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Abstract 
 
Pulsatile flow of blood through an artery in presence of a mild stenosis has been investigated in 
this paper assuming the body fluid blood as a two-fluid model with the suspension of all the 
erythrocytes in the core region as Bingham Plastic and the peripheral region of plasma as a 
Newtonian fluid. This model has been used to study the influence of body acceleration, non-
Newtonian nature of blood and a velocity slip at wall, in blood flow through stenosed arteries. 
By employing a perturbation analysis, analytic expressions for the velocity profile, Plug-core 
radius, flow rate, wall shear stress and effective viscosity, are derived. The variations of flow 
variables with different parameters are shown diagrammatically and discussed. It is noticed that 
velocity and flow rate increase but effective viscosity decreases, due to a wall slip. Flow rates 
and speed are enhanced further due to the influence of body acceleration.  
 
Keywords:  Pulsatile flow; Peripheral Plasma Layer (PPL); Velocity-slip; Body acceleration; 

Bingham Plastic; Stenosis 
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1.  Introduction 
 
An abnormal growth, reducing the lumen of an artery is usually called a stenosis or an 
atherosclerosis [Young (1968); Sankar and Lee (2009); Biswas (2000); Biswas and Chakraborty 
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(2009a); Biswas and Chakraborty (2009b)], which is one of the most widespread diseases that 
can cause serious circulatory disorders, by reducing or occluding the blood supply. For instance, 
stenosis in arteries supplying blood to brain, can bring about cerebral strokes, likewise, in 
coronary arteries, it can be myocardial infarction, leading to a heart failure [Sinha and Singh 
(1984)]. 
 
Several theoretical and experimental analyses were performed to study the blood flow 
characteristics in the presence of stenosis [McDonald (1979); Mandal (2005); Bali and Awasthi 
(2007); Biswas and Chakraborty (2009a); Biswas and Chakraborty (2009b); Sankar and Ismail 
(2009)]. It has been reported that though at high shear rates blood exhibits Newtonian character 
in large arteries like aorta [Taylor (1959)], blood being a suspension of corpuscles, at low shear 
rates and during its flow through narrow vessels, behaves like a non-Newtonian fluid [Merrill et 
al. (1965); Charm and Kurland (1974)].  
 
Bugliarello and Sevilla (1970) and Cokelet (1972) have experimentally proved that for blood 
flowing through small vessels, there exists a cell-poor plasma (Newtonian fluid) layer and a core 
region of suspension of almost all the erythrocytes. Bugliarello and Sevilla (1970) presented the 
flow of blood in small diameter tubes by a two-layered model assuming peripheral and core 
fluids as Newtonian fluids of different viscosities. Following the experimentally verified model 
of Bugliorello and Sevilla (1970), two-fluid modeling of blood flow has been discussed and used 
by a good number of researchers. Shukla et al. (1980) applied a two-fluid model to discuss the 
flow of blood through a stenosis. Chaturani and Upadhya (1979, 1981) addressed the flow of 
blood in small diameter tubes using the two-layered model of Micropolar and Couple stress 
fluids respectively. Two-fluid model analyses have been carried out by Srivastava (2000) to 
observe the effects of a non-symmetrical stenosis on blood flow characteristics.  
 
It has been pointed out by many investigators that under certain flow situations, blood possesses 
a finite yield stress [Fung (1981); Kapur et al. (1982)]. One interesting and specialized case of 
material with yield stress, is known as Bingham plastic whose consistency curve or, flow 
behaviour, is shown by a straight line curve [Fung (1981); Kapur et al. (1982)]. This particular 
material deforms elastically, until the yield stress is reached, but once this stress is exceeded, it 
flows as a Newtonian fluid, with shear stress being linearly related to rate of shear strain 

[Schlichting (1968)]. It therefore seems to be realistic, in considering blood behaving as a 
Bingham plastic in the core region of a constricted artery.  
 
