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ABSTRACT 
 

The present paper investigates non-isothermal flow characteristics through a rotating curved 

rectangular duct, where co-existence of the rotational forces and fluid temperature gradients 

leads to the emergence of rotation-induced buoyancy effects. A spectral-based numerical 

scheme is employed as the principal tool for the simulation while Chebyshev polynomial and 

collocation method as the secondary tools. The outer wall of the duct is heated while the 

inner wall cooled, the top and bottom walls being thermally insulated. The emerging 

parameters controlling the flow characteristics are the rotation parameter, i.e., the Taylor 

number Tr  ranging 0 to 2000, the Grashof number Gr = 100, the Prandtl number Pr, the 

aspect ratio, and the pressure-driven parameter, i.e., the Dean number Dn between 100 and 

1000. The flow structures are examined under combined action of the centrifugal, Coriolis 

and buoyancy forces. As a result, asymmetric 2-cell structures are computed for small values 

of Tr  while asymmetric 6-cell structures for large Tr. Unsteady flow characteristics show 

that the flow undergoes in the scenario ‘chaotic→ multi-periodic → periodic→ steady-state’, 

if Tr is increased in the positive direction. Typical contours of secondary flow patterns, 

temperature profiles and axial flow distribution are also obtained at several values of Tr, and 

it is found that there exist asymmetric two- to multi-vortex solutions. Heating the outer wall 

is found to generate a significant temperature gradient at the outer concave wall.  
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1. INTRODUCTION 
 

Rotating flow is an important branch of fluid dynamics and is full of complex physics. In 

practical applications, rotating thermal flows occur frequently in a variety of rotating 

machinery. For a long time this intriguing branch of thermal flows has attracted much 

attention of the researchers. In the past decades, there have appeared several books and 

review articles on hydrodynamic and heat transfer characteristics of rotating flows. Since 

rotating machines were introduced into engineering applications, such as rotating systems, 

gas turbines, electric generators, heat exchangers, cooling system and some separation 

processes, scientists have paid considerable attention to study rotating curved duct flows. The 

readers are referred to Nandakumar and Masliyah (1986), Ito (1987) and Yanase et al. (2002) 

for some outstanding reviews on curved duct flows. The fluid flow in a rotating curved duct 

is subjected to two forces: the Coriolis force due to rotation and the centrifugal force due to 

curvature of the duct. For isothermal flows of a constant property fluid, the Coriolis force 

tends to produce vortices while centrifugal force is purely hydrostatic. In a curved passage, 

centrifugal forces are developed in the flow due to channel curvature causing a counter 

rotating vortex motion applied on the axial flow through the curved channel by Zohurul et al. 

(2014). This creates characteristics spiraling fluid flow in the curved passage known as 

secondary flow. At a certain critical flow condition and beyond, additional pairs of counter 

rotating vortices appear on the outer concave wall of curved fluid passages. This flow 

condition is referred to as Dean’s hydrodynamic instability and the additional vortices are 

known as Dean Vortices, in recognition of the pioneering work in this field by Dean (1927).  

 

When a temperature field is applied to the fluid then the variation of fluid density occurs in 

non-isothermal flows, both Coriolis and centrifugal type buoyancy forces can contribute to 

the generation of vortices referred Mondal et al. (2007). These two effects of rotation either 

enhance or counteract each other in a non-linear manner depending on the direction of wall 

heat flux and the flow domain. Therefore, the effect of system rotation is more subtle and 

complicated and yields new; richer features of flow and heat transfer in general, bifurcation 

and stability in particular, for non-isothermal flows. However, analytical, numerical and 

experimental investigations, such as Baylis (1971), Mondal et al. (2014) and Humphrey et al. 

(1977) concluded that Dean number was solely responsible for generating secondary flow 

and Dean instability in curved passages. Mondal et al. (2014) applied an spectral-based 

numerical study to investigate combined effects of centrifugal and Coriolis instability of the 

flow through a rotating curved rectangular duct of small curvature, where they investigated 

unsteady flow characteristics for small values of the flow parameters with positive rotation of 

the duct, and presented some preliminary results of the flow evolution. Selmi et al. (1994) 

examined combined effects of system rotation and curvature on the bifurcation structure of 

two-dimensional flows in a rotating curved duct with square cross section. Wang and Cheng 

(1996), employing finite volume method, examined the flow characteristics and heat transfer 

in curved square ducts for positive rotation and found reverse secondary flow for the co-

rotation cases. Selmi and Nandakumer (1999) and Yamamoto et al. (1999) performed studies 

on the flow in a rotating curved rectangular duct. Norouzi et al. (2010) investigated on the 

inertial and creeping flow of a second-order fluid in a curved duct with square cross-section 

by using finite difference method.  

