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Abstract 
 
In this paper, we study generalizations of two well-known statistics on linear square-and-domino 
tilings by considering only those dominos whose right half covers a multiple of ݇, where ݇ is a 
fixed positive integer. Using the method of generating functions, we derive explicit expressions 
for the joint distribution polynomials of the two statistics with the statistic that records the 
number of squares in a tiling. In this way, we obtain two families of q -generalizations of the 
Fibonacci polynomials. When ݇ ൌ 1, our formulas reduce to known results concerning previous 
statistics. Special attention is payed to the case ݇ ൌ 2. As a byproduct of our analysis, several 
combinatorial identities are obtained. 
 
Keywords:   Tilings, Fibonacci numbers, Lucas numbers, polynomial generalization 
 
MSC 2010 No.:   11B39, 05A15, 05A19. 
 
 
1. Introduction 
 
Let nF  be the Fibonacci number defined by the recurrence 21=   nnn FFF  if 2n , with initial 

conditions 0=0F  and 1=1F . Let nL  be the Lucas number satisfying the same recurrence, but 

with 2=0L  and 1=1L . See, for example, sequences A000045 and A000032 in [Sloan (2010)]. 

Let )(= tGG nn  be the Fibonacci polynomial defined by 21=   nnn GtGG  if 2n , with 0=0G  

and 1=1G ; note that nn FG =(1)  for all n . See, for example, [Benjamin and Quinn (2003) p. 
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 to be zero if jm <0   or if 

< 0.j Polynomial generalizations of nF  have arisen in connection with statistics on binary words 

Carlitz (1974), lattice paths [Cigler (2004)], Morse code sequences [Cigler(2003)], and linear 
domino arrangements [Shattuck and Wagner ( 2005, 2007)]. Let us recall now two statistics 
related to domino arrangements. If 1n , then let n  denote the set of coverings of the numbers 

n,1,2, , arranged in a row by indistinguishable dominos and indistinguishable squares, where 
pieces do not overlap, a domino is a rectangular piece covering two numbers, and a square is a 
piece covering a single number. The members of n  are also called (linear) tilings or domino 

arrangements. (If 0=n , then 0  consists of the empty tiling having length zero.) 

 
Note that such coverings correspond uniquely to words in the alphabet },{ sd  comprising i  d 's 

and in 2  s 's for some i ,  2/0 ni .  
 
In what follows, we will frequently identify tilings c  by such words 21cc . For example, if 

4=n , then },,,,{=4 ssssssdsdsdssdd . Note that 1|=| nn F  for all n . Given n , let 

)(  denote the number of dominos in   and let )(  denote the sum of the numbers covered 
by the left halves of dominos in  . For example, if 16=n  and 16= sdssddsdsds  (see 

Figure 1 below), then 5=)(  and 39=1410852=)(  . 
 
 
                               1        2   3        4       5    6        7      8     9        10   11    12    13       14   15   16 
 
  
                    Figure 1. The tiling 16= sdssddsdsds  has 39=)( . 
 
The following results concerning the distribution of the   and   statistics on n  are well-

known; see, e.g., [Shattuck and Wagner ( 2005)] or [Shattuck and Wagner (2007)], respectively: 
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Note that both polynomials reduce to 1nF  when 1=q .  

 
We remark that the polynomial in (2) first arose in a paper of Carlitz (1974), where he showed 
that it gives the distribution of the statistic 121 1)(2  nanaa   on the set of binary words 

121 naaa   with no consecutive ones. To see that this statistic is equivalent to the   statistic on 

n , simply append a 0  to any binary word of length 1n  having no two consecutive 1's and 

identify occurrences of 1 followed by a 0  as dominos and any remaining 0 's as squares. The 
polynomials (2) or close variants thereof also appear in [Carlitz (1974, 1975), Cigler (2004)]. 
 
