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Abstract  
 
A two-fluid model consisting of a core region of suspension of all the erythrocytes (particles) 
in plasma (fluid) assumed to be a particle-fluid mixture and a peripheral layer of cell-free 
plasma (Newtonian fluid), has been proposed to represent blood flow in small diameter tubes. 
The analytical results obtained in the proposed model for effective viscosity, velocity profiles 
and flow rate have been evaluated numerically for various values of the parameters available 
from published works. Quantitative comparison has shown that present model suitability 
represents blood flow at hematocrit ( 40%) and in vessels up to 70m in diameter. Using 
experimental values of the parameters, the flow rate for normal and diseased blood has been 
computed and compared with corresponding values obtained from a well known 
experimentally tested model in the literature. 
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1. Introduction 

The study of blood flow through mammalian circulatory system has been the subject of 
scientific research for about a couple of centuries. Like most of the problems of nature and 
life sciences, it is complex one due to the complicated structure of blood, the circulatory 
system and their constituent materials. The experimental studies and the theoretical 
treatments of blood flow phenomena are very useful for the diagnosis of a number of 
cardiovascular diseases and development of pathological patterns in human or animal 
physiology and for other clinical purposes and practical applications. 

 
A large number of theoretical and experimental efforts have been made in the literature to 
explain the blood flow behavior when it flows through the vessels of circulatory system of 
living beings. To account for the new evidences uncovered through improved experimental 
theories of blood flow from the numerous relevant and important contributions of Bayliss 
(1952), Womersley (1954,1955,1957,1958), Muller(1951,1959), McDonald (1960), 
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Whitmore (1963), Copley and Stainsby (1960), Attinger (1964), Fung (1964), Lew and Fung 
(1970) and many others, mathematical modeling of blood flow has been subject to constant 
changes and modifications. Above listed investigators have used single-phase homogeneous 
Newtonian viscous fluid, a classical approach that does not account for the presence of red 
cells (one of the main constituents of blood, which is responsible for many of the blood 
properties and diseases (Srivastava, 1995)) in blood while flowing through the circulatory 
system. Although, this approach provides satisfactory tools to describe certain aspects of 
blood flow in aorta and large arteries, it fails to give an adequate representation of flow field, 
especially in the vessels of small diameter (2400 – 8m, Srivastava and Srivastava (1983)). 

 
Several researchers (Casson, 1959; Haynes, 1959; Charm and Kurland, 1964; Eringen, 1964; 
Gupta et al., 1982; Chaturani and Upadhya, 1981) have proposed various representative 
models for blood in small vessels and narrow capillaries. A number of investigators including 
Haynes and Burton (1959), Merrill et al. (1963), Charm and Kurland (1965), Hershey et al. 
(1964), Cokelet (1972) and Lih (1975) have pointed out that blood being a suspension of 
corpuscles, behaves like a non-Newtonian fluid at low shear rates. In particular, Hershey et 
al. (1966) and Huckaba et al. (1968) have shown that blood flowing through a tube of 
diameter less than 0.2 mm and at low shear rate less than 20/s, behaves as a power law- fluid 
while Casson (1959), Reiner and Blair (1959), Charm and Kurland (1965,1974) and Merrill 
et al. (1964) have suggested that blood inhibits yield stress and behaves as a Casson model 
fluid at a shear rate equal to 0.1/s. 