 

The effect of centrifugal force due to the curvature of the duct and the opposing effects of the 

first and second normal stress difference on the flow field were investigated in that study. 

Chandratilleke et al. (2012) presented extensive 3D computational study using helicity 

function that describes the secondary vortex structure and thermal behavior in the fluid flow 
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through curved rectangular ducts of aspect ratios ranging from 1 to 6. A curvilinear 

coordinate system was used in that study facilitating effective grid definition for capturing 

vortex generation and permitting efficient evaluation of local pressure gradient. Norouzi and 

Biglari (2013) performed, for the first time, an analytical solution of Dean Flow inside a 

curved rectangular duct, where perturbation method was used to solve the governing 

equations. The main flow velocity (axial flow), vector plots of lateral velocity (secondary 

flows) and flow resistance ratios were obtained in that study. Their study was limited to low 

Reynolds numbers and obtained maximum four-vortex solutions. Wu et al. (2013) performed 

numerical study of the secondary flow characteristics in a curved square duct by using the 

spectral method, where the walls of the duct except the outer wall rotate around the Centre of 

curvature and an azimuthally pressure gradient was imposed. In that study, multiple solutions 

with 2-vortex, 4-vortex, 8-vortex and even non-symmetric vortices were obtained at the same 

flow condition. 

 

Recently, Kun et al. (2014) performed an experimental investigation on laminar flows of 

pseudo-plastic fluids in a square duct of strong curvature using an ultrasonic Doppler 

velocimetry and microphones, where stream wise velocity in the cross-section of the duct and 

the fluctuating pressure on the walls were measured for different flow rates. Guo et al. (2011) 

used a laminar incompressible three- dimensional numerical model to explore the interactive 

effects of geometrical and flow characteristics on heat transfer and pressure drop. They 

applied entropy generation as a hydro-thermal criterion and reported the influence of the 

Reynolds number and curvature ratio on the flow profile and the Nusselt number. Recently, 

Mondal et al. (2012, 2013a, 2013b) performed numerical investigation on the non-isothermal 

flow through a rotating curved square and rectangular duct and obtained substantial results. 

To the best of the authors' knowledge, however, there has not yet been done detail 

investigation on the unsteady flow characteristics for the non-isothermal flow through a 

curved rectangular duct of moderate aspect ratio with pressure gradient in the axial direction. 

But from the scientific as well as engineering point of view it is quite interesting to study the 

unsteady flow behavior in the presence of strong centrifugal and buoyancy forces for 

moderate aspect ratio of the duct, because this type of flow is often encountered in 

engineering applications such as in gas turbines, metallic industry and exhaustive pipes. The 

present paper investigates unsteady flow characteristics for the non-isothermal flow through a 

rotating curved rectangular duct by using the spectral method, and covering a wide range of 

the Dean number and the Taylor number. Studying the effects of system rotation on the flow 

characteristics, caused by the centrifugal-Coliolis-buoyancy forces with pressure drop, is an 

important objective of the present study.  

 

2. PHYSICAL MODEL 
 

Consider fully developed two-dimensional flow of viscous incompressible fluid through a 

rotating curved rectangular duct whose height and width are 2h and 2d, respectively. The 

coordinate system with the relevant notation is shown in Figure 1, where x′ and y′ axes are 

taken to be in the horizontal and vertical directions respectively, and z’ is the axial direction 

of the duct. The system rotates at a constant angular velocity T and the representative 

velocity 0
v

U
d

 , where v  is the kinematic viscosity. We introduce the non-dimensional variables 

defined as:  
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where u, v, and w are the non-dimensional velocity components in the x, y and z directions, 

respectively; t is the non-dimensional time, P the non-dimensional pressure,  the non-

dimensional curvature, and temperature is non-dimensionalized by T . Henceforth, all the 

variables are non-dimensionalized if not specified. 