In this paper, we study generalizations of the   and   statistics obtained by considering only 
those dominos whose right half covers a multiple of k , where k  is a fixed positive integer. More 
precisely, let k  record the number of dominos whose right half covers a multiple of k  and let 

k  record the sum of the numbers of the form 1ik  covered by the left halves of dominos 

within a member of n . The k  and k  statistics reduce to   and   when 1=k . We remark 

that the k  statistic is related to a special case of the recurrence 

  
), mod( ,= 21 kjmQbQaQ mjmjm    

 
with 0=0Q  and 1=1Q , which was considered in [Petronilho (2012)]  from a primarily algebraic 

standpoint through the use of orthogonal polynomials. 
 
In the second and third sections, respectively, we consider the k  and k  statistics and obtain 

explicit formulas for their distribution on n  (see Corollary 2.5 and Theorem 3.2 below), using 

the method of generating functions. Our formulas reduce to (1) and (2) when 1=k  and involve 
kq -binomial coefficients in the latter case. By taking k  and k  jointly with the statistic that 

records the number of squares within a tiling, we obtain q -generalizations of the Fibonacci 
polynomials nG  defined above. As a consequence of our analysis, several identities involving 

nG  are obtained. Special attention is payed to the case 2=k , where some further combinatorial 

results may be given. Note that 2  records the number of dominos whose left half covers an odd 

number and 2  records the sum of the odd numbers covered by the left halves of these dominos. 
 
2.  A Generalization of the Statistic ࣇ 
 
Suppose k  is a fixed positive integer. Given n , let )(s  denote the number of squares of 

  and let )( k  denote the number of dominos of   that cover numbers 1ik  and ik  for some 

i , i.e., the number of dominos whose right half covers a multiple of .k  For example, if ,24=n



AAM: Intern. J., Vol. 7, Issue 2 (December 2012)                                                                                                     511                              
          

   

,3=k and 24= ssdsdssdsddssdsds  (see Figure 2 below), then 10=)(s  and 

4=)(3  .  

 
 
 
          •              •                                       •                     • 
       Figure 2. The tiling 24= ssdsdssdsddssdsds  has 4=)(3  .  

 
If q  and t  are indeterminates, then define the distribution polynomial ),()( tqa k

n  by  

 

1,,:=),( )()()( 


ntqtqa sk

n

k
n



 
 

 
with 1:=),()(

0 tqa k . For example, if 6=n  and 3=k , then  

 
.1)1)(2(2)1)((=),( 2222222(3)

6 tqttqttttqa   

 
Note that 1

)( =)(1, n
k

n Gta  for all k  and n . 

 
In this section, we derive explicit formulas for the polynomials ),()( tqa k

n  and consider 

specifically the case 2=k . 
 
2.1.    Preliminary Result 
 
To establish our formulas for ),()( tqa k

n , we will need the following preliminary result, which was 

shown in (Shattuck). [See also (Petronilho (2012)] for an equivalent, though more complicated, 
formula involving determinants and Yayenie (2011) for the case 2=k .) Given indeterminates 

kxxx ,,, 21   and kyyy ,,, 21  , let np  be the sequence defined by 
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Let *

np  be the generalized Fibonacci sequence defined by 0=*
0p , 1=*

1p , and 
*

2
*

1
* =   ninin pypxp  if 2n  and ) mod( kin  . The sequence np  then has the following Binet-

like formula. 
  
  

 1     2  3    4     5    6    7     8    9  10     11  12  13  14  15  16  17 18 19  20 21 22 23 24 
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Theorem 2.1.  
 
 If 0m  and kr 1 , then  
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where   and   are the roots of the quadratic equation 0=2  Lxx , *

111=   kk pypL , and 

j

k

j

k y
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2.2.   General Formulae 
 
For ease of notation, we will often suppress arguments and write na  for ),()( tqa k

n . Using 

Theorem 2.1, one can give a Binet-like formula for na . 

  
Theorem 2.2.  
 
