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Abstract 
 
Mathematical models based on axisymmetric Newtonian incompressible fluid flow are studied 
for the peristaltic flow of chyme in the small intestines, which is an axisymmetric cylindrical 
tube. The flow is modeled more realistically modeled by assuming that the peristaltic rush wave 
is a non-periodic mode composed of two sinusoidal waves of different wavelengths, which 
propagate at the same speed along the outer boundary of the tube. Both cases of flow in a tube 
and in an annulus that are modeled and investigated in the present paper correspond respectively 
to the cases of flow of chyme in the small intestine in the absence and presence of a cylindrical 
endoscope. For the realistic values of the parameters for these two flow cases, we determine the 
expressions for the leading order pressure drop, the pressure, the axial velocity, and the frictional 
forces at the boundaries, and evaluated the roles played by these quantities in the investigated 
flow systems. The presence of the two-wave peristaltic mode was found to facilitate lower 
positive (adverse) pressure gradient and less magnitude of the forces by the boundaries on the 
flow of chyme.  
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 1.  Introduction 

Intestinal infection has become a rather common disease in living systems such as that of human. 
This illness is often caused by environmental pollution such as water pollution and can lead to 
constipation, distention, etc. Due to such infectious conditions, a strong wave called peristaltic 
rush develops which travels relatively long distances in a few minutes in the small intestine, 
which is a convoluted tube of about 6-7 m in length and average radius about 1.25 cm lying in 
the central and lower parts of the abdomen. The main functions of the small intestine in human, 
which is called the gastrointestinal tract, are digestion and absorption. It is known that endoscopy 
can be a powerful means in the diagnosis and management of various types of intestinal illnesses.  
 
Although there have been a number of studies about the transport of chyme flow by the 
peristaltic rush wave (Latham, 1966; Shapiro & Jaffrin, 1969; Shukla et al., 1969; Jaffrin & 
Shapiro, 1971; Srivastave & Srivastava, 1984, 1985; Srivastava & Saxena, 1995; Srivastava, 
2002), which the physiologists refer to as peristalsis, no theoretical and computational 
investigation of realistic cases for non-periodic peristaltic rush wave seem to have been carried 
out prior to the present study. Also relatively little is rigorously known about the adverse effect 
of an inserted endoscope on the chyme flow in the small intestine. Srivastava (2007) investigated 
a  particular case of this problem for axisymmetric and Newtonian fluid flow and restricted it to 
the case of a periodic peristaltic rush wave in the form of one sine wave of long wavelength and 
calculated the pressure drop and the friction forces versus several parameters. In the present 
study, we consider, for the first time more extensions of the work by Srivastava (2007) to the 
cases of non-periodic peristaltic flow, which is likely to be the more realistic form of such a 
wave (Srivastava, 2007), either in the presence or in the absence of endoscope in the small 
intestine. We also calculate, in addition to the pressure drop and friction forces, the pressure and 
leading order flow velocity versus the independent variables and several parameters.  

 
2.   Formulation and Analysis 

We consider the problems of axisymmetric incompressible Newtonian fluid flow in a tube, 
which could model that of the flow of chyme in the small intestine, and the flow in a cylindrical 
annulus, which could model that of the flow of chyme bounded at the outer boundary by the 
small intestine and at the inner boundary by an inserted cylindrical endoscope co-axial with the 
cylindrical intestine tube. We assume that a peristaltic rush wave mode composed of two 
sinusoidal waves with different periods but with the same speed travels down the wall of the 
outer tube, which corresponds to the boundary of the small intestine. Figure 1 presents the  
physical geometry for both flow in the tube in the limiting case where the inner radius ri=0 and 
flow in the annulus where ri0. We describe the geometry of the outer tube surface as 
 

 H(z, t)=ro +A1sin[(2/)(z-ct)]+A2 sin[(2/)(z-ct)],                                   (1) 

where ro is the radius of the outer tube (intestine), A1 and  are the amplitude and the wavelength 
of the wave 1, respectively, A2 and  are the amplitude and wavelength of the wave 2, 
respectively, c is the wave speed, t is the time variable and z is the axial variable. 
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Due to the geometry of the physical problem, we employ the cylindrical coordinate system. The 
governing equations for the continuity and the momentum of an axisymmetric Newtonian fluid 
flow in a fixed frame are given by White (1991) 
 

(ru)/r+(rw)/z=0,                                                                        (2a) 

(u/t+uu/r+wu/ z)=-p/r+(2u-u/r2), 2(1/r)/r(r/r)+2/z2,                      (2b) 

(w/t+uw/r+ww/z)=-p/z+2w,                                             (2c) 

where r is the radial variable, , the fluid density,  the dynamic viscosity of the fluid,  the radial 
velocity, w the axial velocity and p the pressure. 
   