 

 

  

 

 

 

 

 

 

 

 

 

 
 

Figure 1. Physical configuration of the system 

 

 

3.  MATHEMATICAL FORMULATION 
 

Since the flow field is uniform in the z -direction, the sectional stream function  is 

introduced as, 

 
 

1 1
, .

1 1
u v

x x xy

 

 

 
  

  
                                                                                         (1) 

 

A new coordinate variable y is introduced in the ydirection as y ay , where a h d is the 

aspect ratio of the duct cross section. From now on y denotes y  for the sake of simplicity. 

Then the basic equations for the axial velocity w , the stream function   and the 

temperatureT are derived from the Navier-Stokes equations and the energy equation under 

the Boussinesq approximation as, 

 
2

2
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(1 ) (1 ) ,

( , ) 1 (1 )
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t a x y x a x y x y
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where  
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The non-dimensional parameters Dn , the Dean number; Tr , the Taylor number; Gr, the 

Grashof number and Pr, the prandtl number, which appear in equations (2) to (4) are defined 

as: 
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where  , ,   and g  are the viscosity, the coefficient of thermal expansion, the co-efficient 

of thermal diffusivity and the gravitational acceleration respectively,   is the viscosity of the 

fluid.  In the present study, Dn and Tr are varied while Gr, a,  and Pr are fixed. The 

physical properties with various parameters used in the present study, are shown in Table 1.0 

 

 

     Table 1. Parameters with physical properties  
 

Parameters Physical properties Present Values 

Dean number (Dn) Pressure gradient 100 1000Dn   

Taylor number (Tr) Non-dimensional rotational parameter 0 2000 Tr  

Grashof number (Gr) Dimensionless natural convection 

parameter that governs the fluid flow 

Gr = 100 

 

Aspect ratio (a) - a = 2.0 

Curvature ( ) - 1.0  

Prandtl number (Pr) Characteristic of the fluid Pr = 7.0 (water) 

 

 

4. BOUNDARY CONDITIONS 
 

The boundary conditions for w and  of the present study are described as follows: 

 

( 1, ) ( , 1) ( 1, ) ( , 1) ( 1, ) ( , 1) 0.
 

 
 

           
 

w y w x y x y x
x y

                                    (6) 
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Also, the temperature T is constant on the walls as 

 

(1, ) 1, ( 1, ) 1, ( , 1) .     T y T y T x x
                                                                   (7) 

 

 

5.  Numerical methods 
 

5.1. Method of numerical calculations 

 

In order to solve the system of non-linear partial differential equations (2) to (4) numerically, 

the spectral method is used. By this method the expansion functions )(xn  and  )(xn  are 

expressed as, 
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where  1( ) cos cos ( )C x n xn
  is the thn  order Chebyshev polynomial. ( , , ), ( , , )w x y t x y t  

and ),,( tyxT  are expanded in terms of the expansion functions )(xn  and )(xn  as 
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                                                                       (9) 

 

where M  and N  are the truncation numbers along x  and y  directions respectively. We 

performed graphical representation of the time-evolution of the unsteady solutions, secondary 

flow behavior, temperature profiles and axial flow distribution. As a result, multiple solutions 

of steady-state, periodic, multi-periodic and chaotic solutions with symmetric and asymmetric 

multi-vortex solutions are obtained.  

 

5.2. Grid sensitivity test 
 

 

The accuracy of the numerical calculations is investigated for the truncation numbers M  and 

N  used in this study. Five types of grid sizes were used to check the dependence of grid size 

(i.e., M  and N ). For good accuracy of the solutions, N  is chosen equal to 2M . Different 

types of the grid sizes are taken in this study as 4422,4020,3618,3216,2814  , and it 

is found that M = 16 and N = 32 gives sufficient accuracy of the numerical solutions, which 

are shown in Table 2.  
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Table 2. The values of  and (0,0)w  for various M and N at 700Dn   and 830Tr   

          M                  N                                                      (0,0)w  

         14          28           0.3396734           185.2898 

         16          32           0.3396702           185.4422 

         18          36           0.33960845           185.5519 

         20          40           0.33965815           185.6331 

 

In order to calculate the unsteady solutions, Crank-Nicolson and Adams-Bashforth methods 

together with the function expansion (9) and the collocation methods are applied. Details of 

these methods are discussed in Mondal (2006). By applying the Crank- Nicolson and the Adams-

Bashforth methods to the non-dimensional basic equations (2)-(4), and rearranging, we get 
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In the above formulations, P, Q and R are the non-linear terms. Then applying the Adams-

Bashforth method for the second term of R. H. S of Equations (10), (11) and (12) and 

simplifying we calculate  w t t ,  t t   and  T t t  by numerical computation. 

