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Abstract 

 
In this paper, (3+1)-dimensional Jimbo-Miwa and (3+1)-dimensional potential-YTSF equations 
are considered and the Exp-Function method is employed to compute the exact solutions. The 
solutions obtained by this method are compared with the exact solutions obtained through other 
methods. These equations play a very important role in mathematical physics and engineering 
sciences. It is shown that the Exp-Function method, with the help of symbolic computation, 
provides a powerful mathematical tool for solving nonlinear evolution equations in mathematical 
physics. 
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1.  Introduction 
 
Nonlinear phenomena play important roles in applied mathematics, physics and also in 
engineering problems in which each parameter varies depending on different factors. Solving 
nonlinear equations may guide authors to know the described process deeply and sometimes 
leads them to know some facts that are not simply understood through common observations. 
Moreover, obtaining exact solutions for these problems is a great purpose that has been quite 
untouched. 
 
Recently several authors introduced some new method such as the variation iteration method 
(VIM), homotopy perturbation method (HPM) and Exp-Function method to solve these 
equations, [see for instance, He (2000, 2004, 2005, 2006), He and Abdou (2007), and He and Wu 
(2006, 2007), He and Zhang (2008)]. Exp-function method is very strong for solving high 
nonlinearity of nonlinear equations. Other authors such as Zhu see Zhu (2007) and Zhang (2006) 
have been working in this field. Other applications of this method for solving nonlinear evolution 
equations arising in mathematical physics can be found in Borhanifar and Kabir (2009), 
Borhanifar et al. (2009), Kabir and Khajeh (2009), for example.  
 
2. Basic Idea of Exp-function Method 
 
We first consider a nonlinear equation of the form 
 

( , , , , , , ) 0,t x xx tt txN u u u u u u                                                                                                 (1) 

 
where N is a nonlinear function with respect to the indicated variables or some functions which 
can be reduced to a polynomial function by using some transformation. Introducing a complex 
variation   defined as 
 

( ), ,u u kx ly sz t                     (2) 
 
where slk ,,  and   are constants to be determined later. Then, equation (1) reduces to the 

ODE: 
 

2 2( , , , , , , ) 0,N u u k u k u u k u                      (3) 
 
Hence, solution of )(u  is 
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where pdc ,, , and q  are positive integers, which may be chosen freely; na  and mb  are 

unknown constants to be determined. 
 
 
3.  Application of Exp-function Method 
 
3.1. (3+1)-Dimensional Potential-YTSF Equation 
 
To illustrate the basic idea of the Exp-function method, we first consider the potential-YTSF 
equation [see Bai and Zhao (2006), and Wazwaz (2007)] that was recently derived by Yu et al. 
(1998) as 
 

.03424  yyxtzxxxzxxxxz uuuuuuu                                                                     (5) 

 
Introducing a complex variation  , defined in equation (2), equation (5) becomes an ordinary 
differential equation as 
 

.0)43(6 223  ukluuskusk                                                                        (6) 

    
In order to determine values of c  and p , we balance the linear term of the highest order u   

with the highest order nonlinear term uu   in equation (6) [see Borhanifar and Kabir (2009), 
Borhanifar et al. (2009), He and Zhang (2008), Kabir and Khajeh (2009), Wu and He (2007)] as 
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where ic  are determined coefficients only for simplicity. Balancing highest order of Exp-

function in equations (7) and (8) [see Borhanifar and Kabir (2009), Borhanifar et al. (2009), He 
and Zhang (2008), Kabir and Khajeh (2009), Wu and He (2007)] as 
 

,14215 pccp                                                                                                              (9) 

 
which leads to 
 

.cp                                                                                                                                    (10) 
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Similarly, to determine values of d and q , we balance the linear term of lowest order in equation 
(6) [see Borhanifar and Kabir (2009), Borhanifar et al. (2009), He and Zhang (2008), Kabir and 
Khajeh (2009), Wu and He (2007)] as 
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where id  are determined coefficients only for simplicity. Balancing lowest order of Exp-

function in equations (11) and (12) [see Borhanifar and Kabir (2009), Borhanifar et al. (2009), 
He and Zhang (2008), Kabir and Khajeh (2009), Wu and He (2007)] as 
 

,14215 qddq                                                                                                           (13) 

 
which leads to 
 

.dq                                                                                                                                                (14) 
 
