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Abstract

In this paper, we study generalizations of two well-known statistics on linear square-and-domino
tilings by considering only those dominos whose right half covers a multiple of k, where k is a
fixed positive integer. Using the method of generating functions, we derive explicit expressions
for the joint distribution polynomials of the two statistics with the statistic that records the
number of squares in a tiling. In this way, we obtain two families of g -generalizations of the

Fibonacci polynomials. When k = 1, our formulas reduce to known results concerning previous
statistics. Special attention is payed to the case k = 2. As a byproduct of our analysis, several
combinatorial identities are obtained.
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1. Introduction

Let F, be the Fibonacci number defined by the recurrence F, = F, |+ F,_, if n>2, with initial
conditions F, =0 and F; =1. Let L, be the Lucas number satisfying the same recurrence, but
with L, =2 and L =1. See, for example, sequences A000045 and A000032 in [Sloan (2010)].
Let G, = G,(t) be the Fibonacci polynomial defined by G, =G, ,+G,_, if n=22, with G, =0
and G, =1; note that G (1)=F, for all n. See, for example, [Benjamin and Quinn (2003) p.
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!
141]. Finally, let (m} denote the ¢ -binomial coefficient given by Lml,!

0 if0<j<m,
j), [/1,1m = j1,!

i-1

where [m] = Hil[i]q if m=1 denotes the g-factorial and [i], =1+g+---+¢" if i>1 denotes

m
the g -integer (with [0] !=1 and [0], =0). We will take ( ]

J
J <0.Polynomial generalizations of F, have arisen in connection with statistics on binary words
Carlitz (1974), lattice paths [Cigler (2004)], Morse code sequences [Cigler(2003)], and linear
domino arrangements [Shattuck and Wagner ( 2005, 2007)]. Let us recall now two statistics
related to domino arrangements. If n>1, then let F, denote the set of coverings of the numbers

J to be zero if 0<m<j or if

q

1,2,...,n, arranged in a row by indistinguishable dominos and indistinguishable squares, where

pieces do not overlap, a domino is a rectangular piece covering two numbers, and a square is a
piece covering a single number. The members of F, are also called (linear) tilings or domino

arrangements. (If n=0, then F consists of the empty tiling having length zero.)

Note that such coverings correspond uniquely to words in the alphabet {d,s} comprising i d's

and n—2i s's for some i, 0<i<ln/2].

In what follows, we will frequently identify tilings ¢ by such words c,c,---. For example, if
n=4, then F, ={dd,dss,sds,ssd,ssss} . Note that | F, |=F,
v(7) denote the number of dominos in 7 and let o(7) denote the sum of the numbers covered

for all n. Given 7€ F,, let

+1

by the left halves of dominos in 7. For example, if n=16 and 7 =sdsdsddssds e F,, (see
Figure 1 below), then v(z)=5 and o(7)=2+5+8+10+14=39.

1 23 4 5 6 7 8 9 10 11 12 13 14 15 16

Figure 1. The tiling 7 =sdsdsddssds € F,, has o(7)=39.

The following results concerning the distribution of the v and o statistics on F, are well-
known; see, e.g., [Shattuck and Wagner ( 2005)] or [Shattuck and Wagner (2007)], respectively:

vir) _ ro(n—i
i

e
}—n

(1

and
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Z g = Z":qiz (”l_’] . @)

e,
Note that both polynomials reduce to F,,, when ¢ =1.

We remark that the polynomial in (2) first arose in a paper of Carlitz (1974), where he showed
that it gives the distribution of the statistic a, +2a, +---+(n—1)a,_, on the set of binary words

a,a,---a, , with no consecutive ones. To see that this statistic is equivalent to the o statistic on

F,, simply append a 0 to any binary word of length n—1 having no two consecutive 1's and

identify occurrences of 1 followed by a 0 as dominos and any remaining 0's as squares. The
polynomials (2) or close variants thereof also appear in [Carlitz (1974, 1975), Cigler (2004)].

In this paper, we study generalizations of the v and o statistics obtained by considering only
those dominos whose right half covers a multiple of &, where £ is a fixed positive integer. More
precisely, let v, record the number of dominos whose right half covers a multiple of & and let

o, record the sum of the numbers of the form ik —1 covered by the left halves of dominos
within a member of F,. The v, and o, statistics reduce to v and o when k£ =1. We remark
that the v, statistic is related to a special case of the recurrence

Qm = aj m—1 +b_/Qm—2’ m= ] (mOd k)’

with O, =0 and Q, =1, which was considered in [Petronilho (2012)] from a primarily algebraic
standpoint through the use of orthogonal polynomials.

In the second and third sections, respectively, we consider the v, and o, statistics and obtain
explicit formulas for their distribution on F, (see Corollary 2.5 and Theorem 3.2 below), using

the method of generating functions. Our formulas reduce to (1) and (2) when k£ =1 and involve
¢" -binomial coefficients in the latter case. By taking v, and o, jointly with the statistic that

records the number of squares within a tiling, we obtain ¢ -generalizations of the Fibonacci
polynomials G, defined above. As a consequence of our analysis, several identities involving
G, are obtained. Special attention is payed to the case k =2, where some further combinatorial
results may be given. Note that v, records the number of dominos whose left half covers an odd
number and o, records the sum of the odd numbers covered by the left halves of these dominos.