 If 0m  and 10  kr , then 
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where   and   are the roots of the quadratic equation 
  

0.=1)())()(( 11
2 qxtGtqGx k

kk    

  
 Proof:  
 
Considering whether the last piece within a member of n  is a square or a domino yields the 

recurrence  
 

2,,= 21   nqataa nnn                                                                                                   (6) 

 
if n  is divisible by k , and the recurrence 
  

2,,= 21   nataa nnn                                                                                                     (7) 

 
if n  is not, with the initial conditions 1=0a  and ta =1 . By induction, recurrences (3), (6), and 

(7) together show that 
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0,,= 1  npa nn                                                                                                               (8) 

 
where np  denotes here the sequence defined by (3) with txxx k ==== 21  , 

1==== 121 kyyy  , and qyk = . Thus, we have qy k
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since )(= 1 tGa ii   and )(=* tGp ii  if ki < , as there is no domino whose right half covers a 

multiple of k . Formula (5) follows from writing 1=  rmkrmk pa  and using (4), which completes 

the proof.                                                            
 
In determining our next formula for na , we will need the generating function for the sequence 

np  given by (3). 

  
Lemma 2.3.  
 
 If np  is defined as above, then 
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where L  and   are given in Theorem 2.1.   
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Note that  
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since  =L , which completes the proof.                                          
 
The generating function for the sequence na  may be given explicitly as follows. 

  
Theorem 2.4.   
 
We have  
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Proof:  
 
By (8) and (9), we have 
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by 0=0p  and the expressions for L  and   given in the proof of Theorem 2.2 above. If 

20  kr , then 1= rr Ga  and 
  

,== 211112   rkrkrkrkrk GGGqGaaaqaa  

 
the first relation upon considering whether or not the numbers 1k  and k  are covered by a 
single domino within a member of rk . Thus, 
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the last equality by the identity 11=1)(   nmnmmn

m GGGGG , nm 0 , which can be shown 

by induction (see [Benjamin and Quinn (2003), p. 30, Identity 47] for the case when 1=t ). 
Substituting this into the last expression above for n

nn
xa 0

, and noting 0=0G , completes the 

proof. 
                                                                                          
Corollary 2.5.   
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Proof:  
 
By (10), we have  
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Since each power of x  in the infinite double sum on the right side of the last expression is a 
multiple of k  for all i  and j , only one term from each of the two finite sums on the left 

contributes towards the coefficient of smkx  , namely, the sr =  term. Thus, the coefficient to 
smkx   in the last expression is given by  
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Replacing j  by jm   in the first sum and j  by jm 1  in the second gives (11). 
                                                                                         
Taking 1=k  in (11) implies  
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which is well-known (see, e.g., [Benjamin and Quinn (2003), Shattuck and C. Wagner (2005)]. 
Taking 2=k  in (11) implies  
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Taking 3=k  in (11) implies 
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Let )(= tHH nn  denote the Lucas polynomial defined by the recurrence 21=   nnn HtHH  if 

2n , with 2=0H  and tH =1 , or, equivalently, by 11=   nnn GGH  if 1n . 

  
Corollary 2.6.  
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In particular, we have 
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Proof: 
 
Taking 1=q  in (11) and noting )(=)(1, 1

)( tGta n
k

n   for all k  gives (15). Furthermore, if 1= ks  

in (15), then the second sum drops out since 0=0G , which yields (16).                                                                 

 
We were unable to find formulas (15) or (16) in the literature, though the 1=t  case of (16) is 
similar in form to Identities V82 and V83 in (Benjamin and Quinn (2003), p. 145). 
 
 
2.3. The Case  ൌ . 
 
We consider further the case when 2=k . Note that ),((2) tqan  is the joint distribution polynomial 

on n  for the statistics recording the number of squares and the number of dominos whose right 
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half covers an even number. The next result follows from taking 2=k  in formula (10), though 
we provide another derivation here. Let ),(= (2)(2) tqaa nn  and n
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we'll often denote by )(xa . 
  
Proposition 2.7.  
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as desired.                                                                             
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We next consider some particular values of the polynomials ),((2) tqan . 

  
Proposition 2.8   
 
If 1n , then 
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We provide both algebraic and combinatorial proofs. Taking 0=q  in (17) implies  
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from which (20) follows. 
 