We now consider the governing system in the peristaltic mode frame of reference moving at 
speed c of both waves, so that (2a)-(2c) become 

 
(ru)/r+(rW)/Z=0,                                                                      (3a) 

(u/t+uu/r+WW/Z)=-p/r+(2u-u/r2),                                             (3b) 

(W/t+uW/r+WW/Z)=-p/Z+2W,                                                                   (3c) 

where  

Z=z-ct, W=w-c.                                                                                  (3d) 

The boundary conditions in the moving frame of reference are 

u=0, W=-c at r =ri,                                                                       (4a) 
 
u=H/t=W(r =H, Z, t)(H/Z), W=-c at r =H,                                             (4b) 

 

where ri is the radius of the inner cylinder (endoscope). 

Next, we non-dimensionalize the governing equations (3a)-(3c) and the boundary conditions 
(4a)-(4b) using ro, , /(roc), c, /c, (c/ro) as scales for radial distance, axial distance, radial 
velocity, axial velocity, time and pressure, respectively. The non-dimensional form of the 
governing equations and the boundary conditions are then given below for simplicity using the 
same symbols that were used before for the independent variables, flow velocity and pressure 
 

(ru)/r+(rW)/Z=0,                                                                      (5a) 
 
3Re(u/t+uu/r+Wu/Z)= -p/r+2[(1/r)/r(ru/r)-u/r2+22u/Z2],                       (5b) 
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Re(W/t+uW/r+WW/Z)= -p/Z+[(1/r)/r(rW/r)+22W/Z2],                           (5c) 
 
u=0, W= -1 at r =,                                                                      (5d) 
 
u= W(r =h, Z, t)(h/Z), W= -1 at r =h1+1sin (2Z)+2 sin(2Z),                               (5e) 

 
where Re = c ro/ is the Reynolds number,  = ro/ is ratio of the length scale in the radial to 
that in the axial direction,  = ri/ro is the annulus aspect ratio, 1 = A1/ro is the non-dimensional 
amplitude of the wave component 1, 2 =A2/ro is the non-dimensional amplitude of the wave 
component 2, and  = /  the wavelength ratio between the two waves, which referred to as 
waves 1 and 2 hereafter. We assume that  is a small parameter (<1), so that the wavelength of 
the wave 2 is larger than that of the wave1. 
  
We shall assume that the Reynolds number Re is sufficiently small and  is also a small 
parameter, so our leading order investigation neglects terms in (5b)-(5c) that contain these 
parameters. The assumptions are consistent with the available observation (Lew et al., 1971) that 
Re is very small and long wavelength approximation also exists in the small intestine. Under such 
assumptions, the equation (5b) implies that the pressure p is independent of the radial variation to 
the leading terms, and the equation (5c) can be integrated twice with respect to r leading to the 
result 
 

W=-1-0.25(dp/dZ)[2-r2 +(2 –h2)ln(r/)/ln(/h)],                                 (6a) 

once the necessary boundary conditions given in (5d)-(5e) are used. For flow in the tube case, 
where  = 0, the expression for W has the form 
 

W=-1+0.25(dp/dZ)(r2 –h2).                                               (6b) 

Since the radial component of the flow velocity is small of order , the magnitude of the axial 
velocity given by (6a-b) represents the leading order magnitude of the velocity vector in the flow 
system. 
   
Next, the dimensionless volume flow rate q =  S WdS, which is assumed to be given, in the wave 
frame (moving frame) along the axial direction is determined. Here S is the cross-sectional area 
of the annulus. We then find 
 

q= (2-h2){1+0.125(dp/dZ)[2+h2–(2-h2)/ln(/h)}.                                   (7) 

Now, the relation between the q in the moving frame and qL in the laboratory frame (fixed frame), 
which is the instantaneous one, is 
 

q= qL -2h rdr =qL -(h2 -2).                                                          (8a) 

The relation between the mean volume flow rates given by 
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Q=01 qL dZ                                                                        (8b) 

in the laboratory frame and q can then be found by taking the average of (8a), which yields the 
following equation: 
 

q=Q-(<h2>-2),                                                                        (8c) 

where 

 <h2>01 (h2)dZ.                                                                       (8d) 

The result (8c) is the extension of periodic peristaltic single-wave case for the flow in the tube 
(Shapiro et al., 1969) to the present case of non-periodic peristaltic two-wave case for either flow 
in the tube or flow in the annulus. 
 