It is well known that blood flow in the human circulatory system is caused by the pumping 
action of the heart, which in turn produces a pressure gradient throughout the system [Fung 
(1981); Misra et al. (2008)]. Human heart is a muscular pump and due to contraction and 
expansion of heart muscles, there produces a pressure difference in its systolic and diastolic 
conditions, popularly known as pressure pulse which physicians check at the wrist. Flow of 
blood due to this pressure pulse, is known as pulsatile flow [Chaturani and Samy (1985); Guyton 
and Hall (2006)]. Again under exceptional circumstances, human body may also be subjected to 
accelerations (or vibrations). Accelerative disturbances are quite common in normal life, for 
example, while riding in a vehicle or while landing, taking off and flying in an aircraft or 
spacecraft, operating a jack hammer and, sudden and fast movements of the body, during 
gymnastics and sports activities. In such situations, human body may unintentionally be 
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subjected to external accelerations. The flow of blood in the arteries of such a subject is 
influenced by such whole body accelerations [Sud and Sekhon (1985, 1987)]. Though human 
body can adapt to changes, however prolonged exposures to such accelerative disturbances may 
lead to health problems, like headache, abdominal pain, loss of vision and increased pulse rate. 
Sud and Sekhon (1985) presented a mathematical model of blood flow in a single artery subject 
to pulsating pressure gradient as well as body acceleration. Nagarani and Sarojamma (2008) 
presented a theoretical model of pulsatile blood flow in a stenosed artery under the action of 
periodic body acceleration considering blood behaving as a Casson fluid.  
 
In all the above mentioned studies, traditional no-slip boundary condition [Day (1990)] has been 
employed. However, a number of studies of suspensions in general and blood flow in particular 
both theoretical [Vand (1948); Jones (1966); Nuber (1967); Brunn (1974); Chaturani and Biswas 
(1984)] and experimental [Bugliarello and Hayden (1962); Bennet (1967)], have suggested the 
likely presence of slip (a velocity discontinuity) at the flow boundaries (or in their immediate 
neighbourhood). Recently, Misra and Shit (2007), Ponalgusamy (2007), Biswas and Chakraborty 
(2009a, 2009b, 2010) have developed mathematical models for blood flow through stenosed 
arterial segment, by taking a velocity slip condition at the constricted wall. Thus, it seems that 
consideration of a velocity slip at the stenosed vessel wall will be quite rational, in blood flow 
modeling.  
 
With the above motivations, an attempt has been made to study the effects of slip (at the stenotic 
wall) and the influence of body acceleration, on the flow variables (wall shear stress, velocity 
profiles, flow rate and effective viscosity) for two layered pulsatile blood flow through a 
constricted vessel. 
 
 
2.  Mathematical Formulation 
 
 
We consider an axially symmetric, laminar, pulsatile and fully developed flow of blood 
(assumed to be incompressible) through a circular tube with an axially symmetric mild stenosis 
as shown in Fig. 1. It is assumed that the wall of the tube is rigid and the body fluid blood is 
represented by a two-fluid model with a core region of suspension of all erythrocytes as a 
Bingham plastic fluid and a peripheral layer of plasma as a Newtonian fluid. The artery length is 
assumed to be large enough as compared to its radius so that the entrance and exit, special wall 
effects can be neglected. 
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Figure 1. The geometry of an axially symmetric arterial stenosis. 
 
 
The geometry of the stenosis in the peripheral region is given by 
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The geometry of the stenosis in the core region is given by 
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where   R z is the radius of the stenosed artery with peripheral layer;  1R z is the radius of the 

artery in the stenosed core region such that    1R z R z ; 0R , 0R are the radii the normal 

artery and core region of the normal artery respectively; p is the maximum height of the 

stenosis in the peripheral region,  is the ratio of the central core radius to the normal artery 

radius, c is the maximum height of the stenosis in the core region such that c p   and 0z is 

the half length of the stenosis. It has been reported that the radial velocity is negligibly small for 
a low Reynolds number flow in a tube with mild stenosis [Nagarani and Sarojamma (2008); 
Sankar and Lee (2009)]. The equations of motion governing the fluid flow are given by 
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in the core and peripheral regions, respectively, where Bu , Nu  are the fluid velocities in the core 

region and peripheral region respectively; B , N  are the shear stresses for Bingham plastic fluid 

and Newtonian fluid respectively; B , N are the densities for Bingham plastic fluid and 

Newtonian fluid respectively; p is the pressure and  F t is the body acceleration. 

 
The constitutive equations of Bingham plastic fluid and Newtonian fluid are respectively given 
by 
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where pR is the radius of the plug flow region. 

 
The periodic body acceleration in the axial direction is given by  

 

   0 cos bF t a t   ,                                             (7) 

 

where 0a  is its amplitude, 2b bf  ,  bf  is its frequency in Hz,   is the lead angle of  F t  

with respect to the heart action. The frequency of body acceleration bf  is assumed to be small so 

that wave effect can be neglected. 
 
 
The pressure gradient at any z and t may be represented as follows 
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where 0A  is the steady component of the pressure gradient, 1A is amplitude of the fluctuating 

component and 2p pf  , where pf is the pulse frequency. Both 0A and 1A are functions of z . 

We introduce the following non-dimensional variables 
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where B and N are the pulsatile Reynolds numbers for Bingham plastic fluid and Newtonian 

fluid respectively . 
 