For a combinatorial proof, first let mn 2= , where 1m . Then members   of n  having zero 

2  value are of the form 
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for some  , where 0ia  for each },{1,2,=][ i .  

 
Note that the sequence 1),1,1,( 21   aaa  is a composition of m .  
 
Thus, the polynomial )(0,(2) tan  may be viewed as the weighted sum of compositions of m , where 
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which gives the even case. 
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If 12= mn , then the weighted sum of tilings s , where n  has zero 2  value, is given by 
mtt )(1 22  , by the even case. Dividing this by t  (to account for the square that was added at the 

end) gives the odd case and completes the proof.       
 
 
Proposition 2.9.   
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Proof: 
 
We provide both algebraic and combinatorial proofs of this result. Taking 1= q  in (17) and 
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which gives the result.                                                                  
 
 
We provide a bijective proof of (21) in the case when 1=t , the general case being similar, and 
show  
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n  of e
n  having cardinality 1mF  or 

1mF , along with a sign-changing involution of *
nn   . 

 
Let mn 2=  and nn    consist of those coverings 21=   such that ii 212 =    for all i . If 
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nn   , then let oi  denote the smallest index i  such that ii 212   , i.e., dsii =212    or sd

. Let )(f  denote the covering that is obtained from   by exchanging the positions of the 

1)(2 oi -st and )(2 oi -th pieces of  , leaving all other pieces undisturbed. Then the mapping f  

is seen to be a sign-changing involution of nn   . 

 
We now define an involution of n  . Let nn  *  consist of those members containing an even 

number of pieces and ending in a domino. Note that e
nn  *  and that 1

* |=| mn F  since 

members of *
n  are synonymous with members of m  ending in a domino, upon halving. 

Observe further that if *
nn    has an odd number of pieces, then   ends in a domino since 

n  is even, while if   has an even number of pieces, it must end in two squares. If *
nn   , 

then let )(g  be obtained from   by either changing the final domino to two squares or 
changing the final two squares to a domino. Then g  is seen to be a sign-changing involution of 

*
nn   . Combining the two mappings f  and g  yields a sign-changing involution of *

nn   , 

as desired. 
 
If 12= mn , then apply the mapping f  defined above to n . Note that the set of survivors has 

cardinality 1mF , upon halving, since they are of the form 12221=    for some  , with 

ii 212 =    for each ][i  and s=12  . This completes the proof of (22).                                                

 
Let )( 2nt  denote the sum of the 2  values taken over all of the members of n . 

  
Proposition 2.10 .  
 
If 1n , then 
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Proof: 
 
To find )( 2nt , we consider the contribution of the dominos that cover the numbers 12 i  and i2  

for some i  fixed within all of the members of n . Let 12= mn .  

 
Note that there are imi FF 22212   dominos that cover the numbers 12 i  and i2  within all of the 

members of n .  

 
Summing over all i , we have 
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To simplify this sum, we recall the Binet formulas 
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and 0,,=  nL nn
n  where 

  and   denote the positive and negative roots, respectively, of the equation 0=12  xx . 
Then for m  even, we have  
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by Identities 28, 26 and 33 in Benjamin and Quinn (2003) and since 11=   mmm FFL . Substituting 

2

1
=

n
m  gives the second formula when 4) mod( 1n . A similar calculation gives the same 

formula when 4) mod( 3n . 
 
If mn 2=  and m  is odd, then similar reasoning shows that  
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and the first formula in (23) follows when 4) mod( 2n , upon replacing m  with 
2

n
. A similar 

calculation gives the same formula when 4) mod( 0n .                     
 
We close this section with a general formula for ),((2) tqan . 

  
Theorem 2.11.  
 
