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Abstract

This paper deals with the steady state behavior of an M/G/1 multiple working vacation queue
with server breakdown. The server works with different service times rather than completely
stopping service during a vacation. Both service times in a vacation period and in a regular service
period are assumed to be generally distributed random variables. The system may breakdown at
random and repair time is arbitrary. Further, just after completion of a customer’s service the
server may take a multiple working vacation. Supplementary variable technique is employed to
find the probability generating function for the number of customers in the system. The mean
number of customers in the system is calculated. Some particular cases of interest are discussed.
Numerical results are also presented.

Keywords: Poisson arrivals, Random breakdown, Repair time, Working Vacation, Supplementary
Variable Technique
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1. Introduction

In most of the queueing literature it is assumed that the server is available in the service station
on a permanent basis and service station never fails. However, these assumptions are unrealistic.
In practical situations we often meet the case where service stations may fail or slow down,
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during the time, at which the repairing works are carried out. Such phenomenon always occur
in the areas of computer communication networks and flexible manufacturing systems. Vacation
queueing models subject to breakdowns have been studied by many authors including Gaver
(1959), Levy and Yechilai (1976), Fuhrman (1981), Doshi (1986), Shanthikumar (1988), Kramer
(1989), Madan (1999) and Madan and Saleh (2001) to mention a few. Sengupta (1990), Takine
and Sengupta (1997), Li et al. (1997), Madan (2003), Choudhury and Tadj (2009), and Thangaraj
and Vanitha (2010) studied M/G/1 queue with breakdowns and vacations.

Recently a class of semi-vacation policies called working vacation (WV) have been introduced.
During this period the server works with a lower rate rather than completely stopping service.
Servi and Finn (2002) studied an M/M/1 queue with multiple working vacation and obtained the
probability generating function for the number of customers in the system and the waiting time
distribution. Some other notable works are by Wu and Takagi (2006), Tian et al. (2008), Begum
and Parveen (2011) and Santhi and Pazhani Bala Murugan (2013, 2014).

In this paper we study a non-Markovian queue with multiple working vacation and random
breakdown. The organization of the paper is as follows. In Section 2, we describe the model. In
Section 3, we obtain the steady state probability generating function. Particular cases are dicussed
in Section 4. Some performance measures are obtained in Section 5, and in Section 6 numerical
study is presented.

2. The Model description

We assume the following to describe the queueing model under study. Customers arrive at the
system one by one according to a Poisson stream with arrival rate λ(> 0). The service discipline
is FCFS. The service time follows a general distribution. Let Sb(x), sb(x) and S∗b (θ) be the
distribution function, the probability density function and the Laplace Stieltjes Transform (LST)
of the service time Sb.

Whenever the system becomes empty at a service completion instant the working vacation of
the server is begun. The duration of the vacation time is assumed to follow an exponential
distribution with rate η. At a vacation completion instant, if there are customers in the system
a new busy period will start. Otherwise, it stays in working vacation. This type of vacation is
called multiple working vacation. During the working vacation, the server provides service with
a different service time Sv which follows a general distribution with distribution function Sv(x).
Let sv(x) and S∗v(θ) denote the corresponding probability density function, and Laplace Stieltjes
Transform respectively.

The system may breakdown at random and it is assumed to occur according to a Poisson stream
with mean breakdown rate α1(> 0) during the regular service period and α2(> 0) during the
WV period, respectively. Further, we assume that once the system breaks down, the customer
whose service is interrupted comes back to the head of the queue and the system enters a repair
process immediately. The repair time is also assumed to follow a general distribution. Let the
repair time distribution functions be Sr1(x) and Sr2(x) during the regular service period and WV
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period, respectively. Let sr1(x), sr2(x), S
∗
r1
(θ), and S∗r2(θ) denoted the corresponding densities

and LSTs respectively.

Various stochastic processes involved in the system are assumed to be independent of each other.

3. The System Size Distribution

The system size distribution at an arbitrary time can be obtained by using the supplementary
variable technique, that is, from the joint distribution of the queue length and the remaining
service time of the customer in service if the server is busy/working vacation. We define the
following random variables.

N(t) − the system size at time t

S0
b (t) − the remaining service time in regular service period.

S0
v(t) − the remaining service time in working vacation period.

S0
r1
(t) − the remaining repair time in regular service period.

S0
r2
(t) − the remaining repair time in working vacation period.