Using non-dimensional variables, equations (1) and (2) become 
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The governing equations of motion given by equations (3) and (4) are represented in the non-
dimensional form as 
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where 
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Using non-dimensional variables equations (5) and (6) reduce to 
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The boundary conditions in the non-dimensional form are given by 
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The non-dimensional volumetric flow rate is given by 
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can be expressed in dimensionless form as 
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3.  Method of Solution 
 
Since 2

B , 2
N are time dependent, therefore it is necessary to expand equations (12), (13) and 

(15)-(17) in perturbation series about 2
B and 2

N . We expand pu , pR and Nu  as follows: 

 

     2
0 1, , ,p p B pu z t u z t u z t                          (24)  

 



310                                                                                                                              D. Biswas and U.S. Chakraborty 
 

     2
0 1, , ,p p B pR z t R z t R z t                              (25) 

 

     2
0 1, , , , , ,N N N Nu z r t u z r t u z r t                  (26) 

 
Similarly, ,,B B Nu   can be expanded in perturbation series in terms of 2

B and 2
N . Substituting 

the perturbation series expansions in equations (12), (15) and (16) and equating powers of 2
B , 

the resulting equations of the core region can be obtained as 
 

   0 2Br f t r
r





,  0

1

2B
B

u
r

t r r
 

 
 

,  0
02B

B

u

r
 

  


, 1
12B

B

u

r


 


.            (27) 

 
Similarly, using the perturbation series expansions in equations (13) and (17) and equating 
powers of 2

N , the resulting equations of the peripheral region can be obtained as 
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Using perturbation series expansions in equations (18)-(20) and equating constant terms and 
terms containing 2

B and 2
N , we get 
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Similarly, using equations (24), (33) and (38), the expression for plug-core velocity can easily be 
obtained. 
 
The expression for wall shear stress w can be obtained by  
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From equations (21), (40) and (41) the volumetric flow rate is given by 
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 ,                   (44) 

 
where  R R z ,  1 1R R z . The expression for effective viscosity e can be obtained from 

equations (23) and (44). 
 
 
The second approximation plug core radius 1pR can be obtained by neglecting terms of 

 4
Bo  and higher powers of B in equation (28) as  
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f t
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2
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From equations (25), (39) and (45), the expression for plug-core radius can be obtained as 
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In absence of yield stress  i.e., 0  and peripheral plasma layer     1i.e., 1, R z R z   the 

flow system represented by the equations (40)-(44) reduce to one-layered Newtonian flow 
system with body acceleration as 

 

              
2

2 2 42 2 4' 4 3
16su u f t R z r f t R z r R z r


       ,                 (47)  

 

            
2

2 2 4
2 '

6sQ R z u f t R z f t R z
 

   
 

,                    (48) 

 

        
2

3
'

8w f t R z f t R z
   ,                      (49) 

 

              
12

2 2 4
1 cos 2 '

6e sR z e t u f t R z f t R z



 

    
 

.                  (50) 

 
The results given by equations (47)-(50) are the results obtained in Biswas and Chakraborty 
(2009a). 
 
 
4.  Results and Discussions 
 
The present model has been developed to analyze the combined effects of body acceleration; 
stenosis and velocity slip on the flow variables viz., axial velocity, flow rate, shear stress and 
effective viscosity of blood, flowing in an artery with a mild constriction. The equations 
governing the abovementioned flow are integrated by using a perturbation analysis with very 
small Womersley frequency parameters ( 0.5 1B N    ). The pressure gradient parameter e is 

taken in the range 0-5, the body acceleration parameter B  is taken in the range 0-2, magnitude of 
the lead angle is taken as 0.2 and the range 0-0.5 is taken for the height of the stenosis p in the 
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peripheral region. The axial velocity slip su is considered from 0 to 0.1, the ratio of the central 

core radius to the normal radius of the artery is taken as 0.8, yield stress is taken as 0, 0.1 and the 
magnitude of z is taken from -4 to 4.  
 
The variation of axial velocity, using equations (40) and (41) at the throat of the stenosis (i.e. 
at z =0) with radial distance, for fixed values of peripheral stenosis height p , pressure gradient e , 

time t  and for different values of slip velocity su and body acceleration parameter B , are 

presented in Figure 2. 
 
  

 
 

Figure 2: Variation of axial velocity with radial distance r for 045 ,t  1e  , 0.2p  , 

1, 0, 0.8B z    and for different values of z and su  

 
 
It is observed from the figure that axial velocity is maximum at 0r  , wherefrom it gradually 
decreases with the increase in radius of the artery r and attains a minimum value at the stenotic 
wall (  r R z ) for any value of body acceleration parameter B . However, an employment of 

slip at the wall increases the axial velocity. Increase in body acceleration further enhances the 
axial velocity. 
 
