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Abstract 
 
The effects of an inserted endoscope on chyme movement in small intestine (gastrointestinal 
tract) have been investigated. The flow of chyme is induced by a progressive wave of area 
contraction along the length of intestinal wall under long wavelength approximation. It is found 
that the chyme movement is significantly influenced due to the presence of the endoscope. The 
pressure drop assumes lower values for higher values of the endoscope radius for small flow 
rates but the property reverses with increasing flow rates. The friction forces at intestinal wall 
and endoscope possess character similar to the pressure drop for any given set of parameters. The 
friction force at the intestinal wall is found much higher than at the endoscope. 
 
Keywords: endoscope, chyme, peristaltic wave, flow rate, pressure rise, friction force. 
 
 
1.  Introduction                      
 
Theoretical study of biological systems has been the subject of scientific research for over a 
couple of centuries. Like most of the problems of nature sciences, mathematical modelling of 
bio-systems is complex one due to the complicated structure of organs and their constituent 
materials. The walls of many body passages contain a special type of muscle called smooth 
muscle. The muscle contracts in sequence, sending waves of contraction along the walls of the 
passage. These waves cause the Contents in the passage to move forward in the   direction of   
the waves.   Physiologists term the phenomenon of such transport as peristalsis. It is a form of 
fluid transport, which occurs when a progressive wave of area contraction or expansion 
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propagates along the length of a distensible duct containing liquid or mixture. This property is 
put to use by the body to transport bio-fluids in many biological organs including small intestine 
(Srivastava and Srivastava, 1984). Latham (1966) was probably the first to investigate the 
mechanism of peristaltic transport in his M.S. thesis and since then several theoretical and 
experimental attempts have been made to understand peristaltic action in various situations. A 
review of much of the early literature is presented in an excellent article by Jaffrin and Shapiro 
(1971). Most of the investigations reported up to the year 1983, arranged according to the 
geometry, the fluid, the Reynolds number, the wavelength parameter, the wave amplitude 
parameter, and the wave shape, as well as an account of the experimental attempts on the subject 
have been given in Srivastava and Srivastava (1984). The literature beyond this is well 
referenced in Srivastava and coworkers (1995, 2002). 
 
Human gastrointestinal tract (small intestine) whose functions are digestion and absorption is a 
convoluted tube which lies in the central and lower parts of abdomen and extends from pylorus 
to ileocaecal valve where it joins with the large intestine. Its length is about 6-7 m and average 
radius about 1.25 cm, which are correlated with the height of an individual but not with the 
weight or age (Piersol, 1930; Fulton, 1946; Vander et al., 1975). Peristalsis which is nearly of 
sinusoidal in nature (Lew et al., 1871, Vander et al., 1975, Srivastava and Srivastava, 1985)), 
occurs most obviously in the  
 
digestive tract  with a  wave  speed of about 2-2.5 cm/min and  the chyme takes about  
4.5 hours to pass through intestine (Fulton, 1946).  As each group of muscle fibers in the 
intestinal wall contracts, it narrows that part of the passage, squeezing the food (chyme) bolus 
into adjoining section where muscle fibers are relaxed. When the walls of intestine are stretched, 
a circular peristaltic wave is formed behind the point of stimulation, which passes (along the 
rectum) towards the intestine. The response to this stretch is known as myenteric reflux. Each 
wave lasts for about a seconds and is then followed by a quiescent period of few seconds to few 
minutes. 
 
Due to the increasing rate of environmental pollution, particularly the water pollution, intestinal 
infections, which may result into distention, constipation, over formation of gas, etc., have 
become a common disease in living systems. Under infectious conditions a powerful wave called 
peristaltic rush occurs which travels long distances in small intestine in few minutes. They sweep 
the contents of intestine into the colon, thereby relieving the small intestine of irritant or 
excessive distention, as it occurs in the case of diarrhea. It is well known that endoscopy has 
been very much helpful and one of the most powerful means in diagnosis and management of 
various intestinal diseases for past decades. It appears, however that no rigorous attention, latest 
to the author’s knowledge, has been paid in the literature to study the influence of an inserted 
endoscope on chyme flow in small intestine (gastrointestinal tract). 
 
With the above discussion in mind, the present investigation is therefore devoted to observe the 
effects of an inserted endoscope on chyme movement in small intestine. The mathematical model 
considers the flow of a Newtonian viscous fluid between the  
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annular space (gap) of two concentric tubes; the outer tube (circular cylindrical) corresponds to 
the intestine and inner one (solid circular cylinder) to the endoscope. The flow is induced by 
sinusoidal peristaltic waves along the length of the outer tube wall (intestinal wall). 
 