2. A Generalization of the Statistic v

Suppose k is a fixed positive integer. Given 7 € F,, let s(x) denote the number of squares of
7 and let v, () denote the number of dominos of 7 that cover numbers ik —1 and ik for some

i, i.e., the number of dominos whose right half covers a multiple of k. For example, if n=24,
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k=3, and 7w=sdsdssddsdssdsdsseF,, (see Figure 2 below), then s(z)=10 and
vi(r)=4.

1 23 4 5 6 7 8 910 11 12 13 14 1516 171819 2021 2223 24

Figure 2. The tiling 7 =sdsdssddsdssdsdss e F,, has v,(r)=4.

If ¢ and ¢ are indeterminates, then define the distribution polynomial a*’(g,t) by

aflk) (g,t):= qu" (”)ts(”), n>1,

ﬂe]-'n
with a{(q,t):=1. For example, if n=6 and k =3, then
al(q,t) =t +1)(t* +2)+q(> + 12> +1) + ¢t

Note that "' (1,£)=G,, forall k and n.

n+l

In this section, we derive explicit formulas for the polynomials a'"(g,#) and consider
specifically the case k =2.

2.1. Preliminary Result

To establish our formulas for a'*(g,¢), we will need the following preliminary result, which was

shown in (Shattuck). [See also (Petronilho (2012)] for an equivalent, though more complicated,
formula involving determinants and Yayenie (2011) for the case £ =2.) Given indeterminates
X[y Xy,...,%, and y,,v,,..., v, , let p be the sequence defined by

X Pu TV Pu2s if n=2(mod k),
XoPyoy T VoPu2s if n=3(modk);
P =0, p=1,p,= : (n22). 3)

Xi Pyt F Vi Py 1 n=0(mod k);

Xe Py T Vi Puas if n=1(mod k),

Let p, be the generalized Fibonacci sequence defined by p,=0 , p, =1, and

P, =X,p,,+¥,p., if n>2 and n=i(mod k). The sequence p, then has the following Binet-
like formula.
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Theorem 2.1.

If m>0 and 1<r <k, then

pmk+r = (Mjplmr + y[ujpr’ (4)
a a-pf

where @ and £ are the roots of the quadratic equation x> —Lx—y =0, L= p, ,+y,p,»and

Tk
=0T

2.2. General Formulae

For ease of notation, we will often suppress arguments and write a, for a'"’(g,t). Using

Theorem 2.1, one can give a Binet-like formula for a, .

Theorem 2.2.

If m>0 and 0<r<k-1, then

(a"-p" e (@ =
Qe [ a ﬁ ]ak+r+( 1) Q( a—,B jarb (5)

where o and S are the roots of the quadratic equation
X’ =(qG () + G, ())x+(-1) g =0.
Proof:

Considering whether the last piece within a member of F, is a square or a domino yields the
recurrence

a,=ta, +qa, ,, n>2, (6)

if n is divisible by 4, and the recurrence

an = tan—l + an—Z’ nz 2’ (7)

if n 1s not, with the initial conditions ¢, =1 and a, =¢. By induction, recurrences (3), (6), and
(7) together show that
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an :pn+1’ nZO’ (8)
where p,  denotes here the sequence defined by (3) with x =x,=---=x =¢ ,
y=y,==y.,=1,and y, =q. Thus, we have y = (—l)k“H/;:lyj =(-1)""¢ and

L =p.,+ J’1PZ—1 =a,+ p;:—l =la,,+qa, ,+ PZ—l
=1G, (1) +q9G,_, () + G, (1) =qG, (1) + G, (D),

since a, =G, (t) and p; =G.(¢) if i<k, as there is no domino whose right half covers a

multiple of k. Formula (5) follows from writing a,,,. = p,..,., and using (4), which completes

mk+r

the proof.

In determining our next formula for a,, we will need the generating function for the sequence

p, given by (3).
Lemma 2.3.

If p, is defined as above, then

o +Z(pk+r —Lp,)x""

x" =0 , 9
2.0, T — 9)

where L and y are given in Theorem 2.1.
Proof:

From (4), we have

k-1
zpnx” = Zzpmk+rxmk+r

n>0 r=0m>0

1 k-1 k-1 .
= 2[pk+r + %jr jzam e — (pkﬂf + }pr jz mxmk
a > ,8 m=0

ﬂrzo
_ 1 1 k-1 %7 1 k-1
a—ﬂ[l—axk ;(pkw a j 1— ﬂxk - 0[pk+r ﬂ j j
1 P

3
vV
=
Q

(- p)x*
ﬂ((l o )(1- A" sz
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Note that

y 7 :7ﬂ(1—ﬂxk)—a(1—a)xk
a(l-ax')  B(1-px") af(1-ax*)(1- fx")
_a-p-(a-pa+px'
(1-a*)(1- ")

since y = —af . Thus, the first two sums in the last expression for an Opnx" combine to give
k=1 k=1
D (=(a+px)px" Y pxT
xn — r=0 + r=0
2.0 (-a")(1- ) (a1 )
k-1
Zprx" +
r=0

1-Lx" —;

k—

1
(Pes, —Lp )X

r=0

2k

since L =a + £, which completes the proof. 0
The generating function for the sequence a, may be given explicitly as follows.