Y (t) =



0 if the server is idle at time t,

1 if the server is busy at time t,

2 if the server is busy on working vacation period at time t,

3 if the server is waiting for completion of repairing work during the

busy period at time t,

4 if the server is waiting for completion of repairing work during the

working vacation period at time t.

Supplementary variables S0
b (t), S

0
v(t), S

0
r1
(t) and S0

r2
(t) are introduced in order to obtain bivariate

Markov process {(N(t), ∂(t)); t ≥ 0} where

∂(t) =


S0
b (t) if Y (t) = 1,

S0
v(t) if Y (t) = 2,

S0
r1
(t) if Y (t) = 3,

S0
r2
(t) if Y (t) = 4.

We define the following limiting probabilities:

Q0 = lim
t→∞

Pr{N(t) = 0, Y (t) = 0} ,

Pn(x) = lim
t→∞

Pr{N(t) = n, Y (t) = 1, x < S0
b (t) ≤ x+ dx} ; n ≥ 1,

Qn(x) = lim
t→∞

Pr{N(t) = n, Y (t) = 2, x < S0
v(t) ≤ x+ dx} ; n ≥ 1,

R1,n(x) = lim
t→∞

Pr{N(t) = n, Y (t) = 3, x < S0
r1
(t) ≤ x+ dx} ; n ≥ 1,

and R2,n(x) = lim
t→∞

Pr{N(t) = n, Y (t) = 4, x < S0
r2
(t) ≤ x+ dx} ; n ≥ 1.
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Under the assumption that steady state conditions are reached, we have the following system of
differential difference equations:

λQ0 = P1(0) +Q1(0), (1)

− d

dx
Q1(x) = −(λ+ α2 + η)Q1(x) +Q2(0)sv(x) + λQ0sv(x) +R2,1(0)sv(x), (2)

− d

dx
Qn(x) = −(λ+ α2 + η)Qn(x) +Qn+1(0)sv(x) + λQn−1(x) +R2,n(0)sv(x) ; n ≥ 2, (3)

− d

dx
P1(x) = −(λ+ α1)P1(x) + P2(0)sb(x) + ηsb(x)

∞∫
0

Q1(y)dy +R1,1(0)sb(x), (4)

− d

dx
Pn(x) = −(λ+ α1)Pn(x) + Pn+1(0)sb(x) + ηsb(x)

∞∫
0

Qn(y)dy + λPn−1(x),

+R1,n(0)sb(x) ; n ≥ 2, (5)

− d

dx
R2,1(x) = −(λ+ η)R2,1(x) + α2sr2(x)

∞∫
0

Q1(x)dx, (6)

− d

dx
R2,n(x) = −(λ+ η)R2,n(x) + λR2,n−1(x) + α2sr2(x)

∞∫
0

Qn(x)dx ; n ≥ 2, (7)

− d

dx
R1,1(x) = −λR1,1(x) + α1sr1(x)

∞∫
0

P1(x)dx+ ηsr1(x)

∞∫
0

R2,1(y)dy, (8)

− d

dx
R1,n(x) = −λR1,n(x) + λR1,n−1(x) + α1sr1(x)

∞∫
0

Pn(x)dx

+ηsr1(x)

∞∫
0

R2,n(y)dy ;n ≥ 2. (9)

We define the Laplace Stieltjes transforms and the probability generating functions as follows.
For i = 1, 2,

S∗b (θ) =

∞∫
0

e−θxsb(x)dx ; S∗v(θ) =

∞∫
0

e−θxsv(x)dx ; S∗ri(θ) =

∞∫
0

e−θxsri(x)dx ;

Q∗n(θ) =

∞∫
0

e−θxQn(x)dx ; Q∗n(0) =

∞∫
0

Qn(x)dx , P ∗n(θ) =

∞∫
0

e−θxPn(x)dx;

P ∗n(0) =

∞∫
0

Pn(x)dx; R∗i,n(θ) =

∞∫
0

e−θxRi,n(x)dx ;R∗i,n(0) =

∞∫
0

Ri,n(x)dx ;
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Q∗(z, θ) =
∞∑
n=1

Q∗n(θ)z
n, Q(z, 0) =

∞∑
n=1

Qn(0)z
n Q∗(z, 0) =

∞∑
n=1

Q∗n(0)z
n

P ∗(z, θ) =
∞∑
n=1

P ∗n(θ)z
n P (z, 0) =

∞∑
n=1

Pn(0)z
n, P ∗(z, 0) =

∞∑
n=1

P ∗n(0)z
n ;

R∗i (z, θ) =
∞∑
n=1

R∗i,n(θ)z
n, Ri(z, 0) =

∞∑
n=1

Ri,n(0)z
n, R∗i (z, 0) =

∞∑
n=1

R∗i,n(0)z
n.

