Available at Applications and

#’NA.,\
http://pvamu.edu/aam . —
&d%‘ Appl. Appl. Math. Applied Mathematics:
\'rw}

An International Journal
ISSN: 1932-9466
(AAM)

Special Issue No. 2 (May 2016), pp- 37 - 51
18th International Mathematics Conference, March 20 — 22, 2014, IUB Campus, Bashundhara
Dhaka, Bangladesh

Spectral Numerical Calculation of Non-isothermal Flow through
a Rotating Curved Rectangular Duct with Moderate Curvature

Md. Zohurul Islam?*, Md. Saidul Islam? and Rabindra Nath Mondal®

Department of Mathematics and Statistics
Jessore University of Science and Technology
Jessore-7408, Bangladesh
’Department of Mathematics
Faculty of Science, Engineering and Technology
Hamdard University
New Town, Narayangong, Bangladesh
Department of Mathematics
Jagannath University
Dhaka-1100, Bangladesh
“Email: zohurulmathku@gmail.com

ABSTRACT

The present paper investigates non-isothermal flow characteristics through a rotating curved
rectangular duct, where co-existence of the rotational forces and fluid temperature gradients
leads to the emergence of rotation-induced buoyancy effects. A spectral-based numerical
scheme is employed as the principal tool for the simulation while Chebyshev polynomial and
collocation method as the secondary tools. The outer wall of the duct is heated while the
inner wall cooled, the top and bottom walls being thermally insulated. The emerging
parameters controlling the flow characteristics are the rotation parameter, i.e., the Taylor
number Tr ranging O to 2000, the Grashof number Gr = 100, the Prandtl number Pr, the
aspect ratio, and the pressure-driven parameter, i.e., the Dean number Dn between 100 and
1000. The flow structures are examined under combined action of the centrifugal, Coriolis
and buoyancy forces. As a result, asymmetric 2-cell structures are computed for small values
of Tr while asymmetric 6-cell structures for large Tr. Unsteady flow characteristics show
that the flow undergoes in the scenario ‘chaotic— multi-periodic — periodic— steady-state’,
if Tr is increased in the positive direction. Typical contours of secondary flow patterns,
temperature profiles and axial flow distribution are also obtained at several values of Tr, and
it is found that there exist asymmetric two- to multi-vortex solutions. Heating the outer wall
is found to generate a significant temperature gradient at the outer concave wall.
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1. INTRODUCTION

Rotating flow is an important branch of fluid dynamics and is full of complex physics. In
practical applications, rotating thermal flows occur frequently in a variety of rotating
machinery. For a long time this intriguing branch of thermal flows has attracted much
attention of the researchers. In the past decades, there have appeared several books and
review articles on hydrodynamic and heat transfer characteristics of rotating flows. Since
rotating machines were introduced into engineering applications, such as rotating systems,
gas turbines, electric generators, heat exchangers, cooling system and some separation
processes, scientists have paid considerable attention to study rotating curved duct flows. The
readers are referred to Nandakumar and Masliyah (1986), Ito (1987) and Yanase et al. (2002)
for some outstanding reviews on curved duct flows. The fluid flow in a rotating curved duct
is subjected to two forces: the Coriolis force due to rotation and the centrifugal force due to
curvature of the duct. For isothermal flows of a constant property fluid, the Coriolis force
tends to produce vortices while centrifugal force is purely hydrostatic. In a curved passage,
centrifugal forces are developed in the flow due to channel curvature causing a counter
rotating vortex motion applied on the axial flow through the curved channel by Zohurul et al.
(2014). This creates characteristics spiraling fluid flow in the curved passage known as
secondary flow. At a certain critical flow condition and beyond, additional pairs of counter
rotating vortices appear on the outer concave wall of curved fluid passages. This flow
condition is referred to as Dean’s hydrodynamic instability and the additional vortices are
known as Dean Vortices, in recognition of the pioneering work in this field by Dean (1927).