Using (7), we can solve for dp/dZ and then integrate in Z to find the expression for the pressure 
in the form 
 

p=0Z G(Z)dZ+p0,                                                                       (9a)  

G(Z){8[Q/+h2- <h2>]/[4-h4–(2-h2)2/ln(/h)]} for >0,                                           (9b) 

G(Z)-{8[Q/+h2-<h2>]/h4 for =0,                                                                                      (9c) 

where p0 is a constant. The expression for the pressure drop pp(0)-p(1) across one wavelength 
is then found from (9a) to be 
 

p=-01 G(Z)dZ.                                                                                  (9d) 

This is essentially the same expression as the one obtained in Srivastava (2007) for the single 
peristaltic sinusoidal wave case after a rescaling that was used in that work for q was taken into 
account. Using (9a) to find dp/dZ and applying the result in (6a-b), we find the following 
respective expressions for leading order flow velocity: 
 

W=-1-0.25 G(Z)[2-r2+(2-h2)ln(r/)/ln(/h)] for >0,                                          (10a) 

W=-1+0.25 G(Z)(r2 –h2) for =0.                                                                   (10b) 

Frictional forces Fi and Fo at the inner and outer boundaries, respectively, can be found from the 
integration of the shear stress around each tube and over one wavelength in the axial direction 
(Landau & Lifshitz, 1987). In analogy to the flow over a planner surface, we consider integral 
over one wavelength along the Z-direction of the dimensionless dominated term W/y for the 
shear stress over the plate, where y+r =ro. This lead to the expressions for these forces that are 
given below 
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Fi=-01G(Z){2-(2-h2)/[2ln(/h)]}dZ for >0,                                           (11a) 

Fo=-01G(Z){h2-(2-h2)/[2ln(/h)]}dZ.                                                                  (11b) 

It should be noted that the already known results for the simple case of periodic peristaltic single 
wave in the tube can be found by taking the limits 20 and 0 in (9c)-(9d) and (11a)-(11b). 
This leads to 
 

p=01G0(Z)dZ, G0(Z){8[Q/+(h2-1-1
2/2)]/h4}, Fi=0, Fo=01h2G0(Z)dZ,                   (12a-d) 

which are similar to the results due to Srivastava and Saxena (1995) for a single sinusoidal wave 
and for the flow in the tube case after the relation (8c) is used to write Q in terms of q. 
 
 

3.  Results and Discussion 

The numerical results for the pressure drop, the frictional forces and the leading order flow 
velocity and pressure given by the expressions (9)-(11) are determined by first developing a 
computer code for the numerical integrations of these equations, which led to generated data for 
the pressure and the flow velocity as functions of r and z and pressure drop and the frictional 
forces for given values of the flow rate, amplitudes of wave 1 and wave 2, the aspect ratio of the 
wavelengths of the two waves and the aspect ratio of the annulus. Here a positive pressure drop 
(p>0) means that pressure in the chyme flow decreases with increasing Z, while a negative 
pressure drop (p<0) means that pressure in the chyme flow increases with Z.  Due to the nature 
of the annulus flow and the way the expressions for Fi and Fo are determined in the previous 
section, it should be noted that a positive value of the inner friction force (Fi >0) means this force 
is acted by the endoscope on the chyme flow, while Fi <0 means there is such a force acted by 
the chyme flow on the endoscope. However, in the case of the outer friction force, a negative 
value of Fo (Fo<0) means that such force is acted by the intestine on the chyme flow, while a 
positive value of such force means that the chyme flow applies such force on the intestine. 
 