 

5.3. Resistance coefficient 

 

We use the resistance coefficient   as one of the representative quantities of the flow state. It 

is also called the hydraulic resistance coefficient and is generally used in fluids engineering 

defined as, 
 

,
2

1 2
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*

2

*

1 w
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
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                                                                                             (13) 

 
where quantities with an asterisk denote the dimensional ones,   stands for the mean over 

the cross section of the rectangular duct, and    .84/424* dhddhddh   Since 

  ,/ **

2

*

1 GzPP     is related to the mean non-dimensional axial velocity w  as 
 

,
3

216
2

w

Dn
                                                                                                                (14) 

 
Where 

 
*2 /w d v w .  

 

In this paper,  is used to calculate the unsteady solutions by numerical computations.  
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6.   Results and Discussion 
 

In the present model, our objective is to study the effects of rotation on the flow 

characteristics. The expressions for velocity profile, flow rate, wall heat transfer (temperature 

profile) are obtained by solving the governing equation of flow using the spectral method. In 

this paper, time evolution calculations of the resistant coefficient are performed for the non-

isothermal flows over a wide range of the Dean Numbers (Dn) and the Taylor Number (Tr) 

for the two cases of the duct rotation, Case I: Dn = 700 and Case II: Dn = 1000.  

 

6.1. Case I: Dean Number, Dn = 700 

 

We performed time evolution of  for 0 ≤ Tr ≤ 2000 and 100 ≤ Dn ≤ 1000. Figure 2(a) 

shows time evolution of for Tr = 100 and Dn = 700 at Gr = 100. It is found that the 

unsteady flow at Tr = 100 is a chaotic solution which is well justified by drawing the phase 

spaces as shown in Figure 2(b). Figure 2(c) shows typical contours of secondary flow 

patterns, temperature profiles and axial flow distribution for Tr = 100 and Dn = 700, where 

we find that the unsteady flow is a four-vortex solution. This is caused by the combined 

action of the Coriolis force and centrifugal force by Wang and Cheng (1996). Then we 

performed time evolution for Tr = 800 as shown in Figure 3(a). It is found that the unsteady 

flow at Tr =800 is a weak chaotic solution which is transformed into the multi-periodic 

solution, and it is well justified by drawing the phase spaces as shown in Figure 3(b). 

Contours of secondary flow patterns, temperature profiles and axial flow distribution for the 

corresponding flow patterns are shown in Figure 3(c), where it is found that the multi-

periodic oscillation at Tr = 800 is a four-vortex solution. The time evolution for Tr = 830 is 

shown in Figure 4(a). It is found that the unsteady flow at Tr =830 is a fully multi-periodic 

solution whose orbit is different and it is well justified by drawing the phase space as shown 

in Figure 4(b). Contours of secondary flow patterns, temperature profiles and axial flow 

distribution for the corresponding flow patterns are shown in Figure 4(c), where it is found 

that the multi-periodic oscillation at Tr = 830 is a four-vortex solution.  

 

In this paper, the buoyancy effects caused by the differentially heated vertical sidewalls are 

clearly shown. The buoyancy effects are due to the centrifugal and Coriolis forces in the 

presence of a density gradient. When a duct is rotated, heating or cooling of the fluid which is 

contained in or flow through it, can give rise to significant buoyant force effects. The present 

work, therefore, confines itself to the thermal buoyancy effects in rotating non-isothermal 

flows, in which the coexistence of the rotational forces and fluid temperature gradients leads 

to the emergence of rotation-induced buoyancy effects. Since the rotational forces are 

spatially varying with the local flow information, the buoyancy effects induced are obviously 

more sophisticated than the gravitational buoyancy resulted from constant gravity in a 

conventional natural/mixed convection flow. The coupling nature of the thermal flow 

phenomena with the rotational buoyancy is very influential to transport phenomena in the 

rotating system. 
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Figure 2. (a) Time evolution of    for Dn = 700 and Tr = 100, (b) Phase space for Tr 