Experimental investigation of Cokelet (1972) and theoretical observations of Haynes (1960) 
indicate that blood can no longer be treated as a single-phase homogenous viscous fluid in 
small size vessels (of diameter  1000m). It is surprising to note that the individuality of the 
red cells (of diameter 8m) is important even in such large vessels (with diameter up to 100 
cells diameter). Skalak (1972) concluded that in capillary vessels whose diameter (4-10m) 
are equal or smaller than that of a red blood cell, an accurate description of flow requires 
consideration of red cells as discrete particles. Also, certain observed phenomena in blood 
flow including Fahraeus-Lindqvist effect (the decrease of apparent viscosity with decreasing 
diameter of blood vessels), non-Newtonian behavior, etc. can not be explained fully by 
considering blood as a single-phase homogenous fluid. Thus, in dealing with the problem of 
microcirculation also, the individuality of red blood cells cannot be ignored. It seems to be 
therefore important and necessary to consider the whole blood as a particle-fluid system 
while flowing through small vessels. Including some recent studies, a number of 
investigations have been conducted in the literature using particulate suspension theory to 
describe the flow of blood in small vessels. Srivastava and Srivastava (1983) proposed a two-
phase theoretical model to address pulsatile blood flow in the entrance region of an artery. 
Srivastava et al. (1994) applied the theory to study the effects of an external body 
acceleration on blood flow through small diameter tubes while Srivastava (1995,2002) delt 
with the problem of blood flow through stenotic vessels representing blood by an 
erythrocytes-plasma suspension. And most recently, Jung et al. (2006a, 2006b) discussed 
steady and pulsatile flow of particulate buildup on the inside curvature of coronary artery 
using multiphase of dense suspension hemodynamics. In addition, Bugliarello and Sevilla 
(1970), Cokelet (1972) and Thurston (1989) have shown experimentally that for blood 
flowing through small vessels, there is a cell-free plasma (Newtonian fluid) layer and a core 
region of suspension of all the erythrocytes. Haynes (1960) presented a two-fluid theoretical 
model for blood flow consisting of a core region of suspension of all the erythrocytes as a 
homogeneous Newtonian viscous fluid and a cell-free plasma layer as a Newtonian fluid of 
constant viscosity (equal to the viscosity of water). Bugliarello and Sevilla (1970) presented 
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blood in small diameter tubes by a two-layered model assuming peripheral and core fluids as 
Newtonian fluids of different viscosities. Following the theoretical study of Haynes (1960) 
and experimentally tested model of Bugliorello and Sevilla (1970), two-fluid modeling of 
blood flow has been discussed and used by a good number of researchers. Shukla et al. 
(1980) applied a two-fluid model to discuss the flow of blood through a stenosis. Chaturani 
and Upadhya (1979, 1981) addressed the flow of blood in small diameter tubes using the two-
layered model of micropolar and couple stress fluids, respectively. Pralhad and Scultz (1988) 
used a two-fluid model of polar fluid to analyze the flow of blood through stenotic arteries. 
Two-fluid model analyses have been carried out by Srivastava (2000, 2002) to observe the 
effects of a non-symmetrical stenosis on blood flow characteristics. Sharan and Popel 
suggested a modification on the models of Haynes(1960) and Bugliarello and Sevilla (1970) 
assuming the viscosity in the peripheral layer to be higher than that of plasma due to 
additional dissipation of energy caused by the red cells motion near the cell-free layer. Wang 
and Bassingthwaighte (2003) applied the two-layered models of Haynes (1960) and Sharan 
and Popel (2001) to discuss the flow of blood in narrow curved tubes, etc.    

The studies mentioned just above on two-fluid modeling have represented blood either by a 
single-phase Newtonian or non-Newtonian fluid in the core region. With increasing interest 
in two-phase flows and its applications to blood flow problems, it is however regretted that 
no rigorous effort, at least to the author’s knowledge, has been made in the literature to 
represent blood as a two-phase system (i.e., erythrocytes and plasma mixture) in the core 
region. The purpose of this paper is therefore to investigate the flow of blood in small vessels 
involving a two-fluid model. The mathematical model considers a two-layered model of 
blood, consisting of a core region of suspension of all the erythrocytes (small spherical non-
flexible particles), assumed to be a particle-fluid suspension (i.e., a suspension of red cells in 
plasma) and a peripheral layer of plasma (Newtonian fluid). The study thus presents a 
theoretical model for blood, seems to be the only one of its kind which enables one to observe 
the simultaneous effects of hematocrit and the peripheral layer on the flow characteristics 
while flowing through small vessels.     
 

2. Formulation of the Problem and Analysis 
 
Consider the axisymmetric flow of blood in an uniform circular tube of radius R. Blood is 
represented by a two-fluid model consisting of a core region (central layer) of suspension of 
all the erythrocytes assumed to be a particle-fluid mixture (i.e., a suspension of red cells in 
plasma) of radius R1 and a peripheral layer of plasma (Newtonian fluid) of thickness (R-R1) 
as shown in Fig. 1. Under the simplified assumptions stated in Srivastava and Srivastava 
(1983), the equations governing the flow are therefore written (Srivastava, 1995; Drew, 1974) 
as 
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where (r, z) are (radial, axial) coordinates, (uf, up) are the axial velocity of (fluid, particle) in 
the core region (0  r  R1), (o, uo) are the (viscosity , fluid velocity) in the peripheral region 
( R1  r  R), s  s (C)  is the suspension viscosity in the core region, C denotes the 
constant volume fraction density of the particles (called hematocrit) and S is the drag 
coefficient of interaction between the two phases (fluid and particle). The expression for the 
drag coefficient of interaction S and empirical relation for the viscosity of suspension s may 
be selected (Charm and Kurland, 1974; Srivastava, 1995) as 
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where ao is the radius of a particle and T is measured in absolute temperature. 

The boundary conditions are the standard no-slip conditions of velocities and shear stresses at 
the tube wall and the interface, and are given as 
 uo = 0    at   r = R,                      (6) 
 uo = uf   and   o = f    at    r = R1,                              (7) 
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with r/u)C1(andr/u fsf000  as the shear stresses of the peripheral 

and central layers, respectively. 

