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ABSTRACT   
 

In the 2012 Summer Olympics in London seven out of eight finalists in the men’s 100 meter 

dash crossed the finish line in under 10 seconds. This result and other recent performances of 

exceptional sprinters such as Bolt have made experts wonder, not whether a new record will be 

set, but when and how much it will lower the present record. Seeking an answer, some 

researchers have tried to model the available data with the goal of using them to predict future 

records. This article presents a different approach based on theory of records for independent and 

identically distributed observations. It modifies the number of attempts to break a record to make 

the results of the theory of records applicable to this situation. The modification is necessary 

because many sports records have been broken more frequently than what this theory predicts. 

Two modifications of the number of attempts are considered, fixed rate via a geometric increase, 

and random rate via a non-homogeneous Poisson process.  
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1. Introduction   
 

The athletic ability of human beings is an issue of great interest to physiologists, physical 

educators, health professionals, sport fans, and the general public.  Records set in different sports 

shed light on human strengths and limitations and provide data for scientific investigations and 

training or treatment programs.  Research in this area can be divided into two categories: short-

term prediction and long-term (ultimate record) prediction. See Krzysztof and Mero (2013), 

Stephenson and Tawn (2013), Barrow (2012), Solow and Smith (2005), Noubary (2005), Gulati 

and Padgett (2003), Bennett (1998), Blest (1996), and references therein. In what follows we 

present some of the statistical approaches employed for prediction of records and add some new 

insights. 

 

As in most other applications, a few different approaches have been employed by investigators to 

predict records. One general approach has been to utilize models that are made up of a 

deterministic term to account for the trend and a stochastic term to account for the variation. See, 

for example, Blest (1996) for details and a list of models considered for both deterministic and 

stochastic components. It has been noted that in general, application of this approach cannot 

produce meaningful performance estimates for the distant future. This is due to the fact that in 

most sports, in addition to records themselves, the amount by which they have been improved 

has also decreased with time.  To address this, Noubary (1994) considered innovative models 

comprised of an envelope functions and a stationary stochastic processes in multiplicative forms.  

 

Next, noting that records are extreme values, a popular approach has been to apply the extreme 

value theory and fit one of the three limiting distributions to, for example, best record of each 

year. See for example Krzysztof and Mero (2013) and Stephenson and Tawn (2013) for 

application of this approach and DeHann and Ferreira (2006), Cole (2001), Ahsanullah and 

Kirmani (2008), and Beirlant et al (2004) for recent developments of extreme value theory. Of 

three extreme value distributions, the type I (Gumbel distribution) often provided a better fit 

despite the fact that it has no lower bound.  On the other hand, the type III distribution with a 

lower bound has often led to unreliable results and in some cases estimates of a lower bound 

greater than those that have already occurred. This is not the only problem with application of 

extreme value theory. Other problems include:  

 

1. The estimating procedures are complicated.  

 

2. Their application requires a moderate or large sample. 

 

3. Since only the best record of each period (e.g., a year) is used, information contained, 

for example, in the second best record of that period is not utilized. This point is 

particularly important when the time span of the available data is short.  

 

In a more innovative approach the probabilities of future performances are calculated using 

models for the lower tail of the distribution for performance measures.  Here, one assumes that 

the tail belongs to a given parametric family and carries out the inference using the times below 

some predetermined value oy . In most applications these differences are treated as independent 

random variables. Like most asymptotic results, application of this approach is not free of 
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problems. The obvious problems are the choice of a parametric family, determination of the 

threshold value oy  and problems related to the intractable likelihood equations. Also, as in 

application of extreme value theory, estimate of ultimate record are often unacceptable. 

 

Considering these difficulties, this article attempts to apply an approach based on the theory of 

outstanding values or records. Despite its appeal this theory has not been applied to most sports.  

 

2.  Theory of Records   
 

The theory of records deals with values that are strictly greater than or less than all previous 

values.  Usually the first value is counted as a record. Then a value is a record (lower record or 

record low) if it is less than all the previous values. The study of record values, their frequencies, 

times of their occurrences, their distances from each other, etc. constitutes the theory of records. 