3.1.  Results for Pressure Drop and Frictional Forces for 2 = 0 

We briefly present the typical results that obtained under the restriction that only one peristaltic 
single wave exist, so that we set 2 = 0. Our collected first set of the computational data for the 
pressure drop, the inner friction force and the outer friction force versus the flow rate for 
different values of the amplitude of the single wave and for both cases of the flow in the tube and 
the flow in the annulus. We found that the pressure drop is generally positive, provided the flow 
rate is not sufficiently small. Otherwise, the pressure drop is negative. Comparing these results 
for the case of flow in the tube, where =0, and the case of such flow in the annulus, we found 
that the magnitude of the pressure drop is generally smaller in the tube case. The inner friction 
force was found to be generally negative, provided the flow rate is not sufficiently small. 
Otherwise, Fi is positive. In contrast, the results for the outer friction force was found to be 
generally positive, provided Q is not too small. Otherwise, Fo becomes negative. Comparing 
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these results for the case of the flow in the tube and the case of the flow in the annulus, we found 
that the magnitude of the outer friction force is generally smaller in the tube system.  
 
Our second set of collected computational data were for the pressure drop, the inner friction 
force and the outer friction force versus the amplitude of the single wave and for different values 
of the flow rate in the cases of either flow in the tube or in the annulus. We found that for 
sufficiently small amplitude, the pressure drop is positive but is smaller for smaller aspect ratio 
and higher Q. However, for sufficiently larger amplitude, the pressure drop can be negative. The 
results for the inner friction force indicate that for sufficiently small amplitude, the inner friction 
force is negative, and the magnitude of this force is larger for smaller Q and larger aspect ratio.  
For sufficiently small amplitude of the wave, the outer friction force is positive with smaller 
magnitude corresponding to larger Q and smaller aspect ratio. The present results for the flow in 
the tube agree, in particular, with those determined by Srivastava & Saxena (1995) in the 
Newtonian fluid limit.  
 
 

3.2.  Results for Pressure Drop and Frictional Forces at   = 0.1   

In this and the following two sub-sections, we present the results for the main topic of the present 
study for the flow in the tube and the flow in the annulus, which is about presence of the 
peristaltic rush mode composed of two waves 1 and 2 with different wavelengths but moving at 
the same speed. Figures 2-4 presents some typical results for the pressure drop, the inner friction 
force in the case of flow in the annulus and the outer friction force versus the flow rate for 1 = 
0.2 but for different values of the amplitude of the wave 2 and the aspect ratio. It can be seen 
from Figure 2 that for the flow in the tube case, the pressure drop is positive and increases with 
the flow rate. This means that naturally higher flow rate is driven by higher pressure force and 
the pressure force drives the chyme in the direction of the peristaltic mode. For the flow in the 
annulus case, the pressure drop increases with Q and is negative only for sufficiently small flow 
rate. Thus, in the presence of the endoscope, direction of the driving pressure force could be 
reversed if the flow rate is sufficiently small. Comparing these results to the corresponding ones 
for the single wave case, we found that for the flow in the tube case, the presence of two waves 
eliminates negative values for the pressure drop, and the magnitude of the pressure drop is 
smaller. For the case of flow in the annulus, the magnitude of the pressure drop is generally 
smaller in the case of peristaltic mode of two waves. 
  
It can be seen from Figure 3 that for the flow in the annulus case, the inner friction force Fi is 
generally negative if the flow rate is not too small. Otherwise, Fi is positive. Also, the magnitude 
of this force increases mostly with decreasing the amplitude of the second wave. Since the 
average flow rate for humans is not too small (Shukla et al., 1980), these results indicate that the 
flow of chyme applies a force on the endoscope, and the magnitude of this force decreases with 
increasing strength of the second wave. The results shown in Figure 4 indicate that the outer 
friction force increases with the flow rate, and this force is positive if the flow rate is not too 
small. Thus, the flow of chyme applies a force on the intestine. For the flow in either the tube or 
the annulus, this force is smaller if the amplitude of the second wave is larger. The outer friction 
force has higher magnitude in the annulus flow case, provided the flow rate is not too small. 
Thus, in the presence of the endoscope, the chyme applies a larger force on the intestine. 
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Figures 5-7 present some typical results for the pressure drop, the inner friction force in the case 
of the annulus flow and the outer friction force versus the amplitude of the first wave and for 
different values of the flow rate and the aspect ratio parameter. It can be seen from Figure 5 that 
the pressure drop is positive for not too large value of 1, and it decreases with increasing the 
amplitude of the first wave. The rate of decrease of p is higher for the annulus flow case. Thus, 
the driving force by the negative pressure gradient on the chyme in the direction of the peristaltic 
mode decreases if the strength of the wave 1 increases. Our generated data for the pressure drop 
indicated that for sufficiently larger amplitude of the first wave, the pressure drop becomes 
negative. Comparing these results with the corresponding ones for the single wave case, we 
found, in particular, that presence of two waves increases the domain in the amplitude of the first 
wave where the pressure drop is positive. The results shown in Figure 6 for the inner friction 
force in the annulus flow case indicate that Fi increases with the amplitude 1, and its value is 
negative for not too large value of 1. In addition, Fi is smaller for larger value of , provided 1 
is not too large. Comparing these results with the ones for the single wave case, we found, in 
particular, that presence of two waves requires higher value of 1 before the inner friction force 
becomes positive. The results shown in Figure 7 for the outer friction force indicate that Fo is 
positive for not too large values of the amplitude of the first wave, decreases with increasing 1 
and is larger for larger flow rate. The rate of decrease of this force with respect to 1 is higher 
for the flow in the annulus case. Comparing these results with those for the single wave case, we 
found, in particular, that presence of two waves requires, in general, higher values of 1 before 
the outer friction force becomes negative. 
 