Theorem 2.4.

We have

k-1 k-1
G, x4+ (-D)MG,, x
r=0

a xn — =0 i . 10
nZZ(; ! 1_(qu—1 +Gk+1)xk +(_1)kqx2k (10

Proof:

By (8) and (9), we have
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k-1

k—1
r—1 k+r-1
: ‘,lr'x +Z(pk+r _Lpr)x
n — n _ r=l r=0
zanx = 2 PraX = 2k

n=0 n=0 l_ka _706

k k-1
- k-1
Zamxr + z(ak+r—l —(qG, +Gy,)a, )x

— r=l r=1

1-(gG,, + Gk+1)xk + (_l)k qx2k

k=2

k-1
zarxr + z(akﬂ' - (qu—l + Gk+l )ar )‘karr
r=0

r=0

1-(qG,_, + Gk+1)xk + (_l)k qx2k

b

by p,=0 and the expressions for L and y given in the proof of Theorem 2.2 above. If
0<r<k-2,then a, =G,,, and
r = 94,54, + 0,40

1 =49G,G,, + GG,

the first relation upon considering whether or not the numbers k—1 and k are covered by a
single domino within a member of F,,, . Thus,

a;,, — (G, +G,)a. =46, G
=G,G,,-G6,,,G
— (_ l)r+l Gk_r_l ,

- 16,G6,.,-q6,,+G,,)G,,

r+l

the last equality by the identity (-1)"G,_ =G,..G, -G, G,.., 0<m<n, which can be shown

n—m m+1"n m n+l 2

by induction (see [Benjamin and Quinn (2003), p. 30, Identity 47] for the case when ¢#=1).
Substituting this into the last expression above for Zﬂzoanx”, and noting G, = 0, completes the

proof.
J
Corollary 2.5.

If m>0 and 0<s<k-1, then
E -1)j j m_J m=2j
Akrs = Gs+1Z(_1)(k quj( j ](qul +G) 2
Jj=0

m—1

s+1 < vy | M~ 1= m-1-2
+(-D" Gy Z(_l) q j (9Gy +Gyy) .
Jj=0

an

Proof:

By (10), we have
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k—1 k—1
ZGMXr + Z(_I)H—l Gk,r,lxk-#r
r=0

n=0 ! 1_'xk(q(;k—l +Gk+1 _(_l)kqu)

k-1 k-1
= (szxr + Z:(_I)H1 Gy, X" szjk (gGy + Gy — (=) gx")’

r=0 r=0 Jj=0

< RS 4l kr L] =i i(k=1) i ik+jk
=| 20+ 2 DG D D (G G D,

=0 =0 720i=0

Since each power of x in the infinite double sum on the right side of the last expression is a
multiple of & for all i and j, only one term from each of the two finite sums on the left

mk+s

contributes towards the coefficient of x™ ", namely, the » =s term. Thus, the coefficient to

mk+s

X in the last expression is given by

S - m—j -] j—m
G, § ((_l)k 1‘]) '/[ .J(qul + Gk+1)ZJ
j=0 m-—j

m—1 /
s+ - m—j— J j+1-m
+ D)MG (D g 1( _ j(qc;,{_1 +G,,)
= m -1

Replacing j by m — j in the first sum and j by m —1—j in the second gives (11).

0J
Taking k£ =1 in (11) implies
a(g,1)= Zq-’z“f("_.’ j n0, (12)
j=0 J

which is well-known (see, e.g., [Benjamin and Quinn (2003), Shattuck and C. Wagner (2005)].
Taking k£ =2 in (11) implies

O(m)—Q(m-1), if n=2m;

: (13)
tQ(m), if n=2m+1,

al’(g,1) = {

where

m

0(m)= i(—l)qu(’";’ ](rz g1y,

Taking k£ =3 in (11) implies
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R(m)—tR(m—-1), if n=3m;
a®(q,t) =<tR(m)+R(m-1), if n=3m+1; (14)
(> +1D)R(m), if n=3m+2,

R(m) = ij(m;] ](ﬁ Q2+t

Let H, = H,(t) denote the Lucas polynomial defined by the recurrence H,=tH, +H, , if
n=>2,with H,=2 and H, =t¢, or, equivalently, by H, =G, + G, if n>1.

Corollary 2.6.