For simplicity, we set 1 cp  and 1 dq .  Thus, equation (4) reduces to 
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Substituting (15) into (6) and using Maple, we arrive at 
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where 
 

 5

0 1exp( ) exp( ) ,A b b                 (17) 

 

and nc  are the coefficients of )exp( n . Vanishing the coefficients of all powers of )exp( n  

yields a set of algebraic equations for slkbaaba ,,,,,,, 11100   and  . Solving the system with 

the aid of Maple 11, we obtain: 
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Inserting (18) into (15) admits to the generalized solitary wave solution of equation (5) as 
follows 
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In case slk ,,  and   are complex numbers, the obtained solitary solution (19) reduces to the 

periodic solution. We write iSsiLliKk  ,, and use the transformation 
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Substituting equation (20) into (19) results in a periodic solution 
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can be determined by the related initial and boundary conditions. Setting 0 0b   and 0 2a K  in 

equation (21), it yields 
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whereas, iSsiLliKk  ,, , we write isSilLikK  ,, , and with substituting 

into equation (22), we obtain 
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Bai and Zhao (2006a) obtained the solitary solutions of equation (5) by generalized extended 
tanh function method. Here, we consider one of the cases expressed by equation (17a) of Bai and 
Zhao (2006a, 2006b) as follows 
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where R and p are arbitrary nonzero constants, 0c is an arbitrary constant, 11  , and 

),,(),,,(),,,( 110 tzyDtzyBtzyA  and ),,( tzyq  are determined by equation (10c) of Bai and 

Zhao (2006a and  2006b).  To compare our result, equation (23), with Bai and Zhao’s solution, 
we set  
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(see Bai and Zhao’s solution). Then, we see that results are the same. 
 
 
3.2. (3+1)-dimensional Jimbo-Miwa Equation 
 
 
In this case, let us consider the Jimbo-Miwa equation [see Xu (2006), Ma et al. (2007)] in the 
form 
 

3 3 2 3 0.xxxy x xy xx y yt xzu u u u u u u                 (24) 

 
Making the transformation (2), equation (24) becomes 
 

3 26 (2 3 ) 0.k lu k lu u l ks u                    (25) 
 
In order to determine values of c  and p , we balance the linear term of the highest order u   

with the highest order nonlinear term uu   in equation (25) [see Borhanifar and Kabir (2009), 
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Borhanifar et al. (2009), He and Zhang (2008), Kabir and Khajeh (2009), Wu and He (2007)] 
and obtain 
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where ic  are determined coefficients only for simplicity. Balancing the highest order of Exp-

function see Borhanifar and Kabir (2009), Borhanifar et al. (2009), He and Zhang (2008), Kabir 
and Khajeh (2009), Wu and He (2007) in equations (26) and (27), we have 
    

,14215 pccp                                                                                                           (28) 

 
which leads to 
 

.cp                                                                                                                                    (29) 
 
Similarly, to determine values of d and q , we balance the linear term of lowest order in 
equation (25) [see Borhanifar and Kabir (2009), Borhanifar et al. (2009), He and Zhang (2008), 
Kabir and Khajeh (2009), Wu and He (2007)] and obtain   
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where id  are determined coefficients only for simplicity. Balancing the lowest order of Exp-

function in equations (30) and (31) [see Borhanifar and Kabir (2009), Borhanifar et al. (2009), 
He and Zhang (2008), Kabir and Khajeh (2009), Wu and He (2007)] and obtain 
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which leads to 
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For simplicity, we set 1 cp  and 1 dq , so equation (4) reduces to 
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Substituting (34) into (25) and by making use of Maple, we arrive at 
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and nc  are the coefficients of )exp( n . Vanishing the coefficients of all powers of )exp( n  

yields a set of algebraic equations for slkbaaba ,,,,,,, 11100   and  . Solving the system with 

the aid of Maple 11, we obtain: 
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Inserting equation (37) into (34) admits to the generalized solitary wave solution of equation (24) 
as follows 
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k x l y s z t

lk

          
    

         (38)                         
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 

 

2
(3 )2 2 2 2 2 2

4 4 2 2 2 2 exp
1 0 0 1 0 0 0 1 0 1 0 0 0 2

1 2 2
(3 ) (3 )2 2 2 2 2 2

4 exp 4 2 2 2 exp
0 1 0 0 0 0 1 0 1 0 02 2

k s k l
k a b k a k a b k a b k a b a a b a k x l y s z t

l

a

k s k l k s k l
k k x l y s z t b k ka b ka b a a b a a b k x l y s z t

l l


         

 

 
            

  
  
    

   
  
  
   

.
 