When a temperature field is applied to the fluid then the variation of fluid density occurs in
non-isothermal flows, both Coriolis and centrifugal type buoyancy forces can contribute to
the generation of vortices referred Mondal et al. (2007). These two effects of rotation either
enhance or counteract each other in a non-linear manner depending on the direction of wall
heat flux and the flow domain. Therefore, the effect of system rotation is more subtle and
complicated and yields new; richer features of flow and heat transfer in general, bifurcation
and stability in particular, for non-isothermal flows. However, analytical, numerical and
experimental investigations, such as Baylis (1971), Mondal et al. (2014) and Humphrey et al.
(1977) concluded that Dean number was solely responsible for generating secondary flow
and Dean instability in curved passages. Mondal et al. (2014) applied an spectral-based
numerical study to investigate combined effects of centrifugal and Coriolis instability of the
flow through a rotating curved rectangular duct of small curvature, where they investigated
unsteady flow characteristics for small values of the flow parameters with positive rotation of
the duct, and presented some preliminary results of the flow evolution. Selmi et al. (1994)
examined combined effects of system rotation and curvature on the bifurcation structure of
two-dimensional flows in a rotating curved duct with square cross section. Wang and Cheng
(1996), employing finite volume method, examined the flow characteristics and heat transfer
in curved square ducts for positive rotation and found reverse secondary flow for the co-
rotation cases. Selmi and Nandakumer (1999) and Yamamoto et al. (1999) performed studies
on the flow in a rotating curved rectangular duct. Norouzi et al. (2010) investigated on the
inertial and creeping flow of a second-order fluid in a curved duct with square cross-section
by using finite difference method.

The effect of centrifugal force due to the curvature of the duct and the opposing effects of the
first and second normal stress difference on the flow field were investigated in that study.
Chandratilleke et al. (2012) presented extensive 3D computational study using helicity
function that describes the secondary vortex structure and thermal behavior in the fluid flow
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through curved rectangular ducts of aspect ratios ranging from 1 to 6. A curvilinear
coordinate system was used in that study facilitating effective grid definition for capturing
vortex generation and permitting efficient evaluation of local pressure gradient. Norouzi and
Biglari (2013) performed, for the first time, an analytical solution of Dean Flow inside a
curved rectangular duct, where perturbation method was used to solve the governing
equations. The main flow velocity (axial flow), vector plots of lateral velocity (secondary
flows) and flow resistance ratios were obtained in that study. Their study was limited to low
Reynolds numbers and obtained maximum four-vortex solutions. Wu et al. (2013) performed
numerical study of the secondary flow characteristics in a curved square duct by using the
spectral method, where the walls of the duct except the outer wall rotate around the Centre of
curvature and an azimuthally pressure gradient was imposed. In that study, multiple solutions
with 2-vortex, 4-vortex, 8-vortex and even non-symmetric vortices were obtained at the same
flow condition.

Recently, Kun et al. (2014) performed an experimental investigation on laminar flows of
pseudo-plastic fluids in a square duct of strong curvature using an ultrasonic Doppler
velocimetry and microphones, where stream wise velocity in the cross-section of the duct and
the fluctuating pressure on the walls were measured for different flow rates. Guo et al. (2011)
used a laminar incompressible three- dimensional numerical model to explore the interactive
effects of geometrical and flow characteristics on heat transfer and pressure drop. They
applied entropy generation as a hydro-thermal criterion and reported the influence of the
Reynolds number and curvature ratio on the flow profile and the Nusselt number. Recently,
Mondal et al. (2012, 2013a, 2013b) performed numerical investigation on the non-isothermal
flow through a rotating curved square and rectangular duct and obtained substantial results.
To the best of the authors' knowledge, however, there has not yet been done detail
investigation on the unsteady flow characteristics for the non-isothermal flow through a
curved rectangular duct of moderate aspect ratio with pressure gradient in the axial direction.
But from the scientific as well as engineering point of view it is quite interesting to study the
unsteady flow behavior in the presence of strong centrifugal and buoyancy forces for
moderate aspect ratio of the duct, because this type of flow is often encountered in
engineering applications such as in gas turbines, metallic industry and exhaustive pipes. The
present paper investigates unsteady flow characteristics for the non-isothermal flow through a
rotating curved rectangular duct by using the spectral method, and covering a wide range of
the Dean number and the Taylor number. Studying the effects of system rotation on the flow
characteristics, caused by the centrifugal-Coliolis-buoyancy forces with pressure drop, is an
important objective of the present study.