If m>0 and 0<s<k-1, then

2 N
mk+v+1 z 1)(k 1)/[ J ‘]JH]’C”_ZJ
Jj=0

i (15)
m—1—j .
+(- 1)”1qu12( * 1”( . jJHZ"_I_Z’-
J
In particular, we have
m-1
2 - ,
G =G, Y (- ”f[m ) JjH,T”’, m>0. (16)
Jj=0

Proof:

Taking ¢ =1 in (11) and noting @ (1,£)=G,,,(¢) for all k gives (15). Furthermore, if s =k —1
in (15), then the second sum drops out since G, =0, which yields (16).

We were unable to find formulas (15) or (16) in the literature, though the # =1 case of (16) is
similar in form to Identities V82 and V83 in (Benjamin and Quinn (2003), p. 145).

2.3. The Case k = 2.

We consider further the case when k = 2. Note that a'”(g,¢) is the joint distribution polynomial
on F, for the statistics recording the number of squares and the number of dominos whose right
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half covers an even number. The next result follows from taking k£ =2 in formula (10), though
we provide another derivation here. Let a” =a'”(g,t) and a(x;q,t)= Z a?(q,H)x" , which

n>0 "

we'll often denote by a(x).

Proposition 2.7.

We have
a(x:q.0)= 1+t —x° (17)
4 1—(1+q+t2)x2+qx4'
Proof:

Considering whether or not a tiling ends in a square yields the recurrences

2 — ., )
ay, =14y, +qay, 5, nzl,
and
2 ., (2)
ay, = lay, +ay, , nxl,

2n+l1
s

with a{” =1 and a® =¢. Multiplying the first recurrence by x** and the second by x

summing both over n>1, and adding the two equations that result implies

a(x)—tx—1=tx(a(x)-1)+ XZ[WJ n qXZ[a(X) +2a(—x) }

which may be rewritten as

2-2tx—(1+q)x*)a(x) =2+ x’ (g —Da(-x). (18)
Replacing x with —x in (18) gives

Q2+2tx—(1+q)x")a(—x) =2+ x> (¢ - 1a(x), (19)
and solving the system of equations (18) and (19) in a(x) and a(-x) yields

I+t —x°
1-(1+g+)x* +gx*°

a(x)=

as desired. 0
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We next consider some particular values of the polynomials a'”(g,?) .

Proposition 2.8
If n>1, then
4 (0.1) = A+, if n=2m; (20)
" t(1+63)",  if n=2m+1.

Proof:

We provide both algebraic and combinatorial proofs. Taking ¢ =0 in (17) implies

1+ —x*
a(x;0,t) =——— — =(1+tx—x* L+£%)" x*"
(0.0 == ¢ 21+

=14+ ) (142" =(A+2)" x> + ) (1 +12)" x>
m>1 m=>0

=14+ ) (142" X+ D a1+
m>1 m=0

from which (20) follows.

For a combinatorial proof, first let n=2m, where m>1. Then members 7 of F, having zero

v, value are of the form
7= (sd"s)(sd?s)--(sd"s)
for some ¢/, where a, >0 foreach ie[/]={1,2,...,(}.
Note that the sequence (a, +1,a, +1,...,a, +1) is a composition of m .

Thus, the polynomial a'(0,7) may be viewed as the weighted sum of compositions of m , where

m-—1

the weight of a composition having exactly ¢ parts is ¢*. Since there are ( ] compositions

of m having ¢ parts, we have

nim=1), &(m-1
a’(lz)(o’t) — Z(ﬁ I]tﬂ — Z( , jtzhz — t2(1+t2)m_1,
=1 -

=0

which gives the even case.
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If n=2m+1, then the weighted sum of tilings 75, where 7 € F, has zero v, value, is given by

t*(1+£*)", by the even case. Dividing this by ¢ (to account for the square that was added at the
end) gives the odd case and completes the proof.

Proposition 2.9.
If n>1, then
G, (t)-G,(t if n=2m;
af)(—l,t)z m+l( ) zm( )7 .1 n my (21)
tG, ., (), if n=2m+1.

Proof:

We provide both algebraic and combinatorial proofs of this result. Taking ¢ =-1 in (17) and

replacing x with x* and ¢ with ¢* in

DG, ()x" = 1

m>0 _tx_xz
implies
1+tx_x2 2 2 2m
a(x-1,1) =——5——F=1+x-x)>G,, (1*)x

2.2
1-t"x"—x 0

=>1G, ()" + (G, () =G, (P )x™,
m=0 m=0
which gives the result.

We provide a bijective proof of (21) in the case when ¢ =1, the general case being similar, and
show

@ F ., if n=2m;
an (_]"1) = . (22)
F ., if n=2m+1.

Vzu-)

To do so, define the sign of 1 € F, by sgn(1)=(-1)2"", and let F, and F, denote the subsets
of ¥, whose members have positive and negative sign, respectively. Then
a?(=1,1)=| F¢|—| F?| and it suffices to identify a subset F, of F° having cardinality F, , or
F

m+1 2

along with a sign-changing involution of F, —F .