=100, (c) Contours of secondary flow patterns (top), temperature profiles 

(middle) and axial flow (bottom) for Tr = 100 at 32.0 36.0t  . 
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                         (a)                                             (b)                                       (c)   

Figure 3. (a) Time evolution of  for Dn = 700 and Tr = 800. (b) Phase space for Tr = 

800, (c) Contours of secondary flow patterns (top), temperature profiles 

(middle) and axial flow distribution (bottom) for Tr = 800 at 
30.93 31.23t   
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                    (a)                                                 (b)                                          (c)        

 

Figure 4. (a) Time evolution of    for Dn = 700 and Tr = 830. (b) Phase space for Tr 

= 830, (c) Contours of secondary flow patterns (top), temperature profiles 

(middle) and axial flow distribution (bottom) for Tr = 830 at 36.0 36.5t   
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Figure 5. (a) Time evolution of    for Dn = 700 and Tr = 870. (b) Phase space for Tr 

= 870, (c) Contours of secondary flow patterns (top), temperature profiles 

(middle) and axial flow (bottom) for Tr = 870 at 46.35 46.75t  .    
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Figure 6. (a) Time evolution of    for Dn = 700 and Tr = 880, (b) Contours of 

secondary flow patterns (left), temperature profiles (middle) and axial flow 
distribution (right) for Tr = 880 at 36.0t  . 

 
 

 

Time evolution result for Tr = 870 is shown in Figure 5(a). It is found that the unsteady flow 

at Tr = 870 is a periodic solution whose orbit is single and it is well justified by drawing the 

phase space as shown in Figure 5(b). Contours of secondary flow patterns temperature 

profiles and axial flow distribution for the corresponding flow patterns are shown in Figure 

5(c), where it is found that the periodic oscillation at Tr = 870 is a four-vortex solution. If the 

rotational speed is increased more in the positive direction, for example Tr = 880 up to 2000, 

it is found that the flow becomes steady state which is shown in Figure 6(a) for Tr = 880. 

Since the unsteady flow is a steady-state solution, single contours of secondary flow pattern, 

temperature profile and axial flow distribution is shown in Figure 6(b), and it is found that 

steady-state solution is a two-vortex flow. 
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6.2. Case II: Dean Number, Dn = 1000 

 

Here, we performed time evolution of   for 0 ≤ Tr ≤ 2000 and Dn = 1000. Figure 7(a) shows 

time evolution of   for Tr = 500. It is found that the unsteady flow at Tr = 500 is a strongly 

chaotic solution, which is well justified by drawing the phase spaces as shown in Figure 7(b). 

Figure 7(c) shows typical contours of secondary flow patterns, axial flow distribution and 

temperature profiles for Tr = 500, where we find that the unsteady flow is a six- and eight-

vortex solution. Then we performed time evolution for Tr = 1470 as shown in Figure 8(a). It 

is found that the unsteady flow at Tr =1470 is a multi-periodic solution which is well justified 

by depicting the phase space as shown in Figure 8(b). Contours of secondary flow patterns, 

temperature profiles and axial flow for the corresponding flow patterns has been shown in 

Figure 8(c) and where it is found that the multi-periodic oscillation at Tr =1470 is a four-

vortex solution. Continuing this process the time evolution for Tr = 1485 is displayed in 

Figure 9(a). It is observed that the unsteady flow at Tr =1485 is a multi-periodic solution 

whose orbit is different and it is justified by drawing the phase space as shown in Figure 9(b).  

 

Contours of secondary flow patterns, temperature profiles and axial flow for the 

corresponding flow patterns are expressed in Figure 9(c), where the four-vortex solution has 

been observed. Next, time evolution for Tr = 1490 is shown in Figure 10(a). It is found that 

the unsteady flow at Tr =1490 is a periodic solution whose orbit is single and it is well 

justified by drawing the phase space as shown in Figure 10(b). Contours of secondary flow 

patterns temperature profiles and axial flow for the corresponding flow patterns are shown in 

Figure 10(c), where it is found that the periodic oscillation at Tr =1485 is a four-vortex 

solution. Then, the rotational speed is increased more in the positive direction, for example Tr 

= 1600 up to 2000, and it is found that the flow becomes steady-state which is shown in 

Figure 11(a) for Tr = 1600. Since the unsteady flow is a steady-state solution, a single 

contour of secondary flow pattern, temperature profile and axial flow distribution is shown in 

Figure 11(b) and it is found that steady-state solution is an asymmetric two-vortex solution. 