Taking LST of (2) to (9), we get

θQ∗1(θ)−Q1(0) = (λ+ α2 + η)Q∗1(θ)−Q2(0)S
∗
v(θ)− λQ0S

∗
v(θ)−R2,1(0)S

∗
v(θ), (10)

θQ∗n(θ)−Qn(0) = (λ+ α2 + η)Q∗n(θ)

−Qn+1(0)S
∗
v(θ)− λQ∗n−1θ −R2,n(0)S

∗
v(θ) ; n ≥ 2, (11)

θP ∗1 (θ)− P1(0) = (λ+ α1)P
∗
1 (θ)− P2(0)S

∗
b (θ)− ηS∗b (θ)Q∗1(0)−R1,1(0)S

∗
b (θ), (12)

θP ∗n(θ)− Pn(0) = (λ+ α1)P
∗
n(θ)− Pn+1(0)S

∗
b (θ)− ηS∗b (θ)Q∗n(0)

−λP ∗n−1(θ)−R1,n(0)S
∗
b (θ) ; n ≥ 2, (13)

θR∗2,1(θ)−R2,1(0) = (λ+ η)R∗2,1(θ)− α2S
∗
r2
(θ)Q∗1(0), (14)

θR∗2,n(θ)−R2,n(0) = (λ+ η)R∗2,n(θ)− λR∗2,n−1(θ)− α2S
∗
r2
(θ)Q∗n(0) ; n ≥ 2, (15)

θR∗1,1(θ)−R1,1(0) = λR∗1,1(θ)− α1S
∗
r1
(θ)P ∗1 (0)− ηS∗r1(θ)R

∗
2,1(0), (16)

θR∗1,n(θ)−R1,n(0) = λR∗1,n(θ)− λR∗1,n−1(θ)
−α1S

∗
r1
(θ)P ∗n(0)− ηS∗r1(θ)R

∗
2,n(0) ; n ≥ 2. (17)

zn times (11) summed over n from 2 to ∞ and added up with z times (10) yields

[θ − (λ− λz + α2 + η)]Q∗(z, θ)

=

[
z − S∗v(θ)

z

]
Q(z, 0)− S∗v(θ)[λzQ0 +R2(z, 0)−Q1(0)].

(18)

Inserting θ = (λ− λz + α2 + η) = (a(z) + α2) in (18), we get

Q(z, 0) =
zS∗v(a(z) + α2)[λzQ0 +R2(z, 0)−Q1(0)]

z − S∗v(a(z) + α2)
. (19)

zn times (15) summed over n from 2 to ∞, added up with z times (14), gives

[θ − (λ− λz + η)]R∗2(z, θ) = R2(z, 0)− α2S
∗
r2
(θ)Q∗(z, 0). (20)

Inserting θ = (λ− λz + η) = a(z) in (20), we get

R2(z, 0) = α2S
∗
r2
(a(z))Q∗(z, 0)(21). (21)

Substituting (21) in (20) and putting θ = 0, we get

R∗2(z, 0) =
α2Q

∗(z, 0)(1− S∗r2(a(z)))
(a(z))

. (22)
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Substituting (21) in (19), we get

Q(z, 0) =
zS∗v(a(z) + α2)[λzQ0 + α2S

∗
r2
(a(z))Q∗(z, 0)−Q1(0)]

z − S∗v(a(z) + α2)
. (23)

Substituting (21) and (23) in (18), we get

[θ − (a(z) + α2)]Q
∗(z, θ)

=

[
z(S∗v(a(z) + α2)− S∗v(θ))[α2S

∗
r2
(a(z))Q∗(z, 0) + λzQ0 −Q1(0)]

]
z − S∗v(a(z) + α2)

.

Putting θ = 0, we get

Q∗(z, 0)

=
z(1− S∗v(a(z) + α2))(λzQ0 −Q1(0))[

(a(z) + α2)(z − S∗v(a(z) + α2))− α2z(1− S∗v(a(z) + α2))S∗r2(λ− λz + η)
] . (24)

The denominator of the above equation has a unique root z1 in (0,1) and thus Q1(0) = λz1Q0.