 

3.3.  Results for Pressure Drop and Friction Forces at =0.4 

Figures 8-13 present results analogous to those presented in Figures 2-7 but for  = 0.4. 
Comparing the results shown in Figures 8-10 to the corresponding ones for Figures 2-4, we 
found that the lower wavelength of the second wave leads to larger domain for the flow rate for 
which the pressure drop remains negative, the inner friction force (in the case of flow in the 
annulus) remains positive and the outer friction force remains negative. Comparing the results 
shown in Figures 11-13 to the corresponding ones for  Figures 5-7, we found that the lower 
wavelength of the second wave leads to smaller domain for 1 for which the pressure drop 
remains positive, the inner friction force (in the case of the annulus flow) remains negative and 
the outer friction force remains positive. 
 
 

3.4.  Results for Leading Order Velocity and Pressure 

We generated data for the leading order flow velocity and pressure versus axial variable and for 
both annulus and tube flows and for different values of the amplitudes of the two waves, the flow 
rate, the aspect ratio parameter and the wavelength parameter. Figures 14-15 present some 
typical results for the pressure versus the axial variable with domain over one wavelength of the 
first wave. Here, 1 = 2 = 0.2,   = 0.0, 0.44 and Q = 0.6, 2.0. Figure 14 presents results for  = 
0.1. It can be seen from this figure that for the flow in the tube case, the pressure is lower for 
higher flow rate, which physically is understandable, and p mostly decreases with increasing Z 
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especially at higher flow rate. For the annulus flow, again p is lower for higher flow rate and 
decreases with increasing Z for higher flow rate. These qualitative results appear to hold for  = 
0.4 case presented in Figure 15. However, for Q = 2 the rate of decrease of p with respect to Z is 
lower for higher  case. 
 
Figures 16 and 17 present some typical results for the leading order velocity w in the fixed frame 
versus r for r between  and h and Z = 0.5 with the same parameter values as those given for 
Figures 14 and 15, respectively. It can be seen from Figure 16, which is drawn for  = 0.1, that 
w>0 and as expected the flow velocity is higher for higher flow rate. The axial velocity for the 
flow in the tube case is higher than that for w in the annulus only if r is sufficiently small. The 
results for the case of  = 0.4 shown in Figure 17 indicate somewhat similar results to those 
shown in Figure 16, except that the value of w is slightly higher for higher  value. Figures 18 
and 19 present some typical results for w versus Z over one wavelength of the first wave and 
r=0.5 with the same parameter values as those given for Figures 16 and 17, respectively. It can 
be seen from Figure 18, which is for the case of  = 0.1, that again the value of the flow velocity 
is higher for higher Q. For the flow in the tube case, the flow direction is from left to the right, 
except in the case of low flow rate where the flow is to the left with relatively small magnitude in 
an intermediate zone in the axial direction. It is expected that in this zone flow circulates slightly. 
Similar results are apparent in the case of the flow in the annulus. However, the magnitude of the 
axial velocity is mostly higher in the tube. The results for the case of  = 0.4 (Figure 19) indicate 
similar trend as those given in Figure 18, except that some slight lower values of the magnitude 
of w is seen in the case of higher value of . 
      
