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Abstract

The a-ary 3-point and 5-point interpolatery subdivision schemes for curve design are introduced

for arbitrary odd integer a ≥ 3. These new schemes further extend the family of the classical 4-

and 6-point interpolatory schemes.
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1. Introduction

THIS is a continuation of (Lian [4]), where the classical 4- and 6-point binary interpolatory

subdivision schemes for curve design in (Dyn, et al. [1]) and (Weissman [5]) were extended

to a-ary interpolatory schemes for any a ≥ 3.

One of the main objectives of the current paper is to introduce and extend both the 4- and

6-point a-ary interpolatory schemes further to the 3- and 5-point a-ary interpolatory schemes

for any odd a ∈ Z+ with a ≥ 3. Similar to the 4- and 6-point a-ary schemes, we also require

the refinable functions corresponding to the 3- and 5-point a-ary interpolatory schemes have

polynomial preservation orders of 3 and 5, respectively, or aφ3 ∈ PP3 and aφ5 ∈ PP5 for short.

Observe that, when a ≥ 2 is even, for either aφ3 ∈ PP3 or aφ5 ∈ PP5, the interpolatory property

and the symmetry on either aφ3 or aφ5 are not compatible. That is exactly the reason why the
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dilation factor a has to be odd now.

Our main results are, listed in Section 2, the explicit expressions of two-scale symbols of both
aφ3 ∈ PP3 and aφ5 ∈ PP5. Their proofs are given in Section 3. Some applications to curve design

are demonstrated in Section 4. A few remarks and future work constitute Section 5.

2. Main Results

Let aφ3 and aφ5 be the scaling functions with odd dilation factor a ≥ 3, which correspond the 3-

and 5-point interpolatory subdivision schemes for curve design. For aφ3, we have the following.

Theorem 1: The scaling function aφ3 ∈ PP3 with the smallest support, is determined from the

two-scale symbol aP3 of the form

aP3(z) = z(1−3a)/2
(

1

a

1 − za

1 − z

)3
(

1 − a2

8
+

3 + a2

4
z +

1 − a2

8
z2

)

. (1)
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Fig. 1. The interpolatory scaling functions 3φ3(·) and 5φ3(·) determined from the two-scale equations in (1) when a = 3 and

5, where supp 3φ3 = [−2, 2] and supp 5φ3 = [−7/4, 7/4], respectively.

See Fig. 1 for the graphs of 3φ3 and 5φ3. For aφ5 ∈ PP5, we have the following.

Theorem 2: The scaling function aφ5 ∈ PP5 with the smallest support, is determined from the

two-scale symbol aP5 of the form

aP5(z) = z(1−5a)/2
(

1

a

1 − za

1 − z

)5
[

(a − 1)(a + 1)(3a − 1)(3a + 1)

384

−
(a − 1)(a + 1)(9a2 + 19)

96
z +

115 + 50a2 + 27a4

192
z2

−
(a − 1)(a + 1)(9a2 + 19)

96
z3 +

(a − 1)(a + 1)(3a − 1)(3a + 1)

384
z4

]

. (2)

See Fig. 2 for the graphs of 3φ5 and 5φ5. It is also easy to verify that

supp aφ3 =

[

−
3a − 1

2(a − 1)
,

3a − 1

2(a − 1)

]

, supp aφ5 =

[

−
5a − 1

2(a − 1)
,

5a − 1

2(a − 1)

]

.



178 Jian-ao Lian

−3 −2 −1 0 1 2 3
−0.25

0.5

1.25

(a) Graph of 3φ5(·)

−3 −2 −1 0 1 2 3
−0.25

0.5

1.25

(b) Graph of 5φ5(·)

Fig. 2. The interpolatory scaling functions 3φ5(·) and 5φ5(·) determined from the two-scale equations in (2) when a = 3 and

5, where supp 3φ5 = [−7/2, 7/2] and supp 5φ5 = [−3, 3], respectively.

