems. The ANNs can be considered as universal 

function approximators. Giving enough data, they can approximate the underlying function with 

accuracy. However, the main disadvantage of traditional NNs is that the detected dependencies 

are hidden within the NN structure, Nariman-Zadeh and Jamali (2007).  

 

 Conversely, the group method of data handling (GMDH), Ivakhnenko (1971) is aimed at 

identifying the functional structure of a model hidden in the empirical data. The main idea of the 

GMDH is the use of feed-forward networks based on short-term polynomial transfer functions 

whose coefficients are obtained using regression combined with emulation of the self-organizing 

activity behind neural network (NN) structural learning, Farlow (1984). The GMDH was 

developed in complex systems for the modeling, prediction, identification, and approximation. It 

has been shown that, the GMDH is the best optimal simplified model for inaccurate, noisy, or 

small data sets, with a higher accuracy and a simpler structure than typical full physical models, 

Ghanadzadeh et al. (2011, 2012), Shooshpasha and MolaAbasi (2012).  

 

In this work, a model for prediction of liquefaction induced lateral displacements was developed 

using the GMDH algorithm. Using existing experimental data the proposed network was trained. 

The trained network was used to predict the liquefaction induced lateral displacements. Then, the 

predicted data was compared with the experimental data which have previously reported. In order 

to investigate the reliability of the proposed method, the accuracy of the model was determined 

using coefficient of determination (R
2
), mean square error (MSE), root mean square error 

(RMSE) and mean absolute deviation (MAD). 

  

2. Group Method of Data Handling (GMDH) 

Using the GMDH algorithm, a model can be represented as a set of neurons in which different 

pairs of them in each layer are connected through a quadratic polynomial and, therefore, produce 

new neurons in the next layer. Such representation can be used in modeling to map inputs to 

outputs. The formal definition of the identification problem is to find a function, f̂ , that can be 

approximately used instead of the actual one, f , in order to predict output ŷ for a given input 

vector  nxxxxX ,,,, 321   as close as possible to its actual output  . Therefore, given number 

of observations (M) of multi-input, single output data pairs so that                                                

   1 2 3, , , , 1,2,3, , .i i i i iny f x x x x i M 
                                       

(1)    

It is now possible to train a GMDH-type-NN to predict the output values iŷ  for any given input 

vector  iniii xxxxX ,,,, 321  , that is  

   1 2 3
ˆˆ , , , , 1,2,3, , .i i i i iny f x x x x i M          (2) 

In order to determine a GMDH type-NN, the square of the differences between the actual output 

and the predicted one is minimized, that is   
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The general, connection between the inputs and the output variables can be expressed by a 

complicated discrete form of the Volterra functional series, Ivakhnenko (1971) in the form of 
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which is known as the Kolmogorov-Gabor polynomial, Ivakhnenko (1971). The general form of 

mathematical description can be represented by a system of partial quadratic polynomials 

consisting of only two variables (neurons) in the form of  

  4 2

1 2 3 4 5
ˆ ,i j o i j i j i jy G x x a a x a x a x x a x a x       .                                (5) 

In this way, such partial quadratic description is recursively used in a network of connected 

neurons to build the general mathematical relation of the inputs and output variables given in 

equation (4). The coefficients ia  in equation (5) are calculated using regression techniques. It can 

be seen that a tree of polynomials is constructed using the quadratic form given in equation (5). 

In this way, the coefficients of each quadratic function iG  are obtained to fit optimally the output 

in the whole set of input–output data pairs, that is 

min
())(

1

2





 

M

Gy
E

M

i ii
.       (6) 

In the basic form of the GMDH algorithm, all the possibilities of two independent variables out 

of the total n input variables are taken in order to construct the regression polynomial in the form 

of equation (5) that best fits the dependent observations  Miyi ,,2,1,   in a least squares  

sense. Using the quadratic sub-expression in the form of equation (5) for each row of M data 

triples, the following matrix equation can be readily obtained as  

YAa  ,      (7) 

where   is the vector of unknown coefficients of the quadratic polynomial in equation (5), 

 54321 ,,,,, aaaaaaa o ,
                                              

 (8) 

and  

 TMyyyyY ,,, 321  .
                                                      

  (9) 

Here, Y is the vector of the output‟s value from observation. It can be readily seen that  
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 .                        (10) 

The least squares technique from multiple regression analysis leads to the solution of the normal 

equations in the form of  

1( )T Ta A A A Y .                         (11) 

 

3. Descriptive Variables for the Proposed Models 

In our study we have used three kind of descriptive variables: 

 

1. Seismological Variables 

 

This group includes variables that are directly related to durational and intensityrelated 

issues of the strong ground motion shaking. They are listed as:  

 

MW: Moment magnitude of the earthquake, representing duration of shaking. 

amax: Maximum horizontal ground acceleration (g), representing intensity of shaking. 