2.  Formulation of the Problem and Analysis 
Consider the axisynmetric flow of an incompressible Newtonian Viscous fluid between the 
annular space (gap) of two concentric tubes (the inner tube as the endoscope) with a sinusoidal 
peristaltic wave travelling down the wall of the outer tube (the intestine). The geometry of the 
outer wall surface may therefore be described as (Fig.1) 

 H(x,t) = a+b sin 
λ
π2  (x - ct),        (1) 

where a is the radius of the outer tube, b is the amplitude of the wave, λ  is the wavelength, c is 
the wave propagation speed, t is the time and x is the axial coordinate.  

 
 

The appropriate equations of momentum and continuity in the wave frame of reference (moving 
with speed c) may therefore be written as 
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where ρ  is the density of the fluid, µ  is the fluid viscosity, p is the pressure, (u, v) are velocity 
components in (axial, radial) directions and r is the radial coordinate.  
  
The boundary conditions in wave frame of reference are 

  u = - c  at r = H = a + b sin 
λ
π x2  ,        (5) 

 u = v = - c  at      r = a1 ,        (6) 
with a1  as the radius of the inner tube (endoscope). 
 
An introduction of the following dimensionless variables  

 R' = 
a
r ,    x' = 

λ
x ,    u'  =  

c
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λ
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Into equations (2) – (4), after dropping primes, yields  
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with Re (= ρ  c a/ µ ) and    ∈ = (a/λ ) are Reynolds and wave numbers, respectively. 
 
Now using the long wavelength approximation (i.e. ∈<<1) and vanishing Reynolds number 
theory of Shapiro et al. (1969), equations (8) – (10) reduces to  
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The Non-dimensional boundary conditions are thus obtained as 

 u = - 1      at   r = δ = 
a
a 1 ,                  (13) 

 u = - 1      at   r = h = 1+φ   Sin 2π x ,                         (14) 
 

with φ  (= b/a) as amplitude ratio. 
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The expression for the fluid velocity profile obtained as the solution of equations (11) and (12) 
subject to the boundary conditions (13) and (14), is given as  
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The dimensionless volume flow rate, q (= q' /π  a 2 c ; q' being the flux in moving system which 
is same as in stationary system) is thus calculated as 
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It is worthmentioning that the above expressions for the velocity and flow rate reduce to Saxena 
and Srivastava (1997) under the limit δ o for single phase Newtonian fluid. 
 

From equation (16), one now obtains 
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Since the pressure drop, ∆ p = p (o) - p (λ ), across one wavelength is same whether measured in 
stationary or moving coordinate system, it can therefore be calculated from equation (17) as 
follows 
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The non-dimensional friction forces, F(i,o) (= F'(i,o)/π λ cµ ; F'  i , F'o , are respectively,  the 
friction forces at the inner and the outer tubes wall, which are also same in moving or stationary 
coordinate systems) are obtained using equation (17) as 
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Following Shapiro et al. (1969), the mean volume flow, Q over a period is     given by 

 Q = q + 1 + 
2

2φ .        (21) 
 

An application of the relation (21) into equations (18-20), yields the following final form 
expressions for the dimensionless pressure drop, ∆p, the friction forces at the inner and outer 
tubes wall, Fi and Fo respectively, as 
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In the limit δ o (i.e., in the absence of the endoscope), the results obtained in equations (22) – 
(24), reduce to 
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which are the same results as derived from Srivastava and Saxena (1995) for single – layered 
Newtonian fluid. Evaluating integrals in the equations (25) and (26) in closed form, one arrives 
to the results 
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The results obtained in equations (27) and (28) are the same as given in Shapiro et al. (1969). 
These results are also derived from Shukla et. Al. (1980) in the absence of the peripheral layer. 
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3.  Numerical Results and Discussion 
 
In order to have an estimate of quantitative effects of various parameters involved on the results 
of the analysis, particularly the radius ratio parameter, δ  which is our main contribution to the 
study, computer codes were developed for numerical evaluation of analytical results obtained in 
equations (22)-(24). Some of the critical results are displayed graphically in Figs.2-7.The 
parameter values for male small intestine used in the numerical evaluations are chosen from 
Barton and Raynor (1968) as 
 a = 1.25 cm,  c = 2 cm/min, λ  = 8.01 cm. 
 
Further as reported in Cotton and Williams (1990), the most routine upper gastrointestinal 
endoscopes are between 8 and 11 mm. This calculates the values of radius ratio parameter, δ  to 
be between 0.32 and 0.44. It is important to mention that the theory of long wavelength and zero 
Reynolds number of Shapiro et al. (1969) remains applicable in the present investigation as the 
radius of the small intestine a = 1.25 cm, is small as compared to the wavelength, λ  = 8.01 cm. 
It has also been observed by Lew et al. (1971) that the Reynolds number in the small intestine 
was very small. 
 