2. PHYSICAL MODEL

Consider fully developed two-dimensional flow of viscous incompressible fluid through a
rotating curved rectangular duct whose height and width are 2h and 2d, respectively. The
coordinate system with the relevant notation is shown in Figure 1, where x’ and y" axes are
taken to be in the horizontal and vertical directions respectively, and z’ is the axial direction

of the duct. The system rotates at a constant angular velocity €, and the representative

velocityug = % where Vv is the kinematic viscosity. We introduce the non-dimensional variables

defined as:
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where u, v, and w are the non-dimensional velocity components in the x, y and z directions,
respectively; t is the non-dimensional time, P the non-dimensional pressure, & the non-
dimensional curvature, and temperature is non-dimensionalized by AT . Henceforth, all the
variables are non-dimensionalized if not specified.
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Figure 1. Physical configuration of the system

3. MATHEMATICAL FORMULATION

Since the flow field is uniform in the z-direction, the sectional stream function w is
introduced as,

u=—t O o 1 v (1)
1+0x oy 1+ 56X ox

A new coordinate variable y is introduced in the y'direction asy =ay’, where a=h/d is the
aspect ratio of the duct cross section. From now on y denotesy’ for the sake of simplicity.
Then the basic equations for the axial velocityw, the stream function y and the

temperature T are derived from the Navier-Stokes equations and the energy equation under
the Boussinesq approximation as,

2
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The non-dimensional parameters Dn, the Dean number; Tr the Taylor number; Gr, the

Grashof number and Pr, the prandtl number, which appear in equations (2) to (4) are defined
as:

3 22507 d3 ATd3
Dnzﬂ E , Tr:—T,Gr pgATd , Pr:ﬂ, (5)
uv \ L Vo ,)2 K

where 12, 8,k and g are the viscosity, the coefficient of thermal expansion, the co-efficient

of thermal diffusivity and the gravitational acceleration respectively, v is the viscosity of the
fluid. In the present study, Dn and Tr are varied while Gr, a, & and Pr are fixed. The
physical properties with various parameters used in the present study, are shown in Table 1.0

Table 1. Parameters with physical properties

Parameters Physical properties Present Values
Dean number (Dn) Pressure gradient 100 < Dn <1000
Taylor number (Tr) Non-dimensional rotational parameter 0<Tr <2000
Grashof number (Gr) | Dimensionless natural convection Gr =100
parameter that governs the fluid flow
Aspect ratio (a) - a=2.0
Curvature (&) - 0=0.1
Prandtl number (Pr) Characteristic of the fluid Pr = 7.0 (water)

4. BOUNDARY CONDITIONS

The boundary conditions for w and y of the present study are described as follows:

WEEL ) =Wk 1) = (L) =y ) = (51, y) = Z‘y” (x ) =0, (6)
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Also, the temperature T is constant on the walls as

TAQy) =1 T(-1Ly)=-1 T(x, 1) =x. (7)

5. Numerical methods
5.1. Method of numerical calculations

In order to solve the system of non-linear partial differential equations (2) to (4) numerically,
the spectral method is used. By this method the expansion functions ¢,(x) and wp(x) are

expressed as,

qon(x)=(1—x2>cn(x),}, @

v, () = (L= X*)°C, (%)

th

where C, (x) = cos(ncos(x)) is the n™" order Chebyshev polynomial. w(x,y,t), w(x,yt)

and T(x,y,t) are expanded in terms of the expansion functions g, (x) and wp(x) as

W,y =33 W @) ds (04 (1)

m=0 n=0

D=3 s Ove (D, ()

m=0 n=0

(9)

T Y.D=2 2 T b n ()4, (V) +X

m=0 n=0

where M and N are the truncation numbers along X and y directions respectively. We
performed graphical representation of the time-evolution of the unsteady solutions, secondary
flow behavior, temperature profiles and axial flow distribution. As a result, multiple solutions
of steady-state, periodic, multi-periodic and chaotic solutions with symmetric and asymmetric
multi-vortex solutions are obtained.