Substituting this in (24), we get

Q∗(z, 0)

=
λz(z − z1)(1− S∗v(a(z) + α2))Q0[

(a(z) + α2)(z − S∗v(a(z) + α2))− α2z(1− S∗v(a(z) + α2))S∗r2(λ− λz + η)
] . (25)

Substituting (25) in (22), we get

R∗2(z, 0) =
Q0α2(1− S∗r2(a(z)))λz(z − z1)(1− S

∗
v(a(z) + α2))

a(z)

[
(a(z) + α2)(z − S∗v(a(z) + α2))− α2z(1− S∗v(a(z) + α2))S∗r2(a(z))

] . (26)

zn times (13) summed over n from 2 to ∞, is added up with z times (12) yields

[θ − (λ− λz + α1)]P
∗(z, θ)

=

[
z − S∗b (θ)

z

]
P (z, 0)− S∗b (θ)[ηQ∗(z, 0) +R1(z, 0)− P1(0)].

(27)

Inserting θ = (λ− λz + α1) = a1(z) and substituting λ(1− z1)Q0 = P1(0) in (27), we get

P (z, 0) =
zS∗b (a1(z))[ηQ

∗(z, 0) +R1(z, 0)− λ(1− z1)Q0]

z − S∗b (a1(z))
. (28)

zn times (17) summed over n from 2 to ∞, added with z times (16), results in

[θ − (λ− λz)]R∗1(z, θ) = R1(z, 0)− α1S
∗
r1
(θ)P ∗(z, 0)− ηS∗r1(θ)R

∗
2(z, 0). (29)

Inserting θ = (λ− λz) in (29), we get

R1(z, 0) = S∗r1(λ− λz) [α1P
∗(z, 0) + ηR∗2(z, 0)] . (30)

Substituting (30) in (29) and putting θ = 0 in (29), we get

R∗1(z, 0) =
(1− S∗r1(λ− λz))[α1P

∗(z, 0) + ηR∗2(z, 0)]

(λ− λz)
. (31)
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Substituting (22), (25), (28), (30) and λ(1− z1)Q0 = P1(0) and putting θ = 0 in (27), we get

P ∗(z, 0) =
Nr(z)

Dr(z)
, (32)

where

Nr(z) = Q0λz(1− S∗b (a1(z)))
{
ηz(z − z1)(1− S∗v(a(z) + α2))

[
a(z) + α2S

∗
r1
(λ− λz)

×(1− S∗r2(a(z)))
]
− (a(z))(1− z1)

[
(a(z) + α2)(z − S∗v(a(z) + α2))

−α2z(1− S∗v(a(z) + α2))S
∗
r2
(a1(z))

]}
,

Dr(z) = a(z)
{
(a1(z))(z − S∗b (a1(z)))− zα1(1− S∗b (a1(z)))S∗r1(λ− λz)

}
×
{
(a(z) + α2)(z − S∗v(a(z) + α2))− α2z(1− S∗v(a(z) + α2))S

∗
r2
(a(z))

}
.

Substituting (26) and (32) in (31), we get

R∗1(z, 0) =
Q0(1− S∗r1(λ− λz))
D1(z)D2(z)D3(z)

{
α1λz(1− S∗b (a1(z)))

{
ηz(z − z1)(1− S∗v(a(z) + α2)))

×
[
(a(z) + α2S

∗
r1
(λ− λz)(1− S∗r2(a(z)))

]
− (a(z))× (1− z1)

[
(a(z) + α2)

×(z − S∗v(a(z) + α2)) + α2ηλz(z − z1)(1− S∗v(a(z) + α2))× (1− S∗r2(a(z)))

×
{
(a1(z))× (z − S∗b (a1(z)))− α1z(1− S∗b (a1(z)))× S∗r1(λ− λz)

}}
, (33)

where

D1(z) = a(z)
{
a1(z)(z − S∗b (a1(z)))− zα1(1− S∗b (a1(z)))S∗r1(λ− λz)

}
, (34)

D2(z) =
{
(a(z) + α2)(z − S∗v(a(z) + α2))− α2z(1− S∗v(a(z) + α2))S

∗
r2
(a(z))

}
, (35)

D3(z) = (λ− λz). (36)

We define

PB(z) = P ∗(z, 0) +R∗1(z, 0) (37)

as the probability generating function for the number of customers in the system when the server
is in regular service period,

PV (z) = Q∗(z, 0) +R∗2(z, 0) +Q0 (38)

as the probability generating function for the number of customers in the system when the server
is on working vacation period, and