Variation of volumetric flow rate with the pressure gradient parameter e for fixed values of 
peripheral stenosis height p ,time t  and for different values of slip velocity su , yield stress  and 
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body acceleration parameter B , are depicted in Fig. 3. It is observed that flow rate gradually 
increases with the increase in pressure gradient parameter e for any value of  and B  . However, 
the magnitude of flow rate in the absence of yield stress ( 0  ) is more than its magnitude in 
presence of yield stress. It is further noticed that employment of body acceleration enhances the 
flow rate. 
 
Variation of Wall shear stress with axial distance z and time t are presented in Fig. 4 and Fig. 5 
respectively. Form the figures, it can be clearly observed that wall shear stress w increases from 

its approached magnitude (i.e. at 4z   )in the upstream of the throat with the axial distance and 
achieves its maximal at the throat of the stenosis and then decreases in the downstream and 
attains a lower magnitude at the end of the constriction profile (i.e. at 4z  ). Magnitude of wall 
shear stress w in uniform tube ( 0p  ) is lower than its magnitude in stenosed artery ( 0p  ). It 

increases significantly with the height of the peripheral stenosis p for any value of body 

acceleration parameter B . However, body acceleration decreases wall shear stress in both 
uniform ( 0p  ) and stenosed ( 0p  ) arteries. 

 
 

 
 

Figure 3. Variation of flow rate with pressure gradient for 01, 0.2, 45pB t   , 0, 0.8z    
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Figure 4. Variation of wall shear stress with axial distance for 00.1, 180 , 0, 0.8t z      

 

 
Figure 5. Variation of wall shear stress with axial distance for 0.1, 0.8, 0z     

 
It is also noticed that for any value of body acceleration parameter B , wall shear 
stress w gradually decreases as time t increases until it attains its minimum at 0180t  , wherefrom 

it gradually increases with time and reaches its approached magnitude at 0360t  . 
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Variation of effective viscosity e with axial distance z and peripheral stenosis height p are 

presented graphically in Figure 6 and Figure 7, respectively. 
 

 
Figure 6. Variation of effective viscosity with axial distance for 045 , 0.8, 0t z    

 

 
Figure 7.  Variation of effective 

viscosity with peripheral stenosis height for 
 

04 5 , 0 .8 , 0t z  
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Effective viscosity increases with the axial distance z from the initiation of a stenosis (i.e. 
at 4z   ) till it reaches to its maximum value at the throat (i.e. at 0z  ), wherefrom it gradually 
decreases to its initial value at the termination of the stenosis (i.e., at 4z  ). It is also observed 
from the figures that effective viscosity e increases with peripheral stenosis height for both the 

cases of no-slip and slip at wall. However, for any value of body acceleration parameter B , 
employment of an axial slip velocity at wall reduces the effective viscosity both in presence and 
absence of yield stress. For fixed values of B and su , effective viscosity increases with yield 

stress.  
 
 
5.  Conclusion 
 
The present analysis deals with the two-layered pulsatile blood flow through an artery (Fig.1) 
embedded with an axi-symmetric mild stenosis and an axial velocity slip is employed at the 
constricted wall. The body fluid blood is assumed to behave like a Newtonian fluid in the 
peripheral plasma layer and it is represented as Bingham Plastic in the core region. The equations 
of motion, governing the flow are integrated by using a perturbation method. Analytic 
expressions for flow variables are obtained and their variations with different flow parameters 
are presented graphically. It is observed that as expected, axial velocity and flow rate increase 
with the wall slip whereas effective viscosity decreases due to a slip. Also wall shear stress and 
effective viscosity decrease but velocity and flow rate increase with the body acceleration 
parameter B .Effective viscosity e increases as p increases.  

 

However, e is lowered for both the uniform tube  0p  and stenosed artery  0p  , as a 

result of wall slip. Since this study, takes care of pulsatility of the flow and also it incorporates 
the characteristics of non-Newtonian nature of blood (which is prominent in case of flow through 
arteries with smaller diameter), it is strongly felt that the present model may provide a better 
insight to the study of blood flow. This model indicates that slip at a diseased artery could play a 
prominent role in blood flow modeling. From the analysis, it may also be concluded that with 
slip, the damages to the vessel wall could be reduced. This kind of reduction in wall shear stress 
and effective viscosity could be exploited for better functioning of the diseased arterial systems. 
Hence one may look forward for drugs or devices which would produce slip and use them for 
treatment of peripheral arterial diseases. Further improvement in the model could be done by 
considering permeability of the blood vessels.  
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