See Ahsanullah (1995), Arnold et al (1998), Glick (1978), and Gulati and Padgett (2003) for 

details. Formally, the theory deals with four main random variables:   

 

(1)  The number of records in a sequence of n observations. 

 

(2)  The record times (times records occur). 

 

(3)  The waiting time between the records. 

 

(4)  The record values. 

 

The theory of records has not been widely used to address questions regarding sports records. 

This is because:  

 

(1) the theory is developed for independent and identically distributed sequences and, as 

such, is not directly applicable to sports records, and  

 

(2) in most sports, records have occurred more frequently than what the theory predicts.  

 

For example, consider the men’s 100 meter data for the period 1912 – 2012. The data includes 

20 records of which half of them (10) were set since 1990. As is shown below (result (b)), to 

produce 20 records, more than one-hundred million independent and identically distributed 

official attempts are needed. Also, unlike the theoretical expectation (result (d) below), the 

waiting times between the records have decreased significantly with time especially in the recent 

past.  See Figure 1 for the history of 100 meter. 

 

To account for these and other contributing factors such as diet, shoes, and track type, etc.,  we 

treat the problem as an independent and identically distributed one, but make up for the increase 

in probability and frequency of records by inflating the number of attempts.   
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Figure 1. History of 100 Meter Dash Progression 

 

 

We start by stating results of the theory of records for independent and identically distributed 

observations that we plan to use:  

 

(a)  If there is an initial sequence of n1 observations and a batch of n2 future observations, 

then the probability that the additional batch contains a new record is  212 nnn  . 

     

(b)  For large n, n,rP  , the probability that a series of length n contains exactly r records, is 

given by  

   

                              
1

,

1
~ [ln ( ) ]

( 1)!

r

r nP n
r n

 


                                (1) 

               

            where 𝛾 = 0.5772 is Euler’s constant (see appendix).  

 

 (c)  As sample size n , the frequency of the records among observations indexed by an 

< i < bn tends to a Poisson count with mean ln(b/a). 

         

(d)   The median of rW , the waiting time between the (r-1)
th

 and r
th

 records, are: 
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Table 1. Medians of Waiting Times Between Successive Records and Their Ratios 

Record Number r 2 3 4 5 6 7 8 

Median )( rW  4 10 26 69 183 490 1316 

Med )( rW /Med )W( r 1   2.50 2.60 2.65 2.65 2.68 2.69 

 

 

Moreover,                             

...718.2
)(Median

Median 1  e
W

)(W

r

r  

and 

                                                           ln( 1/) rWr .   

 

Also, ln( rW ) is approximately equivalent to the arrival time sequence of a Poisson process.  

  

Two points should be noted. First, we worked with the median since the expected value of rW  is 

infinite even for r = 2. Second, it is possible to model ln( rW )  as a non-homogeneous Poisson 

process noting that sports records may have different patterns and are more frequent than records 

for independent and identically distributed sequences.  

 

To illustrate the suggested approach, let us apply the above results to 100 meter dash data. We 

start with result (b). Using the maximum likelihood method and maximizing n,rP  with respect to 

n we find n = 100,212,150. This is an estimate for the number of independent and identically 

distributed attempts that is required to produce 20 records. Next, we need to distribute these 

attempts over the period of 100 years. According to result (d), the median number of attempts 

required to arrive at a new record is e = 2.718… times the median number of attempts that was 

required to arrive at the present record. This suggests a geometric increase with rate e. If we 

assume that one unit of attempt was needed to arrive at the second record, the total number of 

attempts to arrive at record number 20 may be calculated as 

 

1+ e + e
2
 +….+ e

18
 = 103,872,541. 

  

Note this is a slight overestimation since for early records the ratios are less than e. 