P (z) = PB(z) + PV (z) (39)

as the probability generating function for the number of customers in the system. We now use
the normalizing condition P (1) = 1 to determine the only unknown, Q0, which appears in (39).
Substituting z = 1 in (39) and using L’Hôpital’s rule, we obtain

Q0 =
1− ρb[

η + λ(1− z1)
η

]
−
[
C1

C2

] , (40)
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where

C1 = λ(1− z1)
{
(1− S∗b (α1))S

∗
v(η + α2)× [α2 + η(1 + α1E(Sr1))] + α2α1E(Sr1)

×[S∗v(η + α2)− S∗b (α1)[1− S∗r2(η)(1− S
∗
v(η + α2))]]

}
,

C2 = α1S
∗
b (α1)(1− S∗v(η + α2))(η + α2(1− S∗r2(η))),

and ρb =
λ(1− S∗b (α1))(1 + α1E(Sr1))

α1S∗b (α1)
, E(Sr1) is the mean repair time in regular service period.

From (40) we obtain the system stability condition ρb < 1.

4. Particular Cases

Case (i): If the system suffers no breakdowns, then letting α1 = 0 and α2 = 0 in (39), we have

P (z) =
Q0λz(1− S∗b (λ− λz))×Nr1(z)

(λ− λz)(a(z))(z − S∗b (λ− λz))(z − S∗v(a(z)))
, (41)

where

Nr1(z) =
{
ηz(z − z1)(1− S∗v(a(z)))− (1− z1)(a(z))(z − S∗v(a(z)))

}
+ (λ− λz),

×(z − S∗b (λ− λz))
{
λz(z − z1)(1− S∗v(a(z))) + (a(z))(z − S∗v(a(z)))

}}
,

where Q0 =
1− ρb[

λ− λz1 + η

η
− ρb(1− z1)S∗v(η)

1− S∗v(η)

] , ρb = λE(Sb).

Equation (41) is a well-known probability generating function of the steady state system length
distribution of an M/G/1 queue with multiple working vacation (Takagi (2006)) irrespective of
the notations.

Case (ii): If the server never does the work during vacation period then setting S∗v(λ−λz+ η+

α2) = 0, α2 = 0 and S∗r2(λ−λz+η) = 0 in (39) and by taking the repair time to be exponentially
distributed, we get

P (z) = PV (z) + PB(z), (42)

where

PV (z) =
Q0(λ(1− z1) + η)

λ− λz + η

PB(z) =
Q0z[S

∗
b (a1(z))− 1][λ(1− z1) + η][(λ− λz)(β + λ− λz) + α1(λ− λz)]{

(a(z))[(λ− λz)(z − S∗b (a1(z)))(β + λ− λz)
+α1z(λ− λz)− α1S

∗
b (a1(z))(β(1− z) + λ− λz)]

}

Q0 =
1− ρb[

η + λ(1− z1)
η

] , ρb =
λ(1− S∗b (α1))(α1 + β)

α1βS∗b (α1)
.



686 S. Pazhani Bala Murugan & K. Santhi

Equation (42) is a well-known probability generating function of the steady state system length
distribution of an M/G/1 queue with Server Vacation and Random Breakdown (Thangaraj (2010)
no second stage service) irrespective of the notations.

Case (iii): If the system suffers no breakdowns and the server never takes a vacation then on
setting α1 = 0, α2 = 0 and taking limit η →∞ in (39) we get

P (z) =
(1− λE(Sb))(1− z)S∗b (λ− λz)

S∗b (λ− λz)− z
. (43)

Equation (43) is a well-known probability generating function of the steady state system length
distribution of an M/G/1 queue (Medhi (1982)) irrespective of the notations where E(Sr1) is
the mean repair time in regular service period.

5. Performance Measures

Let Lv and Lb denote the mean system size during the working vacation and regular service
period respectively and let Wv and Wb be the mean waiting time of the customers in the system
during working vacation period and regular service period respectively.

Lv =
d

dz

[
PV (z)

]∣∣
z=1

=
d

dz

[
A(z)

D2(z)
+

B(z)

a(z)D2(z)

]
Q0

∣∣
z=1

,

where

A(z) = λz(z − z1)(1− S∗v(a(z) + α2)),

B(z) = α2λz(z − z1)(1− S∗r2(a(z)))(1− S
∗
v(a(z) + α2)).