Indeed, if supp aφ3 = [`3, r3], it follows from (1) that the left-most contribution to aφ3(x) is

aφ3

(

ax +
3a − 1

2

)

while the right-most contribution to aφ3(x) is aφ3

(

ax −
3a − 1

2

)

. Hence,

`3 ≤ ax +
3a − 1

2
and ax−

3a − 1

2
≤ r3, which leads to

1

a

(

`3 −
3a − 1

2

)

= `3,
1

a

(

r3 +
3a − 1

2

)

= r3,

so that `3 = −
3a − 1

2(a − 1)
and r3 =

3a − 1

2(a − 1)
. Meanwhile, if supp aφ5 = [`5, r5], completely anal-

ogous process leads to `5 = −r5 = −
5a − 1

2(a − 1)
.

TABLE I

WEIGHTS OF a-ARY 3-POINT SUBDIVISION SCHEME

λ
(n)
k−1 λ

(n)
k λ

(n)
k+1

λ
(n+1)

ak−(a−1)/2
a
3p(a+1)/2

a
3p

−(a−1)/2
a
3p−(3a−1)/2

λ
(n+1)
ak−(a−3)/2

a
3p(a+3)/2

a
3p

−(a−3)/2
a
3p−(3a−3)/2

· · · · · · · · · · · ·

λ
(n+1)
ak−1

a
3pa−1

a
3p

−1
a
3p

−a−1

λ
(n+1)
ak 1

λ
(n+1)
ak+1

a
3pa+1

a
3p1

a
3p

−a+1

· · · · · · · · · · · ·

λ
(n+1)
ak+(a−3)/2

a
3p(3a−3)/2

a
3p(a−3)/2

a
3p

−(a+3)/2

λ
(n+1)

ak+(a−1)/2
a
3p(3a−1)/2

a
3p(a−1)/2

a
3p

−(a+1)/2
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If we write aP3 in (1) and aP5 in (2) by

aP3(z) =
1

a

3a−1
∑

k=−3a+1

a
3pkz

k, aP5(z) =
1

a

5a−1
∑

k=−5a+1

a
5pkz

k,

the a-ary 3- and 5-point interpolatory subdivision schemes for curve design can be given by

Table I and Table II, i.e., the 3-point scheme is given by

λ
(n+1)
ak+` =

1
∑

j=−1

a
3p−aj+`λ

(n)
k+j , ` = −(a − 1)/2, . . . , (a − 1)/2; n ∈ Z+, (3)

while the 5-point a-ary scheme is given by

λ
(n+1)
ak+` =

2
∑

j=−2

a
5p−aj+`λ

(n)
k+j , ` = −(a − 1)/2, . . . , (a − 1)/2, n ∈ Z+. (4)

The two-scale sequences {a
3pk}k∈Z and {a

5pk}k∈Z are listed explicitly in the following,

a
3p−k = a

3pk =
1

a2
(a + k)(a − k), k = 0, . . . , (a − 1)/2; (5)

a
3p−k = a

3pk =
1

2a2
(a − k)(2a − k), k = (a + 1)/2, . . . , (3a − 1)/2; (6)

a
3pk = 0, |k| ≥ (3a − 1)/2, (7)

and

a
5p−k = a

5pk =
1

4a4
(a − k)(a + k)(2a − k)(2a + k), k = 0, . . . , (a − 1)/2; (8)

a
5p−k = a

5pk =
1

6a4
(a − k)(a + k)(2a − k)(3a − k), k = (a + 1)/2, . . . , (3a − 1)/2; (9)

a
5p−k = a

5pk =
1

24a4
(a − k)(2a − k)(3a − k)(4a − k),

k = (3a + 1)/2, . . . , (5a − 1)/2; (10)

a
5pk = 0, |k| ≥ (5a − 1)/2. (11)

The interpolatory property of both schemes in (3) and (4) follows from (5)–(7) and (8)–(11).