 

2. Topographical Variables 
 

The variables of this category describe the site boundary conditions, and define the 

location of the point where lateral spreading deformations were mapped relative to 

the boundaries. As show in Figure (1), these variables are: 

 

W: Free-face ratio = H/L (%), 

L: Distance to the free face from the point of displacement (m), 

H: Height of free face (m), 

S: Ground surface slope (%), 

β: Ground surface slope angle (degrees) = tan
-1

(S/100). 

 

 
                      Figure 1.  Topography-related descriptive variables 
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3. Geotechnical Variables 
 

These descriptive variables are subdivided into three main groups. 

 

i) static soil stability: 

 

These variables are adopted as safety measures for the stability of gently 

sloping sites against sliding under earthquake shaking. They are defined as: 

 

tan 
' / tan   β:  Factor of safety measure against gravitational forces for the 

most critical sub-layer, where 
'  is the equivalent mobilized angle of internal 

friction of liquefied or potentially liquefiable soils. 

 

ii) Descriptive Variables for Inertial Forces: 

 

These descriptive variables are safety measures for the resistance of sites 

against inertial impact effects due to the ground acceleration produced during 

earthquake shaking. They are defined as: 

 

ay/amax: Factor of safety against sliding for the most critical sub-layer, where 

ay is the yield acceleration with finite slope assumption. 

 

iii) Liquefaction Severity: 

 

This probabilistic variable, LSI, represents a measure for the seismic-induced 

liquefaction potential of a given site rather than the potential failure of a 

particular soil sub-layer. The other descriptive variable within this group is the 

depth from ground surface to the most critical potentially liquefiable soil sub-

layer, Zcr.  

 

4. The displacements prediction using the GMDH-type neural network 

The feed-forward GMDH-type neural network for liquefaction induced lateral displacements was 

constructed using an experimental data set which is containing 250 data points of liquefaction-

induced lateral ground spreading case histories from eighteen different earthquakes including 

1906 San Francisco – USA, 1964 Prince William Sound – Alaska, 1964 Niigata–Japan, 1971 San 

Fernando – USA, 1979 Imperial Valley – USA, 1983 Borah Peak–USA, 1983 Nihonkai – hubu – 

Japan, 1987 Superstition Hills – USA, 1989 Loma Prieta – USA, 1995 Hyogoken-Nanbu–Japan, 

1976 Guatemala, 1977 San Juan - Argentina, 1990 Luzon – Philippines, 1994 Northridge – USA, 

1999 Kocaeli (Izmit) – Turkey, 1999 Chi Chi–Taiwan, 2003 San Simeon- USA earthquake and 

2003 Tokachi-Oki–Japan earthquakes, Youd et al. (2002) and Al Bawwab (2005). A random 

sample selection of database is given in Table 1. The data was divided into two parts: 70% was 

used as training data, and 30% was used as test data.  

Earthquake moment magnitude (Mw), the ratio of maximum horizontal ground acceleration over 

acceleration of gravity (amax/g), Slope of ground surface (S), Free face ratio (W), liquefaction 
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severity index (LSI), Critical potentially liquefiable soil sub-layer depth (Zcr), the ratio of yield 

acceleration over maximum horizontal ground acceleration (ay/amax ) and  the ratio of Ground 

surface slope angle over  the equivalent mobilized angle of internal friction of liquefied (tan β/ 

tan 
' ) were used as inputs of the GMDH-type network. The horizontal displacement (DH) was 

used as desired output of the neural network.  

In the present study, liquefaction induced lateral displacements was predicted using GMDH-type- 

NNs. Such a NN identification process needs a suitable optimization method to find the best 

network architecture. In this way, particle swarm optimization (PSO) is arranged in a new 

approach to design the whole architecture of the GMDH-type-NNs. PSO is a global search 

strategy that can handle efficiently arbitrary optimization problems. It is one of the evolutionary 

computing methods that has elements inspired by the social behavior of natural swarms and is 

introduced by Kennedy and Eberhart (Kennedy and Eberhart, 1995) for the first time in 1995.  