D2(z) is given in (35). Therefore

Lv = Q0

[
D2(1)A

′(1)− A(1)D′2(1)
(D2(1))2

+
η(D2(1)B

′(1)−B(1)D′2(1)) + λB(1)D2(1)

(ηD2(1))2

]
,

and applying Little’s formula Wv =
Lv
λ
, we have

A(1) = λ(1− z1)(1− S∗v(η + α2)),

A′(1) = (1− S∗v(η + α2))(λ+ λ(1− z1)) + λ2(1− z1)S∗
′

v (η + α2),

D2(1) = (1− S∗v(η + α2))[η + α2(1− S∗r2(η))],
B(1) = α2λ(1− z1)(1− S∗r2(η)(1− S

∗
v(η + α2)),

B′(1) = α2

[
λ(1− z1)[(1− S∗v(η + α2))(1− S∗r2(η) + λS∗r2(η)) + λ(1− S∗r2(η))S

∗′
v (η + α2)]

+λ(1− S∗r2(η)(1− S
∗
v(η + α2)))

]
,

Lb =
d

dz

[
PB(z)

]∣∣
z=1

=
d

dz

[
N1(z)N2(z)

D1(z)D2(z)
+

N3(z)N4(z)

D1(z)D2(z)D3(z)

]
Q0

∣∣∣∣
z=1

,
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where

N1(z) = λz(1− S∗b (a1(z))),
N2(z) = ηz(z − z1)(1− S∗v(a(z) + α2))[(a(z)) + α2S

∗
r1
(λ− λz)(1− S∗r2(a(z)))]− (a(z))

×(1− z1)
[
(a(z) + α2)(z − S∗v(a(z) + α2))− α2zS

∗
r2
(a(z))(1− S∗v(a(z) + α2))

]
,

N3(z) = (1− S∗r1(λ− λz)),
N4(z) = α1λz(1− S∗b (a1(z)))

{
ηz(z − z1)(1− S∗v(a(z) + α2))[(a(z)) + α2S

∗
r1
(λ− λz)

×(1− S∗r2(a(z)))]− (a(z))(1− z1)
(
(a(z) + α2)(z − S∗v(a(z) + α2))− α2z

×(1− S∗v(a(z) + α2))S
∗
r2
(a(z))

)}
+ α2ηλz(z − z1)(1− S∗v(a(z) + α2))

×(1− S∗r2(a(z)))
{
(λ− λz + α1)(z − S∗b (a1(z)))− α1z(1− S∗b (a1(z)))S∗r1(λ− λz)

}
,

D1(z), D2(z) and D3(z) are given in equations (34), (35), and (36), respectively and

Lb = Q0

[
2D′1(1)N

′
2(1)(D2(1)N

′
1(1)−N1(1)D

′
2(1))+ D2(1)N1(1)(D

′
1(1)N

′′
2 (1)

−N ′2(1)D′′1(1))

]
4(D′1(1)D2(1))2

+Q0

[
D′1(1)D2(1)D

′
3(1)(N

′′
3 (1)N

′
4(1)+ N ′3(1)N

′′
4 (1))−D′3(1)N ′3(1)N ′4(1)

×(D′′1(1)D2(1) + 2D′1(1)D
′
2(1))

]
2(D′1(1)D2(1)D′3(1))

2
,

Wb =
Lb
λ
,

N1(1) = λ(1− S∗b (α1)),

N ′1(1) = λ(1− S∗b (α1) + λ2S∗
′

b (α1)),

N ′2(1) = (η + α2(1− S∗r2(η)))(1− S
∗
v(η + α2))(η + λ(1− z1))− η(1− z1)

×
[
(η + α2)S

∗
v(η + α2)− λα2E(Sr1)(1− S∗v(η + α2))(1− S∗r2(η))

]
N ′′2 (1) = 2η(η + α2(1− S∗r2(η)))(1− S

∗
v(η + α2) + λ(1− z1)S∗

′

v (η + α2) + λS∗
′

v (η + α2))

+2η(−λ+ λα2E(Sr1)(1− S∗r2(η)))[(1− S
∗
v(η + α2)) + (1− z1) + λ(1− z1)

×S∗′v (η + α2)] + 2ηλ(1− S∗v(η + α2))α2S
∗′
r2
(η) + η(1− z1)λ2S∗

′

v (η + α2)

×α2S
∗′
r2
(η) + λ2α2η(1− z1)(1− S∗v(η + α2))[E(Sr1)

2(1− S∗r2(η)) + 2E(Sr1)

×S∗′r2(η)] + 2λ(1− z1)[(1− S∗v(η + α2))(−λ− α2S
∗
r2
(η) + λα2S

∗′
r2
(η))