 

 

 
   

 

 

 T 

 

 

  w  
 
                                                                                                                                                                                         t    46.3     46.4    46.5     46.6   46.7 
 

             (a)                                          (b)                                          (c) 
 

Figure 7. (a) Time evolution of    for Dn = 1000 and Tr = 500. (b) Phase space for 

Tr =500, (c) Contours of secondary flow patterns (top), temperature 

profiles (middle) and axial flow distribution (bottom) for Tr = 500 at 
46.3 46.7t   
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Figure 8. (a) Time evolution of    for Dn = 1000 and Tr = 1470. (b) Phase space for 

Tr =1470, (c) Contours of secondary flow patterns (top), temperature 

profiles (middle) and axial flow distribution (bottom) for Tr = 1470 

at 35.4 36.5t   
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Figure 9. (a) Time evolution of    for Dn = 1000 and Tr = 1490. (b) Phase space for 

Tr =1490, (c) Contours of secondary flow patterns (top), temperature 

profiles (middle) and axial flow (bottom) for Tr = 1490 at 35.4 36.5t   
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Figure 10. (a) Time evolution of    for Dn = 1000 and Tr = 1490. (b) Phase space for 

Tr =1490, (c) Contours of secondary flow patterns (top), temperature 

profiles (middle) and axial flow (bottom) for Tr = 1490 at 40.8 43.5t  . 

 



AAM: Intern. J., Special Issue, No.  2 (May 2016)                                                                                             49 

  

                  T          w  

 

 

 

   

 

 
                                                                                                         t = 15.0 

                                                    (a)                                          (b)           

 

Figure 11. (a) Time evolution of    for Dn = 1000 and Tr = 1600. (b) Phase space for 

Tr =1600, (c) Contours of secondary flow patterns (left), temperature 

profiles (middle) and axial flow (right) for Tr = 1600 at 15.0t   
 

7.  CONCLUSION 
 

A numerical study is presented for the flow characteristics through a rotating curved 

rectangular duct of aspect ratio 2.0 and curvature 0.1. Numerical calculations are carried out 

by using a spectral method and covering a wide range of the Taylor number 0 ≤ Tr ≤ 2000 for 

the Dean numbers 100 1000Dn  and for the Grashof number Gr =100. We have 

investigated unsteady solutions for the positive rotation of the duct by time evolution 

calculations, and it is found that the unsteady flow undergoes in the scenario ‘Chaotic → 

multi-periodic →periodic→ steady-state’, if Tr is increased in the positive direction. In order 

to investigate the transition from multi-periodic oscillations to chaotic states more explicitly, 

the orbit of the solution is drawn in phase space. Drawing the phase spaces is found to be 

very fruitful to justify the transition of the unsteady flow characteristics as well as chaotic 

flow behavior. In this regard, it should be worth mentioning that irregular oscillation of the 

flow through a curved duct has been observed experimentally by Ligrani and Niver (1988) 

for a large aspect ratio and by Wang and Yang (2005) for the square duct. Typical contours of 

secondary flow patterns, temperature profiles and axial flow distribution are also obtained at 

several values of Tr, and it is found that there exist two-, four-, six- and eight-vortex 

solutions. The reason is that due to the combined action of the centrifugal-Coriolis-buoyancy 

force, we obtained two- to multi-vortex solution.  

 

It is found that the temperature distribution is consistent with the secondary vortices and axial 

flow distributions, and convective heat transfer is significantly enhanced as the secondary 

vortices become stronger. The present study shows, there exists an asymmetric two-vortex 

solution for the steady-state solution, while asymmetric two-, three-, and four-vortex 

solutions for the periodic and multi-periodic solutions. For chaotic solution, on the other 

hand, we obtain asymmetric four-vortex solutions only. The present study also shows that 

chaotic flow enhances heat transfer more effectively than the steady-state or periodic 

solutions as the secondary flow become stronger for this case. 
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