 

The expressions for the velocities u0, uf and up obtained as the solutions of equations (1) - (3), 
subject to the boundary conditions (6) - (8), are given as  
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The flow flux (volumetric flow rate) is now calculated as  
Q = Qo+ Qf+Qp,                                     (12) 

 
       R         R1 
Where, Q0 = 2  ruo dr,   Qf  = 2  (1– C) ruf  dr, and 
                         R1                                      
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            R1               
 Qp = 2  C    rup dr. 
                                0 

 

Using equations (9) – (11) into equation (12), one obtains the expression for flow flux as 
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with 2 = 8 C (1– C) 0/SR2, a non-dimensional suspension parameter. The use of the fact 

that total flux is equal to the sum of the fluxes across the two regions (peripheral and core) 

determines the relation (Haynes,1960; Bugliarello and Sevilla, 1970) 

  R1 =  R.                  (14) 

An application of relation (14) into equation (13), yields the following expression for the 
effective (apparent) viscosity as 
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When R1 = R (i.e., in the absence of the peripheral layer), above results reduces to the case of 
a single layered model of a particle-fluid suspension as  
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It is worth mentioning that in the absence of the particles (i.e., C = 0), the core mixture 
changes to the same fluid as in the peripheral region and thus the role of the peripheral layer 
automatically disappears. In addition, when core mixture behaves as a single-phase fluid of 
constant viscosity (i.e., s = 1  o), one obtains the same expression for effective viscosity 
derived from steady Newtonian fluid model of Bugliarello and Sevilla (1970) as 
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Equation (17) recovers the result obtained in Haynes (1960) when o = 1cp. 

 

3. Numerical Results, Discussion and Biological Relevance 

 
In order to discuss the results of the theoretical model proposed in the study quantitatively 
and to point out its biological relevance, computer codes are developed to evaluate the 
analytical results for effective viscosity, velocity profiles and flow rate obtained in equations 
(9) - (15) for various values of the parameters involved. For the purpose of comparison, the 
corresponding results obtained in the theoretical model of Haynes (1960) considering a two-
phase fluid in the core region and experimentally tested steady flow model of Bugliarello and 
Sevilla (1970) using a single- phase fluid (blood) of constant viscosity for a given hematocrit 
have been evaluated for the experimental values of the parameters available from the 
published literature of (Bugliarello and Sevilla,1970;, Sud and Sekhon,1985; Srivastava et al., 
1994) at the temperature of 25.50 C. The value of  is calculated from the relation:  = 1- 
/R, in which     (C) denotes the peripheral layer thickness for a given hematocrit (Haynes, 
1960). 

 
Owing to the significance of viscosity, the effective viscosity at 20% and 40% hematocrit 
(red cell concentration) has been computed for different size blood vessels. The results 
obtained are arranged in Table 1 and compared with the corresponding theoretical values of 
Haynes (1960), Chaturani and Upadhya (1979) and experimental values of Bugliarello and 
Sevilla (1970). For numerical evaluation of the result for effective viscosity given in equation 
(15), the mixture viscosity s has been computed using empirical relation (5) for two values 
of the pressure gradient, – dp/dz = 67.5 dyne/mm3and 76.0 dyne /mm3. An inspection of the 
Table 1 reveals that effective viscosity computed from the proposed model is in agreement 
within the acceptable range to the corresponding values of the effective viscosity obtained in 
the theoretical models of Haynes (1960), Bugliarello and Sevilla (1970) and Chaturani and 
Upadhya (1979), particularly at low concentration of red cells (20% hematocrit) and in 
Vessels of diameter  40m. The effective viscosity deviates from experimental value with 
increasing hematocrit and also with the vessel size. However, one notices that present model 
exhibits Fahraeus – Lindqvist effect (i.e., apparent viscosity of blood decreases with 
decreasing diameter of blood vessel). 

 
The axial velocity profiles (uf, up and uo), computed from the present theory (equations (9) - 
(11)), the corresponding model derived (i.e., using erythrocytes-plasma suspension to 
represent blood in the core region similar to the present proposed model) from Haynes (1960) 
and the steady flow model of Bugliarello and Sevilla (1970) at 20% and 40% hematocrit are 
displayed graphically in Figs. 2 and 3 respectively. To evaluate the results obtained for 
velocity profiles in Haynes (1960) and Bugliarello and Sevilla (1970), the mixture viscosity 
(or blood viscosity) has been taken to be 2.18 cp and 3.10 cp for 20% and 40% hematocrit, 
respectively from published literature (Bugliarello and Sevilla, 1970; Sud and Sekhon, 1985; 
Srivastava et al., 1994). One observes that erythrocyte velocity at the tube axis assumes 
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higher magnitude than the plasma velocity but the difference  in their magnitudes decreases  
with  increasing  radial coordinate r towards the interface and at the interface the plasma 
velocity (in present and Haynes, 1960 models) coincides with the blood velocity obtained in 
Bugliarello and Sevilla (1970).  