+α2(1 + λS∗
′

v (η + α2))− λα2S
∗′
v (η + α2)S

∗
r2
(η)]− η(1− z1)[λ2α2S

∗′′
v (η + α2)

×S∗r2(η)− 2λα2S
∗′
v (η + α2)S

∗
r2
(η)],

N ′3(1) = −λE(Sr1),
N ′′3 (1) = −λ2E(Sr1)2,
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N ′4(1) = λα1(1− S∗b (α1))
{
−η(1− z1)S∗v(η + α2)(η + α2) + (1− S∗v(η + α2))

×(η + α2(1− S∗r2(η)))(η + λ(1− z1))
}
+ ηα2(1− S∗r2(η))λ(1− z1)

×(1− S∗v(η + α2))[α1S
∗
b (α1)− λ(1− S∗b (α1))],

N ′′4 (1) = 2(λα1(1− S∗b (α1)) + α1λ
2S∗

′

b (α1))
{(

(1− S∗v(η + α2))(η + η(1− z1))
+η(1− z1)λS∗

′

v (η + α2)
)
(η + α2(1− S∗r (η))) + η(1− z1)(1− S∗v(η + α2))

×[−λ+ λα2S
∗′
r2
(η) + λα2E(Sr1)(1− S∗r2(η))] + λ(1− z1)(1− S∗v(η + α2))

×α2(1− S∗r2(η)) + η(1− z1)[η + α2 + λS∗
′

v (η + α2)(η + α2(1− S∗r2(η)))]
−α2(1− S∗v(η + α2))(S

∗
r2
(η)− λS∗′r2(η))

}
+ λα1(1− S∗b (α1))

×
{(

2η(1− S∗v(η + α2)) + 2η(1− z1)λS∗
′

v (η + α2) + 2ηλS∗
′

v (η + α2)

−η(1− z1)λ2S∗
′′

v (η + α2)
)
(η + α2(1− S∗r2(η))) + 2

(
(1− S∗v(η + α2))

×(η + η(1− z1)) + ηλ(1− z1)S∗
′

v (η + α2)
)(
−λ+ λα2E(Sr1)(1− S∗r2(η))

+λα2S
∗′
r2
(η)
)
+ η(1− z1)(1− S∗v(η + α2))[2λ

2α2E(Sr1)S
∗′
r2
(η)− λ2α2S

∗′′
r2
(η)

+λ2α2E(Sr1)
2(1− S∗r2(η))] + 2λ(1− z1)

[
(1− S∗v(η + α2))[−λ− α2S

∗
r2
(η)

+λα2S
∗′
r2
(η)] + η + α2 + λS∗

′

v (η + α2)(η + α2(1− S∗r2(η)))
]}

+2
{
ηλα2(1− S∗v(η + α2))

(
(1− S∗r2(η))(1 + (1− z1)) + λS∗

′

r2
(η)
)

+λ2(1− z1)ηα2(1− S∗r2(η))S
∗′
v (η + α2)

}
×
{
λ(1− S∗b (α1))(−1− α1E(Sr1)) + α1S

∗
b (α1)

}
+ ηα2λ(1− z1)(1− S∗r2(η))

×(1− S∗v(η + α2))
{
−2λ(1 + λS∗

′

b (α1))− 2λα1S
∗′
b (α1)− 2λα1(1− S∗b (α1))E(Sr1)

−2λ2α1S
∗′
b (α1)E(Sr1)− λ2α1(1− S∗b (α1))E(Sr1)

2
}
,

D′1(1) = η{α1 − (1− S∗b (α1))(λ+ α1(1 + λE(Sr1)))},

D′′1(1) = −2λ(α1 − (1− S∗b (α1))(λ+ α1 + λE(Sr1)))

+η
{
−2λ(1 + λS∗

′

b (α1))− 2λα1S
∗′
b (α1)− 2λα1(1− S∗b (α1))E(Sr1)

−2λ2α1S
∗′
b (α1)E(Sr1)− λ2α1(1− S∗b (α1))E(Sr1)

2
}
,

D2(1) = (1− S∗v(η + α2))[η + α2(1− S∗r2(η))],

D′2(1) = (1− S∗v(η + α2))[−λ− α2S
∗
r2
(η) + λα2S

∗′
r2
(η)] + α2 + η(1 + λS∗

′

v (η + α2))

+λα2S
∗′
v (η + α2)(1− S∗r2(η)),

D′3(1) = −λ.