In a PSO algorithm, population (set of solutions of the problem) is initiated randomly with 

particles and they are evaluated to compute fitnesses together with finding the particle best (best 

value of each individual so far) and global best (best particle in the whole swarm). PSO algorithm 

provides the optimal number of neurons in each hidden layer and their connectivity configuration 

to find the optimal set of appropriate coefficients of quadratic expressions to model liquefaction 

induced lateral displacements. The swarm size is set to 150 and the maximum number of 

iterations is set to 100 as stopping criteria. Computations are performed in MATLAB 7.13.0 on a 

2.3GHz laptop with 4 GB of RAM.  

The developed GMDH neural network was successfully used to obtain a model for calculate 

liquefaction induced lateral displacements (Table 2). In the GMDH architecture, the selection of 

nodes with the best predictive capability is decided by the ‎PSO‎ and subsequently the network 

construction with the corresponding layers are realized based on the search results. For each layer 

the best node is found based on the objective function (which is simply the external criterion used 

for solving the problem at hand).  

The nodes in the preceding layer connected to the best node in the current layer are marked for 

realizing the network as search progresses from layer to layer as shown in ‎ Figure 2. In these 

networks, the most important input variables, number of layers, neurons in hidden layers and 

optimal model structure are determined automatically. The polynomial terms are created by using 

linear and non-linear regressions. The initial layer is simply the input layer. The first layer created 

is made by computing regressions of the input variables and then choosing the best ones. The 

second layer is created by computing regressions of the values in the first layer along with the 

input variables. This means that the algorithm essentially builds polynomials of polynomials. The 

optimal structures of the developed neural network with 2-hidden layers are shown in Figure 2. 

For instance “ccagdgbg” and “acgfcfad” are corresponding genome representations of 

displacements for sloping sites without a free face and level sites with a free face, in which a, b, 

c, d, e, f and g stand for Mw, amax/g, S (W), LSI, Zcr, ay/amax and tan β/ tan 
'  respectively. The 

GMDH-type-NN provides an automated selection of essential input variables, and builds 

polynomial equations for the modeling. This polynomial equation shows the quantitative 

relationship between input and output variables (Table (2)). Our proposed models behavior in 

prediction is demonstrated in Figures. (3) and (4). 
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Table 1. Experimental and GMDH estimated tie-line data for the liquefaction induced lateral 

displacements. 

MW amax/g S(%) W(%) LSI Zcr (m) ay/amax tan β/ tan 
'  DH (m) 

7.9 0.6 0.6 0 3.55 3.5 0.07 0.124 1 

7.5 0.19 0.31 0 5.8 1.09 0.264 0.058 1.09 

9.2 0.21 0.7 7.03 6.18 4.57 0.594 0.053 1.37 

6.4 0.55 1.23 0 0.01 11.89 1.488 0.015 1.68 

7.5 0.12 3.5 1.03 1.25 5.56 0.864 0.252 0 

7.4 0.2 1 0 0.96 12.19 0.537 0.085 1 

6.5 0.51 2 4.69 1.65 3.36 0.406 0.088 0.86 

6.9 0.6 11 0 2.06 1.74 0 1.392 0 

7.7 0.25 0.56 0 3.01 3 0.567 0.038 1.14 

6.6 0.21 0.47 41.38 1.94 3.05 0.345 0.061 0.2 

7 0.13 0 10 1.11 6.34 0.717 0 0.5 

7.6 0.2 0.5 50 7.73 9.23 0.249 0.091 5 

6.7 0.52 1 0 0 14.1 2.718 0.007 1 

6.9 0.6 0.1 0 5.08 13.5 0.358 0.005 0.4 

7.6 0.43 1 5 3.47 2.8 0.118 0.165 5.84 

7.4 0.4 1.6 0 4.54 9.8 0.138 0.225 2.2 

6.5 0.12 1 0 0.56 2.75 0.371 0.183 0.3 

7.9 0.31 0.1 0 2.29 11 0.368 0.009 0.2 

7.9 0.6 0.6 0 3.55 3.5 0.07 0.124 1 

7.5 0.19 0.31 0 5.8 1.09 0.264 0.058 1.09 

 

The results of the developed models give a close agreement between observed and predicted 

values. Some statistical measures are given in Table (3), in order to determine the accuracy of the 

models. These statistical values are based on 2R  as absolute fraction of variance, RMSE as root-

mean squared error, MSE as mean squared error, and MAD as mean absolute deviation which are 

defined as follows: 
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Table 2. Polynomial equations of the GMDH model 

DH (W = 0) 