Let n=2m and F| c F, consist of those coverings A = A4, --- such that A, , =A,, forall i. If
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AeF,—F],thenlet i denote the smallest index i such that 4,,  #4,,,1i.e., 4,4, =ds or sd
. Let f(1) denote the covering that is obtained from A by exchanging the positions of the
(2i,—1) -st and (2i,) -th pieces of A, leaving all other pieces undisturbed. Then the mapping f
is seen to be a sign-changing involution of 7, —F) .

. . * . o .
We now define an involution of F,. Let F, < F, consist of those members containing an even

n

number of pieces and ending in a domino. Note that F, — F¢ and that |F, |= F, , since

n n

members of F, are synonymous with members of F, ending in a domino, upon halving.

Observe further that if 2 € F/ —F, has an odd number of pieces, then A ends in a domino since

*

n is even, while if A has an even number of pieces, it must end in two squares. If 1€ F - F

then let g(A4) be obtained from A by either changing the final domino to two squares or

changing the final two squares to a domino. Then g is seen to be a sign-changing involution of
F'—F . Combining the two mappings f and g yields a sign-changing involution of F, —F, ,

as desired.

If n=2m+1, then apply the mapping f defined above to F,. Note that the set of survivors has

cardinality F, ., , upon halving, since they are of the form A =A44,---4,,4,,,, for some ¢, with

+1°

A, = A, foreach i e[/] and A,,,, = s. This completes the proof of (22).
Let ¢,(v,) denote the sum of the v, values taken over all of the members of F, .

Proposition 2.10 .

If n>1, then
nlL +4F . .
-t if niseven;
10
t,(vy) = (23)
(n=DL42F0 i s odd.
10
Proof:

To find ¢,(v,), we consider the contribution of the dominos that cover the numbers 2i -1 and 2i
for some i fixed within all of the members of F, . Let n=2m+1.

Note that there are F, | F, dominos that cover the numbers 2i—1 and 2i within all of the

members of F, .

m+2-2i

Summing over all i, we have
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m —1

tn(VZ) Z 2m 2i+2 : ‘, 2i+1 2m 2i°

i=0

To simplify this sum, we recall the Binet formulas F, = %and L =a"+p",n>0,where
a and S denote the positive and negative roots, respectively, of the equation x* —x—1=0.
Then for m even, we have

m—1 m—

201 _ iy oy 2m=2i 2m=2i
SZ siitFamai Z " o =g

i=0 i=0

§

7—1
Z( 2m+1 +ﬁ2m+l)+z(a2m —4i— +ﬂ2m —4i—

i=0
m—1
4i—2m+1 4i—2m+1
_Z(al m++ﬂ1 m+)
m
="
2
m m
m—l 7_1 5_1
=2 Lt ZLZm 4ie ZLZm—4i—3
i=0 i=0
m_, ﬂ_]
2
mL,,.,, + ZLZm—M—Z =mL,,,, + Z(FZm—M—l +F,, 43)
i=0 i=0
= mL2m+1 + FmEnH + F F L2m+1 + FmLm
= mL2m+1 + F2m’

by Identities 28, 26 and 33 in Benjamin and Quinn (2003) and since L, =F,  + F

m+l m-1°*

Substituting
m= nT—l gives the second formula when n=1(mod 4). A similar calculation gives the same

formula when n =3 (mod 4).

If n=2m and m is odd, then similar reasoning shows that
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m—1
5t,(vy) = 52F2i+1F2m—21’—1
=0

m—1
m—1

_ g(aZm +ﬂ2m)+i(a2m—4i—2 +ﬂ2m—4i—2)+ Z (a4i—2m+2 +ﬂ4i—2m+2)
i=0 =0

_m+l

2

m=3

2
=mL,, +2+ 22L2m_ iio
i=0

m=3

et
2 2

=mL,, + 2ZF2m—4i—l + 2ZF2m—4i—3
=0

i=0

=mL,, +2F F  +2F F, =mL, +2F, ,

and the first formula in (23) follows when n =2 (mod 4), upon replacing m with g A similar

calculation gives the same formula when » =0 (mod 4).

We close this section with a general formula for a”(g,?).

Theorem 2.11.
If n>0, then
G(m—i+j\m—j-1) . 4
q”ZZ[ : Jj( - jqftz’"’z’, if n=2m;
i=0 j=0 J I=J
ay) (q,1) = (24)
P m—i+j)m—j) . .
ZZ[ ) j}[ ,j}]jl‘zm_m“, if n=2m+1.
i=0 j=0 J 1=
Proof:

We will refer to a domino whose left half covers an odd (resp., even) number as odd-positioned
(resp., even-positioned). First suppose n=2m is even. If 1€ F, contains no squares, then it
consists of m odd-positioned dominos, whence the ¢” term. So suppose that A contains i
dominos, where 0<i<m—1, and that j of the dominos are odd-positioned. There are 2m —2i
squares and m —i+1 possible positions to insert each of the ; odd-positioned dominos relative
m—i+j
J
possible positions to insert each of the i—j even-positioned dominos, whence there are

to the squares, whence there are ( j choices concerning their placement. There are m —i
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m—j—1 i ) ) m—i+j\m—j—1