AAM: Intern. J., Vol. 10, Issue 2 (December 2015) 689

6. Numerical Result

Assuming that the service time distribution for both regular service period and working vacation
period as exponentially distributed and using the fact that

S∗b (α1) =
µb

(α1 + µb)
, S∗v(η + α2) =

µv
(η + α2 + µv)

, E(Sr1) =
1

µr1

S∗b
′(α1) = − µb

(α1 + µb)2
, S∗v

′(η + α2) = −
µv

(η + α2 + µv)2
, E(S2

r1
) =

2

µ2
r1

,

S∗r2(η) =
µr2

(η + µr2)
, S∗v

′′(η + α2) =
2µv

(η + α2 + µv)3
, S∗r2

′(η) = − µr2
(η + µr2)

2
,

and by fixing the values of z1 = 0.6, µv = 6, µb = 15, µr1 = 2, µr2 = 5, α1 = 2, α2 = 1 and
ranging the values of λ from 3.1 to 3.5 in steps of 0.1 and varying the values of η from 3.1 to
3.9 in steps of 0.2, we calculated the corresponding values of Lb and Wb for multiple working
vacation and tabulated in Table 1 and in Table 2, respectively.

Table 1. Arrival rate (λ) versus mean system size (Lb) in regular service period
HHH

HHHHλ

η
3.1 3.3 3.5 3.7 3.9

3.1 0.484350 0.475244 0.467617 0.461146 0.455593
3.2 0.566134 0.553773 0.543432 0.534666 0.527152
3.3 0.654603 0.638586 0.625199 0.613862 0.604151
3.4 0.750153 0.730055 0.713273 0.699071 0.686915
3.5 0.853213 0.828583 0.808033 0.790658 0.775796

Table 2. Arrival rate (λ) versus mean waiting time (Wb) in regular service period
HH

HHHHHλ

η
3.1 3.3 3.5 3.7 3.9

3.1 0.156242 0.153304 0.150844 0.148757 0.146966
3.2 0.176917 0.173054 0.169823 0.167083 0.164735
3.3 0.198364 0.193511 0.189454 0.186019 0.183076
3.4 0.220633 0.214722 0.209786 0.205609 0.202034
3.5 0.243775 0.236738 0.230867 0.225902 0.221656

The corresponding graphs have been drawn for λ versus Lb and λ versus Wb and are shown in
Figure 1 and in Figure 2, respectively. From the graphs it is seen that as λ increases both Lb and
Wb increases for various values of η. Again fixing the values of z1 = 0.8, µv = 5, µb = 11, µr1 =

2, µr2 = 4, α1 = 1, α2 = 1 and ranging the values of λ from 1.5 to 1.9 in steps of 0.1 and varying
the values of η from 2.10 to 2.30 in steps of 0.05, we calculated the corresponding values of Lv
and Wv for multiple working vacation and tabulated in Table 3 and in Table 4, respectively.
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Figure 1. Arrival rate (λ) versus mean system size (Lb) in regular service period

Figure 2. Arrival rate (λ) versus mean waiting time (Wb) in regular service period

Table 3. Arrival rate (λ) versus mean system size (Lv) in WV period
HH

HHH
HHλ

η
2.10 2.15 2.20 2.25 2.30

1.5 0.310922 0.310464 0.309687 0.308635 0.307349
1.6 0.343920 0.342170 0.340202 0.338051 0.335746
1.7 0.377454 0.374326 0.371091 0.367771 0.364388
1.8 0.411382 0.406801 0.402232 0.397684 0.393166
1.9 0.445566 0.439468 0.433507 0.427679 0.421979
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Table 4. Arrival rate (λ) versus mean waiting time (Wv) in WV period
HHH

HHHHλ

η
2.10 2.15 2.20 2.25 2.30

1.5 0.207281 0.206976 0.206458 0.205757 0.204899
1.6 0.214950 0.213856 0.212626 0.211282 0.209842
1.7 0.222032 0.220192 0.218289 0.216336 0.214346
1.8 0.228545 0.226000 0.223462 0.220936 0.218426
1.9 0.234509 0.231299 0.228162 0.225094 0.222094

Figure 3. Arrival rate (λ) versus mean system size (Lv) in WV period

Figure 4. Arrival rate (λ) versus mean waiting time (Wv) in WV period

The corresponding graphs have been drawn for λ versus Lv and λ versus Wv and are shown in
Figure 3 and in Figure 4 respectively. From the graphs it is seen that as λ increases both Lv and
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Wv increases for various values of η.
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