5.2. Grid sensitivity test

The accuracy of the numerical calculations is investigated for the truncation numbers M and
N used in this study. Five types of grid sizes were used to check the dependence of grid size
(i.e., M and N). For good accuracy of the solutions, N is chosen equal to2M . Different
types of the grid sizes are taken in this study as14x 28, 16x32,18x36,20x 40, 22x 44, and it

is found that M = 16 and N = 32 gives sufficient accuracy of the numerical solutions, which
are shown in Table 2.
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Table 2. The values of A and W(0,0) for various M and N at Dn=700 and Tr =830

M N A w(0,0)
14 28 0.3396734 185.2898
16 32 0.3396702 185.4422
18 36 0.33960845 185.5519
20 40 0.33965815 185.6331

In order to calculate the unsteady solutions, Crank-Nicolson and Adams-Bashforth methods
together with the function expansion (9) and the collocation methods are applied. Details of
these methods are discussed in Mondal (2006). By applying the Crank- Nicolson and the Adams-
Bashforth methods to the non-dimensional basic equations (2)-(4), and rearranging, we get

(Alt_Azsz(H_At) :(A]_t+A22jW(t)_5XV\I(12)—VAV1:(1£—At)+ P(x, y). (10)
1 A, (1A, S 1(ap(t) op(t-At)

(At—szzw(t+At)_(At+ : )Azl//(t)+1+ - At( rh_ov j+Q(x, y). (11)
1 A _[(1, %

(At—zpro(t+At)—(At+2Pr)T(t)+ R(X, y). (12)

In the above formulations, P, Q and R are the non-linear terms. Then applying the Adams-
Bashforth method for the second term of R. H. S of Equations (10), (11) and (12) and
simplifying we calculate w(t+At), w(t+At) and T (t+At) by numerical computation.

5.3. Resistance coefficient

We use the resistance coefficient A as one of the representative quantities of the flow state. It
is also called the hydraulic resistance coefficient and is generally used in fluids engineering
defined as,

*

PP, A1 ; .2
* = * W

S 2

where quantities with an asterisk denote the dimensional ones, () stands for the mean over

the cross section of the rectangular duct, and d, =4(2d x4dh)/(4d x8dh).  Since
(P =P )/az" =G, A is related to the mean non-dimensional axial velocity (w) as

(13)

. 16\/§ZDn | 14)
3(w)
Where

<w>=\/§d /v<w*>.

In this paper, A is used to calculate the unsteady solutions by numerical computations.
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6. Results and Discussion

In the present model, our objective is to study the effects of rotation on the flow
characteristics. The expressions for velocity profile, flow rate, wall heat transfer (temperature
profile) are obtained by solving the governing equation of flow using the spectral method. In
this paper, time evolution calculations of the resistant coefficient A are performed for the non-
isothermal flows over a wide range of the Dean Numbers (Dn) and the Taylor Number (Tr)
for the two cases of the duct rotation, Case I: Dn = 700 and Case II: Dn = 1000.

6.1. Case |I: Dean Number, Dn = 700

We performed time evolution of A for 0 < Tr < 2000 and 100 < Dn < 1000. Figure 2(a)
shows time evolution of A for Tr = 100 and Dn = 700 at Gr = 100. It is found that the
unsteady flow at Tr = 100 is a chaotic solution which is well justified by drawing the phase
spaces as shown in Figure 2(b). Figure 2(c) shows typical contours of secondary flow
patterns, temperature profiles and axial flow distribution for Tr = 100 and Dn = 700, where
we find that the unsteady flow is a four-vortex solution. This is caused by the combined
action of the Coriolis force and centrifugal force by Wang and Cheng (1996). Then we
performed time evolution for Tr = 800 as shown in Figure 3(a). It is found that the unsteady
flow at Tr =800 is a weak chaotic solution which is transformed into the multi-periodic
solution, and it is well justified by drawing the phase spaces as shown in Figure 3(b).
Contours of secondary flow patterns, temperature profiles and axial flow distribution for the
corresponding flow patterns are shown in Figure 3(c), where it is found that the multi-
periodic oscillation at Tr = 800 is a four-vortex solution. The time evolution for Tr = 830 is
shown in Figure 4(a). It is found that the unsteady flow at Tr =830 is a fully multi-periodic
solution whose orbit is different and it is well justified by drawing the phase space as shown
in Figure 4(b). Contours of secondary flow patterns, temperature profiles and axial flow
distribution for the corresponding flow patterns are shown in Figure 4(c), where it is found
that the multi-periodic oscillation at Tr = 830 is a four-vortex solution.