 
One notices that there exists a linear relationship between the pressure drop, ∆p and  flow  rate  
Q.  pressure  drop, ∆ p assumes lower magnitudes for  higher values of radius ratio parameter, δ  
but this property reverses with increasing flow rate Q (Fig. 2). It is clearly observed that for any 
given flow rate, Q, the magnitude of the pressure drop, ∆p depends on the radius ratio 
parameter, δ  (Fig.2). Pressure rise (negative of pressure drop, -∆p )  increases  with  decreasing 
values  of  the flow  rate, Q. Thus the  
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maximum flow rate is achieved at zero pressure rise and maximum pressure occurs at zero flow 
rate. The friction forces Fo and Fi at outer and inner tube wall possess character similar to the 
pressure drop, ∆p (an opposite character to the pressure rise, -∆ p) for any set of other given 
parameters (Figs. 2, 3 and 4).  Also, it is observed that the friction force, Fo  at outer tube wall 
always assumes higher magnitudes than the friction force, Fi at the inner tube wall for any given 
set of parameters (Figs. 3 and 4). Pressure drop, ∆p and friction forces, Fo  and Fi  decrease with 
increasing values of  
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Fig.3 Variation of Fi with Q for different φ and δ.
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the amplitude ratio, φ  (Figs. 5, 6 and 7). We observe that the flow characteristics, ∆ p, Fo and Fi 
assume higher magnitudes for small values of φ  with increasing radius ratio parameter, δ  but 
the property reverses for large values of φ . It is worth mentioning here that friction force Fi 
always attains lower magnitude than Fo with increasing amplitude ratio φ  for any given set of 
other parameters(Figs. 6 and 7). 
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The study presented above is subject to certain assumptions and approximations, comments 
therefore seem to be essential for these. In view of the investigations of Lew et al. (1971) and 
Srivastava and Srivastava (1985), it appears that a non-Newtonian (particularly, a power-law) 
fluid would be more adequate to represent chyme in small intestine, the mathematical tool for the 
same is yet not available and needs to be developed before discussing the intestinal flow with an 
inserted endoscope using a power-law fluid. The use of a Newtonian fluid to represent chyme in 
small intestine thus remains as an approximation to the study. From the published literature of 
Vander et al. 
 
(1975), Lew et al. (1971) and Srivastava and Srivastava (1985), it is established that peristaltic  
waves  in  intestinal  wall  are  of  sinusoidal   in nature. However, the use of waves of arbitrary 
shape would be a further improvement of the study and closer to the realistic situation. Finally, 
the low Reynolds number Re and long wavelength approximation used to discuss intestinal flow 
definitely require certain explanation as well. The condition that Re<<1 (i.e., low Reynolds 
number) usually applies to the low velocity and highly viscous flows. Chyme is known to be a 
highly viscous fluid and as pointed  out  earlier flow velocity (2.54 cm/min)  in  small intestine is 
low  (Barton and Raynor, 1968; Srivastava and Srivastava, 1985).  Thus the conditions for the 
Stokes approximation for slow creeping flows are well met in the case of intestinal flow. As a 
result, the inertia terms become negligible in the flow  equation (White, 2006). On the other  
 



AAM: Intern. J., Vol. 2, Issue 2 (December 2007) [Previously, Vol. 2 No. 2] 
 

 

88 

 

0.0 0.1 0.2 0.3 0.4 0.5 0.6

-30

-20

-10

0

10

20

30
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hand, under a long wavelength approximation (i.e., ∈<<1), the inertial terms may be neglected 
(Shapiro et al., 1969). However, in the case of intestinal flow the conditions of low Reynolds 
number and long wavelength approximation both exist (Lew et al., 1971, Srivastava and 

Srivastava, 1985). Consequently, Re ∈ and Re 3∈  are negligible quantities which justifies the 
use of a fully developed flow in the case of intestine. It is worth mentioning here that for an 
arbitrary value of the wave number ∈ and for 0 ≠ Re<< 1, the solution may be obtained using the 
perturbation technique. However, being of less significant to the problem discussed above, this 
case has not been considered here. 
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4.  Conclusions 
 
An attempt has been made in the study to observe the influence of an inserted endoscope on 
chyme movement in small intestine. The impacts on the results due to the presence of the 
endoscope, as discussed above seems of be of significant clinical application. In view of the 
discussion presented above, it appears that a power-law fluid would adequately represent the 
chyme in small intestine. Author is already in the course of developing the required 
mathematical tool to discuss the intestinal flow with an inserted endoscope using a power-law 
fluid and would address the problem in his subsequent communication. The use of the 
Newtonian fluid therefore remains a major approximation to the study.  Although, the study has 
been carried out under several simplifications and approximations, it still enables one to have a 
qualitative and quantitative view of the influence of the inserted endoscope on transport of 
chyme in small intestine.  It is however felt that considerable amount of investigations are 
necessary to discuss the problem adequately and closer to realistic situations. 
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