 

Now rather than this, we can distribute the attempts over the years it has taken to arrive at record 

number 20. Suppose for example that i is the annual geometric rate of increase in number of 

attempts. This means we are assuming that the number of attempts in any given year has been i 

times the number of attempts during the year before it. With this assumption the value of i can be 

found by solving the equation 

 

1 + i + i
2
   i

100
 = 100,212,150,  

 

where ji represents the number of attempts in year j . Here we get i = 1.179888, which means 

there has been 17.9888% more attempts per year. To predict records for the future one and five 

years (in this case the year 2013 and the period 2013 – 2018) we replace 𝑛1 = 100,212,150 and 
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𝑛2 = (1.179888)
101

 = 18026823 for the next year, and 𝑛1 = 100,212,150 and 𝑛2 = (1.179888)
101

 + 

... + (1.179888)
105

 = 128939191 for the next 5 years in result (a) above.  This leads to probability 

estimates of 0.152461 and 0.562681 for a new record in the next one and five years, respectively. 

The same probability for the next 10 years is 0.8087529. 

It is interesting to note that Berry (2002) has used the increase in the male population of the 

world as an adjusting factor for participation. We note his model for the growth of the world’s 

male population, namely, 
 

                                   Population in Year t = 1.6 exp [0.0088(t  1900)]                                     (2) 

 

implies a geometric increase with annual rate of exp (0.0088) = 1.0088388. It should be 

mentioned that for 100 meter dash data this rate is clearly unrealistic. 

 

Next, using result (c), the frequency of the records among observations 100, 212,150 and 

100,212,150 + 128939191 = 229151341 has approximately a Poisson distribution with mean 

 100212150/229151341ln  = 0.8270932. Using this, the probabilities of none and one 

record in the period 2013- 2018 are 0.4373 and 0.3617 respectively.  Note that 0.4373 is also the 

5 years survival probability of the present record.  

 

Finally, looking at the data we see a clear change in the rate of records and their waiting times 

starting the year1990. In fact, after 1990:   

 

1.  10 records were set compared to 10 records in the previous 78 years (1912-1990). 

 

2.  Record improvements are more notable, from 9.92 to 9.58 compared to the previous 78 

years, from 10.6 to 9.92. Also, the waiting times between records were significantly 

shorter.  

 

Considering this, we decided to use only the data since 1990. This makes sense as this data 

carries more relevant information about the recent records and the future ones. Using the data for 

this period and following the same procedure we found i = 1.3615, 𝑛1 = 4550 and 𝑛2 = 1646 for 

the next year, and 𝑛1 = 4550 and 𝑛2 = (1.3615)
24

 + (1.3615)
25

 + (1.3615)
26

 + (1.3615)
27

 + 

(1.3615)
28

 = 16748.23 for the next 5 years. This led to probability estimates of 0.2657 and 

0.78673 for a new record in the next one and five years, respectively. We think these are more 

realistic considering the outcomes of the recent competitions of this event. 

 

We end this section by noting that one would expect even better results if the geometric increase 

could be replaced by increase in population of participants or number of attempts. For this we 

could, for example, consider models such as Logistic or Gompertz or more generally a model of 

the form 

                                                nn yy 1 = H( ny ) = i*f( ny ) (1- g( ny )),                                             

 

where yn denotes the number of participants or number of attempts at year n (generation n). One 

of the simplest and frequently used models that contains a formulation which avoids indefinite 
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growth and represent effects of overcrowding is when i is a linear function of the previous year’s 

participation. This choice of i leads to a model of type 
 

)()1(*

1 nnnnn yHhyyiyy  , 

 

known as Logistic equation.  Here, i* represents the rate of growth and h represents the carrying 

capacity. For the 100 meter dash, h may be the maximum number of individuals who qualify to 

participate in an event such as the Olympics.  This type of model is reasonable for sports where 

usually rapid initial improvements are followed by much slower advances.   

 

Noubary (2005) considered the following simpler model instead that exhibits the same behavior 

as the Logistic equation 

 

                                                         ]1*[1 hyrexpyy nnn  .                                                   

 

For example, the number of attempts in the future 1 and 10 years are 412 and 4876 if we use y0 = 

100, r* = 0.04 and h = 50. The corresponding numbers using the logistic equation are 402 and 

4742.  These numbers result in smaller probability estimates compared to the geometric increase 

of 4%. 

 

3. Attempts as Non-homogeneous Poisson Process 
                

In the previous sections we assumed an increasing but fixed number of attempts per year. It is 

also possible to assume that the number of attempts to break a record is random and is governed 

by a non-homogeneous Poisson process. The following is a brief description of this approach. 