In this paper, the buoyancy effects caused by the differentially heated vertical sidewalls are
clearly shown. The buoyancy effects are due to the centrifugal and Coriolis forces in the
presence of a density gradient. When a duct is rotated, heating or cooling of the fluid which is
contained in or flow through it, can give rise to significant buoyant force effects. The present
work, therefore, confines itself to the thermal buoyancy effects in rotating non-isothermal
flows, in which the coexistence of the rotational forces and fluid temperature gradients leads
to the emergence of rotation-induced buoyancy effects. Since the rotational forces are
spatially varying with the local flow information, the buoyancy effects induced are obviously
more sophisticated than the gravitational buoyancy resulted from constant gravity in a
conventional natural/mixed convection flow. The coupling nature of the thermal flow
phenomena with the rotational buoyancy is very influential to transport phenomena in the
rotating system.
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Figure 2. (a) Time evolution of A for Dn =700 and Tr = 100, (b) Phase space for Tr
=100, (c) Contours of secondary flow patterns (top), temperature profiles
(middle) and axial flow (bottom) for Tr = 100 at 32.0<t<36.0.
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Figure 3. (a) Time evolution of A for Dn = 700 and Tr = 800. (b) Phase space for Tr =
800, (c) Contours of secondary flow patterns (top), temperature profiles
(middle) and axial flow distribution (bottom) for Tr = 800 at
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Figure 4. (a) Time evolution of A for Dn =700 and Tr = 830. (b) Phase space for Tr
= 830, (c) Contours of secondary flow patterns (top), temperature profiles
(middle) and axial flow distribution (bottom) for Tr = 830 at 36.0<t <36.5
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Figure 5. (a) Time evolution of A for Dn =700 and Tr = 870. (b) Phase space for Tr
= 870, (c) Contours of secondary flow patterns (top), temperature profiles
(middle) and axial flow (bottom) for Tr = 870 at 46.35<t <46.75.
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Figure 6. (a) Time evolution of A for Dn = 700 and Tr = 880, (b) Contours of
secondary flow patterns (left), temperature profiles (middle) and axial flow
distribution (right) for Tr =880 att =36.0.

Time evolution result for Tr = 870 is shown in Figure 5(a). It is found that the unsteady flow
at Tr = 870 is a periodic solution whose orbit is single and it is well justified by drawing the
phase space as shown in Figure 5(b). Contours of secondary flow patterns temperature
profiles and axial flow distribution for the corresponding flow patterns are shown in Figure
5(c), where it is found that the periodic oscillation at Tr = 870 is a four-vortex solution. If the
rotational speed is increased more in the positive direction, for example Tr = 880 up to 2000,
it is found that the flow becomes steady state which is shown in Figure 6(a) for Tr = 880.
Since the unsteady flow is a steady-state solution, single contours of secondary flow pattern,
temperature profile and axial flow distribution is shown in Figure 6(b), and it is found that
steady-state solution is a two-vortex flow.
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6.2. Case I1: Dean Number, Dn = 1000

Here, we performed time evolution of 4 for 0 < Tr <2000 and Dn = 1000. Figure 7(a) shows
time evolution of A4 for Tr = 500. It is found that the unsteady flow at Tr = 500 is a strongly
chaotic solution, which is well justified by drawing the phase spaces as shown in Figure 7(b).
Figure 7(c) shows typical contours of secondary flow patterns, axial flow distribution and
temperature profiles for Tr = 500, where we find that the unsteady flow is a six- and eight-
vortex solution. Then we performed time evolution for Tr = 1470 as shown in Figure 8(a). It
is found that the unsteady flow at Tr =1470 is a multi-periodic solution which is well justified
by depicting the phase space as shown in Figure 8(b). Contours of secondary flow patterns,
temperature profiles and axial flow for the corresponding flow patterns has been shown in
Figure 8(c) and where it is found that the multi-periodic oscillation at Tr =1470 is a four-
vortex solution. Continuing this process the time evolution for Tr = 1485 is displayed in
Figure 9(a). It is observed that the unsteady flow at Tr =1485 is a multi-periodic solution
whose orbit is different and it is justified by drawing the phase space as shown in Figure 9(b).