~ 7| choices concerning their placement. Thus, there are i ~ 7 | members
1=J J 1=J

of F, containing i dominos, j of which are odd-positioned. Summing over all i and j gives

the even <case of (24). A similar argument applies to the odd case.
N

Remark: Setting ¢ =0 in (24) gives (20). Comparing the odd cases of (24) and (13) and
replacing ¢ with Jt gives the following polynomial identity in g and ¢:

qu'z'"'[ ’.”I JZ( 1) g ( j(q+t+1)'"2’ m>0. (25)

i=0 j=0

A similar identity can be obtained by comparing the even cases of (24) and (13). Setting g = —1
in (24), comparing with (21), and replacing ¢ with Jt gives a pair of formulas for G, (7).

3. A Generalization of The Statistic o

Suppose k is a fixed positive integer. Given 7 € F,, let s(x) denote the number of squares of
7 and let o, (7) denote the sum of the numbers of the form ik —1 that are covered by the left
half of a domino. For example, if n=24, k=4, and 7 =ssdsddsdssddssdd € F,, (see
Figure 3 below), then s(7)=8 and o,(7)=3+11+15+23=52. If ¢ and ¢ are indeterminates,
then define the distribution polynomial b'*'(g,t) by

bP(g,t)= D ¢ ™, w1,

71'6.7:”
with b{"’(¢,t):=1. For example, if n=6 and k =3, then
b(q. )=+ 1) +2)+ ¢ (* + 1)+ ¢’ (> +1)* + 41"

Note that b (1,¢)=G,,, forall k and n.

n+l

1 2 34 5 67 89 10111213141516 1718192021222324
[T le T T T T TTe T[T TITT o |

Figure 3. The tiling 7 =ssdsddsdssddssdd € F,, has o,(r)=52.

In what follows, we will often suppress arguments and write b, for 5" (q,f) . Considering

whether the last piece within a member of F, is a square or a domino yields the recurrence



AAM: Intern. J., Vol. 7, Issue 2 (December 2012) 525

b, =th_+q"'b,_,, n>2,
if n is divisible by 4, and the recurrence

b =tb, ,+b, ,, nx?2,

if n is not, with initial conditions b, =1 and b, =¢. In [4], Carlitz studied the polynomials

b" (g,t) from an algebraic point of view. See also the related paper by Cigler (2003).

In this section, we will derive explicit formulas for the polynomials 5 (¢q,f) and their

generating function, with specific consideration of the case k£ =2. Note that o,(7) records the
sum of the odd numbers covered by left halves of dominos in 7.

3.1. General Formulas

We first establish an explicit formula for the generating function of the sequence b, .

Theorem 3.1.

We have

k=3 k=3 k=3
_ k- k k K K k
anx” = ZGmx’ +q"e, (¢"x )ZGMx Tt (x )ZGHzx o
r=0 r=0 r=0

n=0

(26)

+ xk_zck_1 (xk) + xk_lck (xk),

x'q 3 ]_j]i[(le +(=1)""xg")
¢ ()= z —

A> j [
J20 I |(1_xq ka+1)
i=0

and
_ k[" ;]—j j _
x'q H(Gk—l + (_l)kil quk)
¢, (x)=G, z = .
7= (1- x‘]ikaH)
i=0
Proof:

It is more convenient to first consider the generating function for the numbers &' :=b")(q,t).
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Then the sequence b/ has initial values by =0 and b/ =1 and satisfies the recurrences

'
bmk+r

=1,  +b 2<r<k and  m>0, 27)

mk+r—2>
with
bi

mk+1

— tb,,nk _I_qu—lb/

mk—1°

m>1. (28)
Let

cr (x) = Zb;1k+rxm b

m=0

where r €[k]. Then multiplying the recurrences (27) and (28) by x™, and summing the first over
m >0 and the second over m >1, gives

c.(x) =tc._(x)+c._,(x), r=34,..,k,
6, (x)  =tc,(x)+xc, (x),

c(x) =1+xtc,(x)+xq" "¢, (¢"x).
By induction on r, we obtain
c,(x)=G,+G. xc,(x)+Gxq" "¢c, (qg"x), 1<r<k. (29)

Taking » =k and r =k —1 in (29) gives

k1
¢ (x)= ! + A G

C k.x
I_XG/H—] 1_'X’-Glm—l ! (q )

and

¢, (x) =G, +Gxe (x)+ Gk—lqu_lck—l (qu)

k-1
=G+ ka(l ~ SkaH + lxi]xG(:: Cr (qu)J + Gk—lqu_lck—l (qu)
_ G +x(G13 -GG " xz‘]k_l (Glf -GG+ qu_le—l ¢ ( kx)
I_XGk-H 1_’x(;kﬂ e
G +x(_1)k_l x‘]k_l (G, +x(_1)k_l) k
= + ¢ (g7 x),
I_XGk-H 1_’x(;kﬂ

where we have used the identity G, —G,_,G,,, = (-1)"" [see, e.g., (Benjamin and Quinn (2003),



AAM: Intern. J., Vol. 7, Issue 2 (December 2012) 527

Identity 246].