 

Let R > 0 and S > 0 be two random variables with respective distribution functions FR(.) and FS 

(.).  Suppose R, the record in a given sport, is subject to a set of events (attempts) S occurring 

according to a point process P.  Then the record breaks if the value of S exceeds (succeeds) R.  

The value of S is a function of the type of sport, number of participants, prize, training, 

environmental factors such as temperature, altitude, etc., and factors important to the athletes and 

the public. The value of R depends on factors such as the type and popularity of the sport, 

amount of rewards or prizes, number of formal competitions, etc.  The probability p of breaking 

a record in a single attempt is then, 

 

p =  1)( RSP
 

 0
( ) ( )S RF x dF x



 . 

When applying this model, one is frequently interested in the probability of breaking a record in 

a specified interval, say (0, t], where 0 represents the beginning of the period.  Assuming that T 

represents the survival time, the probability of the record being broken in the time interval (0, t], 

denoted by FT(t), can be obtained as 

 

FT(t) ( ) 1 ( ) 1P T t P T t        LT(t), 
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where LT(t) ( ),P T t   LT(0) = 1 is the survival function. If R is a record subject to a 

sequence of attempts S1, S2, …, Sn, then LT(t) is given by 

 

LT(t) 

0

( ( ) ) ( )
r

P N t r P r




                        (3) 

where { ( ), 0}N t t  is a general counting process of attempts occurring randomly in time and 

P ( r ) = P(max (S1, S2, …, Sr) < R),  r = 1, 2, …, n,  with P (0) = 1. Note that here ( )P r
represents the probability of surviving the first r attempts. When attempt is governed by a 

homogenous Poisson process with rate , then from Equation (3) we obtain 

 

LT(t) 

0

[ ( ) ! ] ( )t r

r

e t r P r 






 .                        

 

If a further assumption is made that the attempts are independent and identically distributed 

random variables, then this reduces to 

 

   LT(t) ( ) / !)(1 ) exp( )t r re t r p tp       .                             

 

Thus, if the mean rate of attempts and the period of interest are given, then LT(t) can be 

calculated for any p.  Hence, the main problem for the situation described above is that of 

estimating the p, i.e. the probability of breaking a record in a single attempt.   

 

Suppose now that P is Poisson with time-dependent rate 0)t(  and let 

 


t

duut
 

0 
)()(  . 

 

If FR(.) denotes the distribution function of R and FS(.) the distribution function of {Sn, n = 

1,2,…}, then since (T > t) if and only if 1 2max( , ,..., ) ,nS S S R  the required probability 

( )P T t  is given by 

      
 

( )

 0
0

( ( ))
( ) [ ( )] ( )

!

n
t n

S R

n

t
P T t e F x dF x

n







   .                      (4)                

 

Note that [FS(.)]
n 

is the distribution function of max 1 2( , ,..., )nS S S . Expression (4) can also be 

written as 

                 

0

( ) exp[ ( )(1 ( )] ( )S RP T t t F x dF x



                        (5) 

If R = R0  is given (e.g. R0 is the present record), then 
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0 0( | ) exp[ ( )(1 ( ))]SP T t R R t F R      

                 

In general, application of Equation (5) requires knowledge of both FR (.) and FS (.) which may 

not be available.  However, there is an important case discussed below where calculations can be 

carried out with less information and without any numerical integration. Taking the viewpoint 

that the strength or importance of a record in a given sport may be measured by the number of 

attempts it requires to break it, this case and the assumptions made seem reasonable. 

 

Suppose that P has been observed throughout the time interval (, 0], where 0 represents the 

present time.  Suppose also that the largest value in this interval is the present record and is used 

as a reference for determining further records. Then, 

                        

    
1 2

0

( ) ( ) [max( , ,..., ) | ( ) )] ( ( ) )R n

n

F x P R x P S S S x N n P N n 




       

 

                    
( )

0

( ( ))
( ( )) exp[ ( )(1 ( ))]

!

n
n

S S

n

e F x F x
n

 








                   

 

and application of Equation (3) yields 

 

  )]()(/[)))]()((exp(1)[()( tttTP   .                                (6)  

 

With confidence given by the right-hand side of Equation (6), there will be no new maximum in 

(0,t] greater than the one in (,0].  Thus, in this case the survival probability depends only on 

the rate of attempts.   