 If 0n , then 
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Proof: 
 
We will refer to a domino whose left half covers an odd (resp., even) number as odd-positioned 
(resp., even-positioned). First suppose mn 2=  is even. If n  contains no squares, then it 

consists of m  odd-positioned dominos, whence the mq  term. So suppose that   contains i  
dominos, where 10  mi , and that j  of the dominos are odd-positioned. There are im 22   
squares and 1 im  possible positions to insert each of the j  odd-positioned dominos relative 

to the squares, whence there are 






 
j

jim
 choices concerning their placement. There are im   

possible positions to insert each of the ji   even-positioned dominos, whence there are 
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 choices concerning their placement. Thus, there are 
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jim 1
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of n  containing i  dominos, j  of which are odd-positioned. Summing over all i  and j  gives 

the even case of (24). A similar argument applies to the odd case.                        
 
Remark: Setting 0=q  in (24) gives (20). Comparing the odd cases of (24) and (13) and 

replacing t  with t  gives the following polynomial identity in q  and t :  
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A similar identity can be obtained by comparing the even cases of (24) and (13). Setting 1= q  

in (24), comparing with (21), and replacing t  with t  gives a pair of formulas for )(tGm . 

 
3.   A Generalization of The Statistic ࣌ 
 
Suppose k  is a fixed positive integer. Given n , let )(s  denote the number of squares of 

  and let )( k  denote the sum of the numbers of the form 1ik  that are covered by the left 

half of a domino. For example, if 24=n , 4=k , and 24= ddssddssdsddsdss  (see 

Figure 3 below), then 8=)(s  and 52=2315113=)(4  . If q  and t  are indeterminates, 

then define the distribution polynomial ),()( tqb k
n  by 

  

1,,:=),( )()()( 


ntqtqb sk

n

k
n



 

 

 
with 1:=),()(

0 tqb k . For example, if 6=n  and 3=k , then 

  
.1)(1)(2)1)((=),( 27225222222(3)

6 tqtqttqttttqb   

 
Note that 1

)( =)(1, n
k

n Gtb  for all k  and n . 

 
 
 

  
       Figure 3. The tiling 24= ddssddssdsddsdss  has 52=)(4  .  
 
In what follows, we will often suppress arguments and write nb  for ),()( tqb k

n . Considering 

whether the last piece within a member of n  is a square or a domino yields the recurrence 

 

1     2     3  4    5     6 7      8   9   10 11 12 13 14 15 16  17 18 19 20 21 22 23 24 
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2,,= 2
1

1  


 nbqtbb n
n

nn  

 
if n  is divisible by k , and the recurrence  
 

2,,= 21   nbtbb nnn  

 
if n  is not, with initial conditions 1=0b  and tb =1 . In [4], Carlitz studied the polynomials 

),((1)
1 tqbn  from an algebraic point of view. See also the related paper by Cigler (2003). 

 
In this section, we will derive explicit formulas for the polynomials ),()( tqb k

n  and their 

generating function, with specific consideration of the case 2=k . Note that )(2   records the 
sum of the odd numbers covered by left halves of dominos in  . 
 
3.1.  General Formulas 
 
We first establish an explicit formula for the generating function of the sequence nb . 

  
Theorem 3.1.  
 
We have 
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Proof: 
 
It is more convenient to first consider the generating function for the numbers ),(:= )(

1 tqbb k
nn  . 
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Then the sequence nb  has initial values 0=0b  and 1=1b  and satisfies the recurrences 

  
0,and2,= 21   mkrbbtb rmkrmkrmk                                                   (27) 
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where ][kr . Then multiplying the recurrences (27) and (28) by mx , and summing the first over 

0m  and the second over 1m , gives 
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By induction on r , we obtain  
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where we have used the identity 1

11
2 1)(= 

  k
kkk GGG  [see, e.g., (Benjamin and Quinn (2003), 
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Identity 246].  
 
Iterating the last recurrence gives  
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Then, by (29), we have  
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where )(1 xck  and )(xck  are as given. Formula (26) now follows upon noting  
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One can find explicit expressions for the nb  using Theorem 3.1 and the following formulas that 
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involve the q -binomial coefficient [see, e.g., (Andrews (1976) or  Stanley (1997)]:  
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where j  is a non-negative integer. 
  
Theorem 3.2.  
 
The following formulas hold for nb . If 0m , then 
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If 0m , then  
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If 1m  and 30  kr , then  
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with 1= rr Gb .   
  