Iterating the last recurrence gives

e (x) = Z G, + (—1)*! quj ﬁ xqik—l (G, + (=1)" xq(i_l)k)
- ‘ —xq" 1— x5 G
w0 1=x¢"Gey xq -

j+l

gl )_jﬁ(Gk_l (1) xg")

b

7= [T0-x¢"G,.))
i=0

which implies

J k(gw—j (1 k-1 _ (i+)k
G xq H(Gk—l +(-D""xg )
o (x) =——~—+G, z ;:0

O a H(l —xq" Gy.)
i=0
Jj+l

quk[ : )_"ﬁ(le (1) xg™)

.> j l.
720 | I(l_x‘]kGlm)
i=0

Then, by (29), we have

k k
2 rn _ 2 z ' mk+r __ 2 r k
bnx - bmk+rx - X Cr(‘x )
n=0 r=1m=0 r=1

k=2
Zxr (G, + Gr+1xkck (x")+ erqu_lck—l (¢ x")+ xk_lckq (x)+ xkck (x")
=

~

=~

2 k=2 k=2
err + ck (xk )zGr+1xk+r + qk_lck—l (quk )Zerk'*"’

r=1 r=l

o
+ xk_lck_1 (x*)+ xkc,c (x"),

where ¢, ,(x) and ¢, (x) are as given. Formula (26) now follows upon noting

SO (g 0x" = bl =~ Y hix
X

n=0 n=0 n=0

One can find explicit expressions for the b, using Theorem 3.1 and the following formulas that
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involve the g -binomial coefficient [see, e.g., (Andrews (1976) or Stanley (1997)]:

—Z( j (30)
H(l xq') N

i=0

and

H(y+xq) Zq( ux e, (1)

where j is a non-negative integer.

Theorem 3.2.

The following formulas hold for b,. If m >0, then

m J+Y a+l . _
bmk+k_l=Gqu( b Z( e L jG,{_;’G;"H‘”‘(’ J (m .aJ . (32)
j=0 qk qk
If m>0, then

mk+k , Zq [ﬁlj Z( 1)(k Da (aJGI: 1L1+1G1:n+1a j(]“‘l] (l’l’l—aJ ' (33)

a=0

If m>1and 0<r<k-3, then

m— J+l _im— a+l1 . o
Puise = GkGHzZlqk[ ) Jﬁ(—l)“”“qk[ : ]G,{fc;,fil“l[]} (m X 1]
Jj=0 a=0 a qk ] qk
-1 k[ ] U - 1 (34)
km IGFHZq Z( 1)(k l)a G]i laJrIGZirla - 1(_}4‘ j (m—a— j ’
a=0 a qk ] qk
with b, =G, ,
Proof:

Let n=mk+k—1, where m>0. Then the coefficient of x" on the right-hand side of (26) is
given by
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x'q [ ’ jj]L[(Gk_l +(=1)""x¢q™)
[x"](c, (%)) = sz [x"] = . .
=0 [T(-x¢"G,..)

i=0

By (30) and (31), we have for each j >0,

. (XGkJrl)j — Z[aj xa(;li—1
qk

: ki >\J
H(l -xq G,
i=0

and

: o3 .
[T(G + (=D xg™) = (1) g x‘Gl,
i=1 a=0 a e

so that coefficient of x" is given by

JH
k _
J

Gy
ijO Gk+1

. i a+l . _

N —a(J m—a e
E (_1)(k b q (2 szﬁ1[ j [ . J Gia's
=0 a &~ o

J

which yields (32). Similar proofs apply to formulas (33) and (34), in the latter case, upon
extracting the coefficient of x" from two separate terms in (26).

When &k =1 in Theorem 3.2, the inner sum in (32) reduces to a single term since G, =0 and
gives

b (q,1) = quz(”_.’ J 0, 20, (35)
=0 J

which is well-known [see, e.g., Shattuck and Wagner (2005)] When & =2 in Theorem 3.2, we get for
all m >0 the formulas

b2(q.0=Yg" S (1) g +1>’"'“'f(j ”J 2(’"‘.“] 2 (36)

Jj= a=0 a .]

and
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. 2N a a2+a m—a—j -] m-—a
D00~ 130" Sy 1) U [ | j | a7
j=0 =0 a 2 ] 2

The polynomials b (q,t) are considered in more detail below.

3.2. The Case k = 2

Let us write 5? for 5 (g,¢). The even and odd terms of the sequence 5" satisfy the following

two-term recurrences.
Proposition 3.3.

If m>2, then
by = (g 2+ 1B, — g™ by, o, (38)
with 5” =1 and b{” =¢* +¢, and

b?

2m+1

=g+ +1)bs  —q*"b) (39)
with b® =¢ and b =1 +(1+q)t.