 

Note that for large values of )()( t  , we have approximately 

 

                               )]()(/[)()( ttTP   .                                                                      (7) 

This results in answers similar to those discussed in earlier sections. For example, for a 

geometric increase in number of attempts the survival probability of the 100 meter record in the 

next 5 and 10 years are 0.4373 and 0.1912 respectively. Investigation of other forms of increase 

in number of attempts is the goal of our future research. 

 

We end this section by making a point regarding the limit of human abilities as it relates to the 

idea of a possible ultimate record.  In terms of what is discussed here, the ultimate record is the 

one that will survive forever, i.e. its survival probability is 1.  Since it is generally believed that 

every record will eventually be broken it is more practical to think of a survival time such as 50 

years and a survival probability such as 90% for a record to be considered an ultimate record. To 

demonstrate suppose that )()( t   is large. Then, we could use the following   
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)]50()(/[)()50(  TP > 90% 

 

and estimate  for a given 0)t(  .     

 

4. Conclusion 
 

The100m dash defines the fastest man on Earth. In well over 100 years there have been only 25 

men who have attained this title. This makes one wonder whether records will be lowered further 

and indefinitely or there is an ultimate record.  Clearly, it is more reasonable to assume that there 

is a limit, and if so whether it is possible to estimate it. This article presented a statistical method 

as a step towards answering the question regarding the possible limit. Since sport records are not 

generated by an independent and identically distributed random variables, the approach 

suggested here makes a change to the data and applies the results of the theory of records for 

independent and identically distributed data. The result shows that such approach can produce 

acceptable answer. 
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Appendix: Maximum Likelihood Estimate of Number of Attempts 

 

 

Let n,rP denote the probability that in a series of length n there will be exactly r records. Then, 

     

                                                   
!n

P n,n

1
   ,        

n
P n,

1
1   

                                                             

, , 1 1, 1

1,1

,0

1 1
,
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0,            .

r n r n r n

r

n
P P P

n n

P

P r n
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
 



 

                                                 

 

Also, successive substitution for n, results in  

  







1

1

1

1 n

rj

j,rn,r P
n

P . 

For example,  

 
1 1

2, 1,

1 1

1 1 1
1/     (ln( 1) ).

n n

n j

j j

P P j n
n n n


 

 

       

 

Using the properties of the Stirling numbers it can be shown that (Andel 2001) as n  

   

                              1

1

1 


r

n,r ))n(ln(
n)!r(

~P                                  (8) 

               

Table 2 provides maximum likelihood estimate for n for r = 1, 2…, 12 together with the 

maximum value of the n,rP itself. As can be seen the value of n increases rapidly.  For r-values 

greater than 12 one could apply the following observation. Noting that 2/1=2, 8/2=4, 25/8=3.125, 

73/25=2.92, 204/73=2.795, 565/204=2.77, 1557/565=2.756, 4275/1557=2.746, 

11710/4275=2.739,    32022/11710=2.735,  87464/32022=2.731, we conjecture that the ratio is 

tending to e = 2.718.  This is also evident from the approximate expressions (8), for large n. 
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When n is large its maximizing value is exp(r-1- ). Thus, for example, a good approximation 

for n when r =13 is (87464)(2.718)= 237727. In addition to maximum likelihood values of n 

using exact expression for n,rP  (column 2), Table 2 presents maximum likelihood values of n 

denoted  𝒏𝟏, using the approximate expression (8) for large n. 

 

 

Table 2. Maximum Likelihood Values of n 

    

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  r n Max. Prob. 

1 1 1.0 

2 2 0.5 

3 5 0.325694 

4 12 0.253788 

5 31 0.214182 

6 84 0.188597 

7 227 0.170410 

8 616 0.156648 

9 1674 0.145767 

10 4550 0.136886 

11 12368 0.129456 

12 33618 0.123122 