4.  Conclusion and Remarks  

Models based on the axisymmetric Newtonian incompressible fluid flow for both cases of the 
flow was developed and analyzed in the tube with application of chyme motion in the small 
intestine and the flow in the annulus with application of flow of chyme between the small 
intestine and an inserted cylindrical endoscope. We modeled the peristaltic flow in the form of a 
more realistic non-periodic peristaltic rush mode   composed of two sinusoidal waves of different 
wavelengths that both travel at the same speed along the boundary of the small intestine. Our 
generated data provided information about the pressure, pressure drop, leading order flow 
velocity and the associated frictional forces at the boundaries. For the case of humans where the 
average flow rate is not too small, we found, in particular, that the pressure drop is generally 
positive and increases with the flow rate, and the flow pressure decreases with increasing the 
axial variable indicating that the driving pressure gradient force is along the peristaltic waves. 
Presence of the non-periodic peristaltic mode appears to enhance the driving force. The 
magnitudes of the frictional forces appear to be reduced if the strength of the second wave is 
increased. If the wavelength of the second wave is too large in comparison to that of the first 
wave, then the results are more realistic and there is larger domain in the flow rate where the 
pressure drop is positive and the frictional forces are mostly those acting by the chyme on the 
boundary, and the presence of non-periodic peristaltic mode appears to enhance such results. 
 
As was partly referred to in the sections 1-3, in the case of a single peristaltic sinusoidal wave 
and in the Newtonian fluid limit, there have been calculations of pressure drop and friction force 
in the past (Shapiro et al., 1969; Shukla et al., 1980; Srivastava and Saxena, 1995; Srivastava, 
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2007). However, it is known for over four decades (Lew et al., 1971; Vander et al., 1975; 
Srivastava and Srivastava, 1985) that the peristaltic waves along the wall of the small intestine 
are more general than just a very simple periodic sinusoidal wave. Thus, our present results in 
the presence of a non-periodic rush mode are expected to be closer to the more realistic cases.   
 
Finally it should be noted that the present study for the peristaltic flow of chyme was restricted to 
the Newtonian fluid flow and the axisymmetric cases. However, since the actual boundary of the 
small intestine is not purely axisymmetric, a more realistic consideration for such flow system 
will be to consider non-axisymmetric flow system of either Newtonian fluid or a more realistic 
power-law fluid (Srivastava and Srivastava, 1985; White, 1991). In addition, the case of moving 
boundary conditions can provide further applicability of the results to other biomedical, 
biological and engineering applications. It is hoped that such interesting extensions, which are 
possible to be carried out using a method of approach similar to the present one, will 
subsequently be pursued by authors in the future.      
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Figure 1. This is a schematic diagram for the physical system. 
 

 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 2.   Pressure drop p versus the flow rate Q with the aspect ratio  = 0, 0.44 and the wave 

amplitude 2 = 0.3, 0.5. Here 1 = 0.2,  = 0.1, and the symbols phi1, phi2 and del in 
the figure represent, respectively, 1, 2 and . 

 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3. The same as in Figure 2 but for inner friction force Fi with  = 0.32, 0.44. 
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Figure 4. The same as in Figure 2, but for the outer friction force Fo. 
 
 
 

 
 

Figure 5. The pressure drop versus 1 for Q=0.6, 2.0, 2=0.1,  = 0.1 and  = 0, 0.44. 
 

 
 

Figure 6. The same as in Figure 5, but for the inner friction force and  = 0.32, 0.44. 
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Figure 7. The same as in Figure 6, but for the outer friction force. 
 

 
 
 
 
 
 
 
 
 
 
 
 

Figure 8. The same as in Figure 2, but for  = 0.4. 
 

 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 9. The same as in Figure 3, but for  = 0.4. 
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Figure 10. The same as in Figure 4, but for  = 0.4 
 
 

 
 

Figure 11. The same as in Figure 5, but for  = 0.4. 
 
 

 
 

Figure 12. The same as in Figure 6, but for  = 0.4. 
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Figure 13. The same as in Figure 7, but for  = 0.4. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 14. Pressure versus axial variable Z for 1=2=0.1, =0.1, =0, 0.44 and Q=0.6, 2. The 
symbols phi1, phi2 and del given in the figure refer to 1, 2 and , respectively. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 15. The same as in Figure 14, but for  = 0.4. 
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Figure 16. The same as in Figure 14, but for axial velocity w versus r at Z =0.5. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 17. The same as in Figure 15, but for w versus r at Z =0.5. 
 

 
 
 
 
 
 
 
 
 
 
 
 

 
 

Figure 18. The same as in Figure 16, but for w versus Z at r=0.5. 
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Figure 19. The same as in Figure 17, but for w versus Z at r = 0.5. 

 
 

 