More explicitly, it follows from (3) and (5)–(7) that the 3-point a-ary interpolatory subdivision

scheme is given by

λ
(n+1)
ak−(a+1)/2+` =

(a + 1 − 2`)(3a + 1 − 2`)

8a2
λ

(n)
k−1 +

(a − 1 + 2`)(3a + 1 − 2`)

4a2
λ

(n)
k

−
(a + 1 − 2`)(a − 1 + 2`)

8a2
λ

(n)
k+1, ` = 1, . . . , (a − 1)/2; (12)

λ
(n+1)
ak = λ

(n)
k , (13)

λ
(n+1)
ak+` = −

`(a − `)

2a2
λ

(n)
k−1 +

(a − `)(a + `)

a2
λ

(n)
k +

`(a + `)

2a2
λ

(n)
k+1,

` = 1, . . . , (a − 1)/2. (14)
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TABLE II

WEIGHTS OF a-ARY 5-POINT SUBDIVISION SCHEME

λ
(n)
k−2 λ

(n)
k−1 λ

(n)
k λ

(n)
k+1 λ

(n)
k+2

λ
(n+1)

ak−(a−1)/2
a
5p(3a+1)/2

a
5p(a+1)/2

a
5p

−(a−1)/2
a
5p−(3a−1)/2

a
5p

−(5a−1)/2

λ
(n+1)

ak−(a−3)/2
a
5p(3a+3)/2

a
5p(a+3)/2

a
5p

−(a−3)/2
a
5p−(3a−3)/2

a
5p

−(5a−3)/2

· · · · · · · · · · · · · · · · · ·

λ
(n+1)
ak−1

a
5p2a−1

a
5pa−1

a
5p

−1
a
5p

−a−1
a
5p

−2a−1

λ
(n+1)
ak 1

λ
(n+1)
ak+1

a
5p2a+1

a
5pa+1

a
5p1

a
5p

−a+1
a
5p

−2a+1

· · · · · · · · · · · · · · · · · ·

λ
(n+1)

ak+(a−3)/2
a
5p(5a−3)/2

a
5p(3a−3)/2

a
5p(a−3)/2

a
5p

−(a+3)/2
a
5p

−(3a+3)/2

λ
(n+1)
ak+(a−1)/2

a
5p(5a−1)/2

a
5p(3a−1)/2

a
5p(a−1)/2

a
5p

−(a+1)/2
a
5p

−(3a+1)/2

Similarly, it is clear from (4) and (8)–(11) that the 5-point a-ary interpolatory subdivision scheme

is explicitly given by

λ
(n+1)
ak−(a+1)/2+` = −

(a − 1 + 2`)(a + 1 − 2`)(3a + 1 − 2`)(5a + 1 − 2`)

384a4
λ

(n)
k−2

+
(a + 1 − 2`)(3a − 1 + 2`)(3a + 1 − 2`)(5a + 1 − 2`)

96a4
λ

(n)
k−1

+
(a − 1 + 2`)(3a − 1 + 2`)(3a + 1 − 2`)(5a + 1 − 2`)

64a4
λ

(n)
k

−
(a + 1 − 2`)(a − 1 + 2`)(3a − 1 + 2`)(5a + 1 − 2`)

96a4
λ

(n)
k+1

+
(a + 1 − 2`)(a − 1 + 2`)(3a + 1 − 2`)(3a − 1 + 2`)

384a4
λ

(n)
k+2,

` = 1, . . . , (a − 1)/2; (15)

λ
(n+1)
ak = λ

(n)
k ; (16)

λ
(n+1)
ak+` =

`(a − `)(a + `)(2a − `)

24a4
λ

(n)
k−2 −

`(a − `)(2a − `)(2a + `)

6a4
λ

(n)
k−1

+
(a − `)(a + `)(2a − `)(2a + `)

4a4
λ

(n)
k +

`(a + `)(2a − `)(2a + `)

6a4
λ

(n)
k+1

−
`(a − `)(a + `)(2a + `)

24a4
λ

(n)
k+2, ` = 1, . . . , (a − 1)/2. (17)

We end this section by pointing out that the graphs of 3φ3 and 5φ3 in Fig. 1 and the graphs of 3φ5

and 5φ5 in Fig. 2 can also be obtained by the two subdivision schemes (12)–(14) and (15)–(17)

with the initial sequence λ
(0)
k = δk,0, k ∈ Z.
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3. Proofs of Main Results

Proof of Theorem 1.