Proof:  
 
Let 1=  kmkn , where 0m . Then the coefficient of nx  on the right-hand side of (26) is 
given by  
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By (30) and (31), we have for each 0j ,  
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so that coefficient of nx  is given by 
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which yields (32). Similar proofs apply to formulas (33) and (34), in the latter case, upon 
extracting the coefficient of nx  from two separate terms in (26).                      
 
When 1=k  in Theorem 3.2, the inner sum in (32) reduces to a single term since 0=0G  and 

gives  
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which is well-known [see, e.g., Shattuck and Wagner (2005)] When 2=k  in Theorem 3.2, we get for 
all 0m  the formulas  
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and  
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The polynomials ),((2) tqbn  are considered in more detail below. 

 
3.2.  The Case  ൌ  
 
Let us write (2)

nb  for ),((2) tqbn . The even and odd terms of the sequence (2)
nb  satisfy the following 

two-term recurrences. 
 
 Proposition 3.3. 
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To show (39), first note that the total weight of all the members of 12 m  ending in d  or ss  is 
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We were unable to find, in general, two-term recurrences comparable to (38) and (39) for the 
sequences ),()( tqb k

rmk , where k  and r  are fixed and 0m . Let n
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Using (38) and (39), it is possible to determine explicit formulas for the generating functions 
m
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20 
 and m
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xb(2)

120   and thus for ),;( tqxb , upon proceeding in a manner analogous to 

the proof of Theorem 3.1 above. The following formula results, which may also be obtained by 
taking 2=k  in Theorem 3.1. 
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Proposition 3.4.  
 
We have 
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Taking 0=q  and 1= q  in (40) shows that )(0,(2) tbn  and )1,((2) tbn   are the same as )(0,(2) tan  

and )1,((2) tan   and are thus given by Propositions 2.8 and 2.9, respectively. This is easily seen 

directly since a member of n  has zero 2  value if and only if it has zero 2  value and since the 

parity of the 2  and 2  values is the same for all members of n . Comparing with (36) and (37) 

when 1= q , and replacing t  with t , then gives a pair of formulas for the Fibonacci 
polynomials. 
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Taking 1=q  in (36) and (37), and noting )(=)(1, 1

(2) tGtb nn  , gives another pair of formulas. 
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Let )( 2nt  denote the sum of the 2  values taken over all of the members of n . We conclude 

with the following explicit formula for )( 2nt . 

  
Proposition 3.7.  
 
If 0n , then  
 

 .
40

5)2(215)2(6

8

3)(21)(2
1)(=)( 2

2
1

2
12

2
 




 nnnnn
n

FnnFnnFnFn
t          (45) 

    
Proof: 
 

To find )( 2nt , first note that 1=20
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Note that  
 

;
50

2)17)((51)16)((5
=

)(1

1
][

,
5

2)2(1)(
=

)(1

1
][

,=
1

1
][

12
32

12
22

12















nnn

nnn

n
n

FnnFnn

xx
x

FnFn

xx
x

F
xx

x

 

 
see sequences A000045, A001629, and A001628, respectively, in Sloane (2010). Thus, the 

coefficient of nx  in 1=|,1);( qqxb
dq

d
 is given by  
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which completes the proof.                                                            
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4.  Conclusion 
 
In this paper, we have studied two statistics on square-and-domino tilings that generalize 
previous ones by considering only those dominos whose right half covers a multiple of k , where 
k  is a fixed positive integer. We have derived explicit formulas for all k  for the joint 
distribution polynomials of the two statistics with the statistic that records the number of squares 
in a tiling. This yields two infinite families of q -generalizations of the Fibonacci polynomials. 
When 1=k , our formulas reduce to prior results. Upon noting some special cases, several 
combinatorial identities were obtained as a consequence. Finally, it seems that other statistics on 
square-and-domino tilings could possibly be generalized. Perhaps one could also modify 
statistics on permutations and set partitions by introducing additional requirements concerning 
the positions, k mod , of various elements. 
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