 

Table 1. 

 Effective Viscosity (CP) 

Vessel    
Diameter (m)   

   Present Haynes(1960) Bugliarello             Chaturani&   
&Sevilla(1970)      Upadhya(1979) 

20% Hematocrit,    = 4.67m 
20 0.382 1.211  1.247  1.245                    1.261 
30 0.588 1.240  1.340  1.334                    1.389 
40 0.766 1.265  1.429  1.420                    1.511 

70 0.866 1.315  1.753  1.607                    1.679 
100 0.906 1.340  1.753  1.723                    1.869 

40% Hematocrit,    =  3.12m 
20 0.688 1.243 1.423  1.391                    1.445 
30 0.792 1.282 1.656  1.581                    1.709 
40 0.844 1.390 1.979  1.741                    2.080 
70 0.910 1.355 2.307  2.075                    2.440 
100 0.937 1.377 2.624  2.272                    2.667 

 
The volumetric flow rate Q vs pressure gradient –dp/dz computed from the proposed model 
(equation (13)) and the experimentally tested model of Bugliarello and Sevilla (1970), at 20% 
and 40% hematocrits have been plotted in Fig 4. It may be noted that the magnitudes of the 
flow rate Q obtained in the proposed theory are in reasonable agreement with the 
corresponding value obtained in Bugliarello and Sevilla (1970), particularly for low pressure 
gradients. To emphasize further on the study presented above, flow rate Q vs pressure 
gradient –dp/dz for normal and diseased blood (Hb SS, plasma cell dycrasias, 
hypertension(controlled), hypertension (uncontrolled) and polycythemia) in a 70m diameter 
vessel using the present theoretical approach and the experimental data available from 
published literature of shu (1982) and Bugliarello and Sevilla (1970), has been shown in Fig. 
5 and compared with the corresponding values obtained in Bugliarello and Sevilla (1970). 
The various values of the parameters used for the purpose are arranged in Table 2. 
 

Table 2. Experimental data for diseased and normal blood in a 70 m diameter vessel 
(Bugliarello and Sevilla, 1970; Shu, 1982). 

  Disease Hematocrit (%) 0  (cp) s  (cp)  
Hb SS (Sickle cell) 24.80 1.30 5.10 0.795 
Plasma cell dycrasias 28.00 3.09 5.43 0.816 
Normal blood 42.60 1.24 4.03 0.920 
Hypertension (uncontrolled) 
 

43.25 1.52 5.15 0.925 

Hypertension (uncontrolled) 
 

43.31 1.28 4.86 0.928 

Polycythemia 63.20 1.50 7.69 0.990 
  
It is clearly visible that the flow rates obtained in the present analysis are in good agreement 
with those obtained in Bugliarello and Sevilla (1970) for relatively low pressure gradients, 
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particularly for Hb SS  (24.8% hematocrit) and plasma cell dycrasias (28% hematocrit). The 
flow rates obtained from the study deviate from those obtained in Bugliarello and Sevilla 
(1970), with increasing values of the pressure gradient and also with increasing hematocrit. 

 

4. Conclusions 

A two-layered model consisting of a core region of suspension of all the erythrocytes in 
plasma (i.e., particle- fluid mixture) and a peripheral layer of plasma (Newtonian fluid) has 
been proposed to describe blood flow in small diameter vessels. As evident from the 
numerical results presented above, it appears that the present theoretical model suitably 
describes blood flow in small vessels (of diameter  70m) and at low concentration of red 
cells ( 40%). The results of the analysis deviate from the experimental works with 
increasing diameter of blood vessel and also with increasing hematocrit. The reason behind 
this is the empirical formula used for the mixture viscosity s in the proposed theoretical 
model which is based on the Einstien’s theory of particulate suspension, and is therefore 
applicable only for low particle concentration (Drew,1974; Srivastava et al.,1994). A 
modification in the empirical formula for mixture viscosity s  or development an equivalent 
close mathematical model thus seems to be necessary in order to increase the range of the 
usefulness of the present theoretical model. Author is already in the course of constructing a 
close mathematical model for the viscosity of suspension and would present in his subsequent 
communication. The assumption that the red cells are small spherical non-flexible particles 
remains another approximation to the study. The proposed model certainly enabled one to 
observe the simultaneous effects of hematocrit and the peripheral layer on flow 
characteristics of blood, seems to be the only one of its kind in the published literature. It is 
however felt that a considerable amount of further research is essential to make the model 
useful for higher parameter values (hematocrit and vessel size) and also to overcome some 
other approximations used in the formulation. 
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