First, an a-ary 3-point scheme needs at most 3a weights, i.e., the two-scale sequence {a
3pk}k∈Z

of aφ3 has at most 3a consecutive nontrivial entries. Secondly, for aφ3 to have the highest

possible m of PPm, its two-scale symbol aP3 has to have the highest possible order of factor of

(1 + z + · · · + za−1). This leads to both m = 3 and aP3 must have the form

aP3(z) = z(1−3a)/2
(

1

a

1 − za

1 − z

)3
(

s0 + s1z + s2z
2
)

for some constant s0, s1, and s2 satisfying s2 = s0 and s0 + s1 + s2 = 1. By using (1 − z)−3 =
∑

∞

`=0

(

2+`
2

)

z` we have

(

s0 + s1z + s2z
2
)

(1 − z)−3 =
∞
∑

`=0

µ`z
`, where

µ` =

(

` + 2

2

)

s0 +

(

` + 1

2

)

s1 +

(

`

2

)

s2, ` ∈ Z+. (18)

Hence, by defining µ` = 0 for all ` < 0 and multiplying by the expansion of (1− za)3 we obtain

the explicit expressions for {a
3pk}k∈Z in terms of {µ`}, namely,

a
3pk =

1

a2
(µ(3a−1)/2+k − 3µ(a−1)/2+k + 3µ−(a+1)/2+k − µ−(3a+1)/2+k),

k = −(3a − 1)/2, . . . , (3a − 1)/2. (19)

Next, the three identities a
3p−a = 0, a

3p0 = 1, and a
3pa = 0, lead to

1

a2
µ(a−1)/2 = 0,

1

a2
(µ(3a−1)/2 − 3µ(a−1)/2) = 1,

1

a2
(µ(5a−1)/2 − 3µ(3a−1)/2 + 3µ(a−1)/2) = 0,

or simply µ(a−1)/2 = 0, µ(3a−1)/2 = a2, µ(5a−1)/2 = 3a2, or, equivalently,

(

a+3
2

2

)

s0 +

(

a+1
2

2

)

s1 +

(

a−1
2

2

)

s2 = 0,

(

3a+3
2

2

)

s0 +

(

3a+1
2

2

)

s1 +

(

3a−1
2

2

)

s2 = a2,

(

5a+3
2

2

)

s0 +

(

5a+1
2

2

)

s1 +

(

5a−1
2

2

)

s2 = 3a2.

By solving this linear system, s0, s1, and s2 are given by

s0 = s2 =
1 − a2

8
, s1 =

a2 + 3

3
,
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as they were in (1). Substituting s0, s1, and s2 into (18) leads to

µ` = −
1

8
(a2 − (2` + 1)2), ` ∈ Z+.

Finally, by substituting µ`’s into (19) we arrive at the explicit expressions for a
3pk’s in (5)–(7).

This completes the proof of Theorem 1.

Proof of Theorem 2.

Similar to the proof of Theorem 1, the two-scale symbol aP5 of aφ5 must have the form

aP5(z) = z(1−5a)/2
(

1

a

1 − za

1 − z

)5
(

s0 + s1z + s2z
2 + s3z

3 + s4z
4
)

for some constants s0, . . . , s4 satisfying s4 = s0, s3 = s1, and s0 + · · · + s4 = 1. First, multiply

s0 + s1z + s2z
2 + s3z

3 + s4z
4 and (1 − z)−5 =

∑

∞

`=0

(

4+`
4

)

z` to get

(

s0 + s1z + s2z
2 + s3z

3 + s4z
4
)