Proof:

To show (39), first note that the total weight of all the members of F,, ., ending in d or ss is

m+1

b and b, , respectively. The weight of all members of F, ., ending in ds is

m m m+1

g (B2, —b? ). To see this, we insert a d just before the final s in any A€ F, , ending in

s . By subtraction, the total weight of all tilings A that end in s is b\, —b{ ., and the inserted
d contributes 2m—1 towards the v, value since it covers the numbers 2m—1 and 2m . For (38),

note that by similar reasoning, the total weight of all members of F,, ending in d, ss, and ds

is ¢>"'b) . °b) , and b —q*" b, respectively. 0

We were unable to find, in general, two-term recurrences comparable to (38) and (39) for the
(g,t) , where k and r are fixed and m>0. Let b(x;q,t)Zz b (q,0)x" .

n>0 "

sequences b

mk+r
Using (38) and (39), it is possible to determine explicit formulas for the generating functions
Z N px™ and Zmzobéz) x™ and thus for b(x;q,t), upon proceeding in a manner analogous to

m>0"2m m+l1

the proof of Theorem 3.1 above. The following formula results, which may also be obtained by
taking k=2 in Theorem 3.1.
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Proposition 3.4.

We have

xzjqu (1 +tx—x2)ﬁ(1 -q"'x?)
b(x:q.)= 3, - o : (40)
720 [Ta-@ +1g*x%)

i=0

Taking ¢ =0 and ¢ =—1 in (40) shows that 5 (0,#) and b”(~1,¢) are the same as a'”(0,?)
and a'”(~1,¢) and are thus given by Propositions 2.8 and 2.9, respectively. This is easily seen
directly since a member of F, has zero o, value if and only if it has zero v, value and since the

parity of the o, and v, values is the same for all members of F, . Comparing with (36) and (37)

when ¢=-1, and replacing ¢ with Jt , then gives a pair of formulas for the Fibonacci
polynomials.

Corollary 3.5.
If m>0, then
m ot meaj j+l\m—-a
G,.(0)=G,(0)=D D (=) (t+1)"" . (41)
j=0a=0 a J
and

G (r)=ii(—1>“”(t+1)'"“(fl ](’”J_“j 42)

i=0a=0
Taking ¢ =1 in (36) and (37), and noting b (1,£) = G,,,(t), gives another pair of formulas.

Corollary 3.6.

If m>0, then

Gy =33 (1) + 1)'"“{] ;lj(’"_.“j 43)

i=0a=0 J

and

Gy () =13 S (1) (2 + 1)'"-“-1'@ J(’” R "} (44)

7=0a=0 J
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Let ¢,(o,) denote the sum of the o, values taken over all of the members of F,. We conclude
with the following explicit formula for ¢, (o,).

Proposition 3.7.

If n>0, then

Qn+DFL2—Qn+3ﬂQH+(&f+2n+l$Fhf{bf+2n+$F%2

t,(0y)=(=1)" 2 40

(45)
Proof:

To find ¢,(o,), first note that Z fa(0)X" Zdib(x;q,l) |,-1 - By Proposition 3.4 and partial
" q

fractions, we have

d x> (1-x%)" X (1+x xY) < n(n+1Dx>" (1-x%)"
—b(x;q,1)|, = (1+x—x
d ()C q )‘q—l ( X=X )g (1_2 )n+l ; (1_2x2)ﬂ+1

e *1+x—x )ZZn(n+l)x2"(l—x2)”
1-2x> 4 (1-2x*)""

1( 7+ x 34 4x 9—7x 3-3x 4-7x ]

Cx 8(1+x—x%) 4(1+x x?)? 8(1—x—x2)-'_(l—x—xz)z_2(1—)c—x2)3

Note that
n 1
oo The
[xn] 1 — (n+1)Fn+2 +2’(n+2)F;1+1
(I-x—x%)? 5 ’
[x"] 1 _ Gn+16)(n+1DF,,, +(Sn+17)(n+2)F,
(1-x—-x?)’ 50 ’

see sequences A000045, A001629, and A001628, respectively, in Sloane (2010). Thus, the

coefficient of x" in dib(x;q,l) |- 18 given by
q

Qn+nf%2—an+3ﬂaﬂ+(@ﬁ+2n+1$ﬁ@,{bﬂ+2n+$ﬁ%z

v’ 8 40

which completes the proof. 0
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4. Conclusion

In this paper, we have studied two statistics on square-and-domino tilings that generalize
previous ones by considering only those dominos whose right half covers a multiple of &, where
k is a fixed positive integer. We have derived explicit formulas for all £ for the joint
distribution polynomials of the two statistics with the statistic that records the number of squares
in a tiling. This yields two infinite families of ¢ -generalizations of the Fibonacci polynomials.

When k=1, our formulas reduce to prior results. Upon noting some special cases, several
combinatorial identities were obtained as a consequence. Finally, it seems that other statistics on
square-and-domino tilings could possibly be generalized. Perhaps one could also modify
statistics on permutations and set partitions by introducing additional requirements concerning
the positions, mod & , of various elements.
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