 

  
 
In case slk ,,  and  are imaginary numbers, the obtained solitary solution (38) reduces to the 

periodic solution. We write iSsiLliKk  ,, and using the transformation 

 

   
2 2 2

2 2 2

(3 ) (3 ) (3 )
exp   cos   i sin ,

2 2 2

(3 ) (3 ) (3 )
exp -   cos   i sin

2 2 2

k s k l K S K L K S K L
k x l y s z t K x L y S z t K x L y S z t

l L L

k s k l K S K L K S K L
k x l y s z t K x L y S z t K x L y S z t

l L L

       
               

     
       

              
     

.


 


                                   

     (39) 
    
Substituting equation (39) into (38) results in a periodic solution 
 

    
2 2 2 2

0 1 0 1 0 0 0 1 0 0 1 0 0

1 2 2 2 2 2 2
0 1 0 1 0 0 0 1 0 0 0

2 2 2 2
1 0 0 1 0 0 1 0 0 0

1

2 2 2 (2 2 )cos( ) ( 2 )sin( )
( , , , )

4 2 )cos( ) 4 (2 2 sin( )

( 2 ) cos( ) ( 2 2 ) sin( )

(2

K a K a b K Ka b Ka b a b a a a b
u x y z t a

K a a b a a b b K Ka b Ka b

a b a a a b i Ka b Ka b i

Ka b

 

 

 

       
      

      
 2 2 2 2 2

0 0 0 0 1 0 1 0 0

,
2 ) cos( ) ( 4 2 ) sin( )Ka b i K a a b a a b i      

                   (40) 

 

where in this case t
L

LKSK
SzLyKx

2

)3( 2
 and 001 and, baa  are arbitrary 

parameters that can be determined by the related initial and boundary conditions. If we 
set 0 0b  and 0 2a K   in equation (40), we obtain 

 

   
2 2

1

(3 ) (3 )
( , , , )  (a ) sec tan ,

2 2

K S K L K S K L
u x y z t Ki K Kx Ly Sz t K Kx Ly Sz t

L L

    
            

   
         (41)                           

      
whereas iSsiLliKk  ,, , we write isSilLikK  ,, , and with substituting into 

equation (41), we obtain 
 

   
3 3

1

3 3
( , , , ) ( ) sech tanh .

2 2

ks k l ks k l
u x y z t a k ki kx ly sz t k kx ly sz t

l l

    
           

   
               (42)                          

   
Ma and co-workers found the following solitary wave solutions of equation (24) by the improved 
mapping approach. Here, we consider one of the cases expressed by equation (9) in Ma et al. 
(2007) as follows 
 

      
3

23 21
tanh tanh 1,

3
x x xxx t

x x
x

aX bX aX aX
u dx X X ay bz X X ay bz

aX

  
         



68                                                                                                                      Borhanifar and Kabir 
 

 
where ( , )X X x t   is an arbitrary function of ),( tx , a  and b  are two arbitrary constants. To 
compare our result, equation (42), with Ma and co-workers’ solution [see Ma et al. (2007)], we 

set t
l

lkks
kxtxXsbla 









 


2

3
),(,,

3

 in their solution and we found that the results 

were the same. 
 
Remark:  
 
We have verified all the obtained solutions by putting them back into the original equations (5) 
and (24) with the aid of Maple 11. 
 

 
4.  Conclusion 
 

Based on what we did in this paper, we conclude that the Exp-function method is very powerful 
and efficient technique in finding exact solutions for wide classes of problems such as nonlinear 
wave equations and systems. The Exp-function method has got many merits and much more 
advantages than the exact solutions. Calculations in the Exp-function method are simple and 
straightforward. The reliability of the method and the reduction in the size of computational 
domain give this method a wider applicability. The results show that the Exp-function method is 
a powerful mathematical tool for solving systems of nonlinear partial differential equations 
having wide applications in engineering. 
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