(1 − z)−5 =
∞
∑

`=0

ν`z
`, where

ν` =

(

` + 4

4

)

s0 +

(

` + 3

4

)

s1 +

(

` + 2

4

)

s2 +

(

` + 1

4

)

s3 +

(

`

4

)

s4, ` ∈ Z+. (20)

Secondly, multiply by the expansion of (1− za)5, {a
5pk}k∈Z can be expressed in terms of {ν`} in

(20). Then, with ν` = 0 for all ` < 0, all coefficients of aP5(z) are now in terms of s0, . . . , s4,

namely,

a
5pk =

1

a4
(ν(5a−1)/2+k − 5ν(3a−1)/2+k + 10ν(a−1)/2+k − 10ν−(a+1)/2+k

+5ν−(3a+1)/2+k − ν−(5+2)/2+k), |k| ≤ (5a − 1)/2. (21)

The five requirements

a
5p−2a = a

5p−a = 0, a
5p0 = 1, a

5pa = a
5p2a = 0

yield

ν(a−1)/2 = 0,

ν(3a−1)/2 − 5ν(a−1)/2 = 0,

ν(5a−1)/2 − 5ν(3a−1)/2 + 10ν(a−1)/2 = a5,

ν(7a−1)/2 − 5ν(5a−1)/2 + 10ν(3a−1)/2 − 10ν(a−1)/2 = 0,

ν(9a−1)/2 − 5ν(7a−1)/2 + 10ν(5a−1)/2 − 10ν(3a−1)/2 + 5ν(a−1)/2 = 0,
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which is equivalent to

(

a+7
2

4

)

s0 +

(

a+5
2

4

)

s1 +

(

a+3
2

4

)

s2 +

(

a+1
2

4

)

s3 +

(

a−1
2

4

)

s4 = 0,

(

3a+7
2

4

)

s0 +

(

3a+5
2

4

)

s1 +

(

3a+3
2

4

)

s2 +

(

3a+1
2

4

)

s3 +

(

3a−1
2

4

)

s4 = 0,

(

5a+7
2

4

)

s0 +

(

5a+5
2

4

)

s1 +

(

5a+3
2

4

)

s2 +

(

5a+1
2

4

)

s3 +

(

5a−1
2

4

)

s4 = a4,

(

7a+7
2

4

)

s0 +

(

7a+5
2

4

)

s1 +

(

7a+3
2

4

)

s2 +

(

7a+1
2

4

)

s3 +

(

7a−1
2

4

)

s4 = 5a4,

(

9a+7
2

4

)

s0 +

(

9a+5
2

4

)

s1 +

(

9a+3
2

4

)

s2 +

(

9a+1
2

4

)

s3 +

(

9a−1
2

4

)

s4 = 15a4.

Solving this linear system we have s0, . . . , s4 in (2), i.e.,

s0 = s4 =
1

384
(a2 − 1)(9a2 − 1),

s1 = s3 = −
1

96
(a2 − 1)(9a2 + 19),

s2 =
1

192
(115 + 50a2 + 27a4).

Substitute s0, . . . , s4 into (20) to get

ν` =
1

384
(a2 − (2` + 1)2)(9a2 − (2` + 1)2), ` ∈ Z+.

Then a
5pk’s in (8)–(11) subsequently follow. This completes the proof of Theorem 2.

Fig. 3. The geometric illustration of the 3-point ternary subdivision scheme in (22).

4. Applications to Curve Design

With a = 3, it follows either from Table I and (5)–(7) or directly from (12)–(14) that the 3-point
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ternary interpolatory subdivision scheme is

λ
(n+1)
3k−1 =

2

9
λ

(n)
k−1 +

8

9
λ

(n)
k −

1

9
λ

(n)
k+1,

λ
(n+1)
3k = λ

(n)
k , (22)

λ
(n+1)
3k+1 = −

1

9
λ

(n)
k−1 +

8

9
λ

(n)
k +

2

9
λ

(n)
k+1, k ∈ Z+.