Y1 = -115346  +3.5050 (Mw) – 68.9404 (tan β/ tan 
' )  - 0.2432 (Mw)

2
 – 0.9335 (tan β/ tan 

' ) 2 + 

       10.0645 (Mw) (tan β/ tan 
' )   

Y2 = 1.3397 – 0.5783 (LSI)  -5.8479 (tan β/ tan 
' )  + 0.0726 (LSI) 2 – 3.6651 (tan β/ tan 

' ) 2  

        +5.1493 (LSI) (tan β/ tan ϕ′) 

Y3 = -1.7571 +  19.2485 (amax/g) +  1.2785 (tan β/ tan 
' )  - 27.2681 (amax/g) 2 –  

         11.3716 (tan β/ tan 
' ) 2 + 24.2619 (amax/g) (tan β/ tan 

' ) 

Y4 = -2.3125 +  2.0762 (S) +  2.3967 Y1  -  0.1728 (S) 2 + 0.1482 Y1 
2 – 1.0988 (S)  Y1 

Y5 = -0.3709 +  3.2831 Y2 – 2.6836 Y3 + 0.1899 Y2
2 + 1.9872 Y3 

2 – 2.0152 Y2 Y3 
DH = 0.0508 + 1.0800 Y4 – 0.3596 Y5  - 0.2741 Y4

2 + 0.1539 Y5
2  + 0.1826 Y4 Y5 

DH (S = 0) 

Y1 = -42.1453 + 11.698 (Mw) – 0.7023 (W)  - 0.7899 (Mw)
2
- 0.0032 (W) 2 + 0.1239 (Mw) (W)   

Y2 = 0.3046 +  0.9488 (tan β/ tan 
' )  +  20.0143 (ay/amax)  - 0.1876 (tan β/ tan 

' ) 2  

        - 14.5415 (ay/amax) 
2 - 24.9465 (tan β/ tan 

' ) (ay/amax) 

Y3 = 0.7001+  1.0824(W) +  0.4840 (ay/amax)  - 0.0122(W)2 - 0.1186 (ay/amax) 
2  

         - 1.6209(W) (ay/amax) 

Y4 = -136.3152 +  40.9184 (Mw)  – 9.8062 (LSI)  -  3.0427 (Mw) 
2 -  0.0485(LSI)2  

        + 1.4306 (Mw)  (LSI) 
Y5 = 2.1905 - 1.5655 Y1 - 1.4131 Y2  -  0.0897 Y1

2 -  0.0418 Y2
2 + 1.8398 Y1 Y2 

Y6 = - 0.4177 + 0.1373 Y3 +  1.1825 Y4 + 0.1203 Y3
2 -  0.2482 Y4

2  + 0.1287 Y3 Y4 

DH = - 0.2393  + 0.5031 Y5 +  0.7207 Y6 + 0.3337 Y5
2 + 0.2761 Y6

2  - 0.6405 Y5 Y6 

 

 

 

Table 3.  Model statistics and information of the group method of data handling-type neural network 

model for predicting of liquefaction induced lateral displacements 
Ground condition Statistic R2 RMSE MSE MAD 

0W   

Training 0.99 0.26 0.06 0.15 

Testing 0.98 0.26 0.06 0.19 

0S   

 

Training 0.98 0.34 0.11 0.23 

Testing 0.99 0.10 0.01 0.08 
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(a) 

 
 

(b) 

 

Figure 2.  Developed structure of GMDH-Type-NN model, a) sloping sites without a free face, 

b) level sites with a free Face 

 

 
Figure 3.  GMDH-type NN model-predicted displacements for the sites without a 

free face  in comparison with experimental data; (○) Experimental 

points; (+) Calculated points(GMDH). 
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Figure 4. GMDH-type NN model-predicted displacements for the sites with a free 

face  in comparison with experimental data; (○) Experimental points; 

(+) Calculated points(GMDH). 
 

 

5. Conclusions 
 

In this study, a feed-forward GMDH-type neural network model was developed using 

experimental data. The liquefaction induced lateral displacements were predicted by the GMDH 

model and the results compared with the experimental data. Despite the complexity of the system 

studied, the GMDH model permits a good prediction. Thus, the GMDH model is suitable for 

predicting displacements. Although the agreements between the experimental and calculated data 

were found to be excellent, empirical correlations derived from a local dataset should not 

implemented for different sites with significantly varying features. Therefore, these proposed 

relationships should be used with caution in geotechnical engineering and should be checked 

against measured lateral displacements. 
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