Contours of secondary flow patterns, temperature profiles and axial flow for the
corresponding flow patterns are expressed in Figure 9(c), where the four-vortex solution has
been observed. Next, time evolution for Tr = 1490 is shown in Figure 10(a). It is found that
the unsteady flow at Tr =1490 is a periodic solution whose orbit is single and it is well
justified by drawing the phase space as shown in Figure 10(b). Contours of secondary flow
patterns temperature profiles and axial flow for the corresponding flow patterns are shown in
Figure 10(c), where it is found that the periodic oscillation at Tr =1485 is a four-vortex
solution. Then, the rotational speed is increased more in the positive direction, for example Tr
= 1600 up to 2000, and it is found that the flow becomes steady-state which is shown in
Figure 11(a) for Tr = 1600. Since the unsteady flow is a steady-state solution, a single
contour of secondary flow pattern, temperature profile and axial flow distribution is shown in
Figure 11(b) and it is found that steady-state solution is an asymmetric two-vortex solution.
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Figure 7. (a) Time evolution of A for Dn = 1000 and Tr = 500. (b) Phase space for
Tr =500, (c) Contours of secondary flow patterns (top), temperature
profiles (middle) and axial flow distribution (bottom) for Tr = 500 at
46.3<t<46.7
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Figure 8. (a) Time evolution of A for Dn = 1000 and Tr = 1470. (b) Phase space for
Tr =1470, (c) Contours of secondary flow patterns (top), temperature
profiles (middle) and axial flow distribution (bottom) for Tr = 1470
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Figure 9. () Time evolution of A for Dn = 1000 and Tr = 1490. (b) Phase space for
Tr =1490, (c) Contours of secondary flow patterns (top), temperature
profiles (middle) and axial flow (bottom) for Tr = 1490 at35.4 <t <36.5
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Figure 10. (@) Time evolution of A for Dn = 1000 and Tr = 1490. (b) Phase space for
Tr =1490, (c) Contours of secondary flow patterns (top), temperature
profiles (middle) and axial flow (bottom) for Tr = 1490 at40.8 <t <435.
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Figure 11. (a) Time evolution of A for Dn = 1000 and Tr = 1600. (b) Phase space for
Tr =1600, (c) Contours of secondary flow patterns (left), temperature
profiles (middle) and axial flow (right) for Tr = 1600 at t =15.0
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7. CONCLUSION

A numerical study is presented for the flow characteristics through a rotating curved
rectangular duct of aspect ratio 2.0 and curvature 0.1. Numerical calculations are carried out
by using a spectral method and covering a wide range of the Taylor number 0 < Tr <2000 for
the Dean numbers 100<Dn<1000and for the Grashof number Gr =100. We have
investigated unsteady solutions for the positive rotation of the duct by time evolution
calculations, and it is found that the unsteady flow undergoes in the scenario ‘Chaotic —
multi-periodic —periodic— steady-szate’, if Tr is increased in the positive direction. In order
to investigate the transition from multi-periodic oscillations to chaotic states more explicitly,
the orbit of the solution is drawn in phase space. Drawing the phase spaces is found to be
very fruitful to justify the transition of the unsteady flow characteristics as well as chaotic
flow behavior. In this regard, it should be worth mentioning that irregular oscillation of the
flow through a curved duct has been observed experimentally by Ligrani and Niver (1988)
for a large aspect ratio and by Wang and Yang (2005) for the square duct. Typical contours of
secondary flow patterns, temperature profiles and axial flow distribution are also obtained at
several values of Tr, and it is found that there exist two-, four-, six- and eight-vortex
solutions. The reason is that due to the combined action of the centrifugal-Coriolis-buoyancy
force, we obtained two- to multi-vortex solution.

It is found that the temperature distribution is consistent with the secondary vortices and axial
flow distributions, and convective heat transfer is significantly enhanced as the secondary
vortices become stronger. The present study shows, there exists an asymmetric two-vortex
solution for the steady-state solution, while asymmetric two-, three-, and four-vortex
solutions for the periodic and multi-periodic solutions. For chaotic solution, on the other
hand, we obtain asymmetric four-vortex solutions only. The present study also shows that
chaotic flow enhances heat transfer more effectively than the steady-state or periodic
solutions as the secondary flow become stronger for this case.
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