By observing from (22) that

λ
(n+1)
3k−1 =

2

9
λ

(n)
k−1 +

7

9
λ

(n)
k +

1

9

(

λ
(n)
k − λ

(n)
k+1

)

,

λ
(n+1)
3k+1 =

7

9
λ

(n)
k +

2

9
λ

(n)
k+1 +

1

9

(

λ
(n)
k − λ

(n)
k−1

)

, k ∈ Z+.

the 3-point ternary scheme has a clear geometric interpretation as illustrated by Fig. 3. We also

point out that the ternary scheme (22) was also studied in (Hassan & Dodgson [3]) by using the

method of “generating function formalism.”

−5 0 5
−5

0

5

(a) Initial polygons

−5 0 5
−5

0

5

(b) Initial polygons & 1st level subdivision

−5 0 5
−5

0

5

(c) Initial polygons & 2nd level subdivision

−5 0 5
−5

0

5

(d) Result after 4th subdivision

Fig. 4. Three planar polygons with 12, 4, and 4 initial control points.

While when a = 3, it follows either from Table II together with (8)–(11) or directly from (15)–
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−1

0

1 −1

0

1

−1

0

1

y
x

(a) Initial 3D polygon

−1

0

1 −1

0

1

−1

0

1

(b) Initial polygon & 1st level subdivision

−1

0

1 −1

0

1

−1

0

1

(c) Initial polygon & 2nd level subdivision

−1

0

1 −1

0

1

−1

0

1

(d) Result after 4th subdivision

Fig. 5. A space curve with 16 initial control points selected from the Viviani’s curve in (24).

(17) that the 5-point ternary interpolatory subdivision scheme is

λ
(n+1)
3k−1 = −

7

243
λ

(n)
k−2 +

70

243
λ

(n)
k−1 +

70

81
λ

(n)
k −

35

243
λ

(n)
k+1 +

5

243
λ

(n)
k+2,

λ
(n+1)
3k = λ

(n)
k , (23)

λ
(n+1)
3k+1 =

5

243
λ

(n)
k−2 −

35

243
λ

(n)
k−1 +

70

81
λ

(n)
k +

70

243
λ

(n)
k+1 −

7

243
λ

(n)
k+2, k ∈ Z+.

To demonstrate the elegance of all these schemes, we apply the 3-point ternary scheme (22) to

the 3 closed 2D polygons in Fig. 4(a).

The space polygon in Fig. 5(a) was formed by eight initial control points, selected from the

Viviani’s curve (Gray [2], p. 201), which is the intersection between a sphere and a right circular

cylinder passing through the center of the sphere whose diameter is half of the sphere. Its

parametric equation is given by

x(t) =
r

2
(1 + cos 2t), y(t) =

r

2
sin 2t, z(t) = −r sin t, t ∈ [0, 2π], (24)

with r the radius of the sphere. By applying the 3-point ternary scheme (22), the resulting

”polygon” after 4th subdivision is shown in Fig. 5(d) .
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(d) Result after 4th subdivision

Fig. 6. A closed space curve with 16 initial control points selected from the baseball’s seam curve in (25).

A family of curves of a baseball’s seam can be given by the following parametric equation

x(t) = r cos
((

π

2
− b

)

cos 2t
)

cos (t + b sin 4t) ,

y(t) = r cos
((

π

2
− b

)

cos 2t
)

sin (t + b sin 4t) , (25)

z(t) = r sin
((

π

2
− b

)

cos 2t
)

, t ∈ [0, 2π],

where r is the radius of the baseball, and b is a constant. With the choice of b = 0.4, we select

16 points on this curve as shown in Fig. 6(a). We apply the 5-point ternary scheme (23) to get

the 3D ”curve” in Fig. 6(d) after 4th subdivision.

5. Conclusion

The 3- and 5-point a-ary interpolatery subdivision schemes for curve design were established for

any odd integer a ≥ 3. The polynomial preservation orders of the scaling functions corresponding

to these schemes are fixed, namely, either 3 or 5, which is independent of a. The smoothness of

the corresponding scaling functions for various values of a ≥ 3 are needed to and will be studied

in detail in the forthcoming paper.
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