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Abstract

The a-ary 3-point and 5-point interpolatery subdivision schemes for curve design are introduced
for arbitrary odd integer a > 3. These new schemes further extend the family of the classical 4-
and 6-point interpolatory schemes.
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1. Introduction

HIS is a continuation of (Lian [4]), where the classical 4- and 6-point binary interpolatory
subdivision schemes for curve design in (Dyn, et al. [1]) and (Weissman [5]) were extended
to a-ary interpolatory schemes for any a > 3.

One of the main objectives of the current paper is to introduce and extend both the 4- and
6-point a-ary interpolatory schemes further to the 3- and 5-point a-ary interpolatory schemes
for any odd a € Z; with @ > 3. Similar to the 4- and 6-point a-ary schemes, we also require
the refinable functions corresponding to the 3- and 5-point a-ary interpolatory schemes have
polynomial preservation orders of 3 and 5, respectively, or “¢3 € PP3 and “¢5 € PP;5 for short.
Observe that, when a > 2 is even, for either “¢3 € PP3 or “¢5 € PP5, the interpolatory property
and the symmetry on either “¢3 or “¢5; are not compatible. That is exactly the reason why the
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dilation factor @ has to be odd now.

Our main results are, listed in Section 2, the explicit expressions of two-scale symbols of both
%P3 € PP3 and “¢5 € PP5. Their proofs are given in Section 3. Some applications to curve design
are demonstrated in Section 4. A few remarks and future work constitute Section 5.

2. Main Results
Let “¢3 and “¢5 be the scaling functions with odd dilation factor a > 3, which correspond the 3-
and 5-point interpolatory subdivision schemes for curve design. For “¢3, we have the following.

Theorem 1: The scaling function “¢3 € PP3 with the smallest support, is determined from the
two-scale symbol “P5 of the form

11—2\3(1—-a%® 3+a? 1—a?
ap,(y) — H(1-3)/2 (_ ) 2) 1
3(2) =2 al—=z 8 * 1 - * s - D
1.25 T T T 1.25
05t ] 05t
025 : ‘ : 025 : ‘ ‘
) -1 0 1 2 75 0875 0 0.875 175
(a) Graph of ®¢3(") (b) Graph of °¢3(+)

Fig. 1. The interpolatory scaling functions 3(;53(~) and °¢3(-) determined from the two-scale equations in (1) when a = 3 and
5, where supp 3¢ = [—2,2] and supp °¢3 = [—7/4,7/4], respectively.

See Fig. 1 for the graphs of 3¢3 and ®¢5. For “¢5 € PP5, we have the following.

Theorem 2: The scaling function “¢5 € PP5; with the smallest support, is determined from the
two-scale symbol P of the form

“Py(z) = ,(1-50)/2 (11 — Za)5 l(a —1(a+1)3a—1)(3a+1)

al—z 384
(a—1)(a+1)(9a* + 19) N 115 + 50a® + 27a*
96 : 192 :
_(a—=1)(a —I—92)(9a2 +19) e (a—1)(a+ 1)3(;2 —1)(3a + 1)241. 2

See Fig. 2 for the graphs of 3¢5 and ®¢s. It is also easy to verify that

a. 3a—1 3a-—1 a. oa—1 ba—1
SUPP 03 = |\ o T a1 | PP T Ty 2 m 1) |
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Fig. 2. The interpolatory scaling functions 3
5, where supp 3¢5 = [~7/2,7/2] and supp °

Indeed, if supp®¢3 =
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(b) Graph of ®¢s(-)

(-) and ®¢5(-) determined from the two-scale equations in (2) when a = 3 and
[—3, 3], respectively.

[(3, 73], it follows from (1) that the left-most contribution to “¢3(x) is

— 3q —
%3 (a:ﬂ + %) while the right-most contribution to “¢3(z) is “¢3 (aa: — a2 . Hence,
3a—1 3a—1
U3 < ax+ aT and ax — a4 < r3, which leads to
1 3a—1 1 3a—1
Gl ST R R
3a—1 3a — o
so that /3 = ———  and r3 = ———. Meanwhile, if supp “¢s = [(5, 5], completely anal-
2(a—1) 2(a = 1) )
a —
leads to V5 = —r5 = ————.
ogous process leads to /s s 2a—1)

TABLE 1

WEIGHTS OF a-ARY 3-POINT SUBDIVISION SCHEME

(n) (n) )
Ap—1 Ak )‘k+1
)\(”‘FD a a a
ak—(a—1)/2 3P(a+1)/2 3P—(a—1)/2  3P—(3a—1)/2
(n+1) a a a
)‘akf(af;g)/z 3P(a+3)/2 3P—(a—3)/2 3P—(3a—3)/2
n+1 a a a
)\((lktl) 3Pa—1 3P—1 3P—a—1
ALt 1
ak
n+1 a a a
Afmil) 3Pa+1 31 3P—a+1
(n+1) a a a
)\akﬂa,g)/g 3P(Ba-3)/2  3P(a—3)/2 3P—(a+3)/2
(n+1) a a a
)\akﬂa,l)/g 3P(3a—-1)/2 3P(a—1)/2 3P—(a+1)/2
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If we write “P5 in (1) and *F5 in (2) by

1 3a—1 . 1 5a—1 .
Py(z) == > smt, “Ps(z) = p > e
k=—3a+1 k=—ba+1

the a-ary 3- and 5-point interpolatory subdivision schemes for curve design can be given by
Table I and Table 1II, i.e., the 3-point scheme is given by

1
)\((17]:_? = Z gp—aj—i-g)‘l(:gja (= _(a - 1)/27 sy (a - 1)/2a n < Z+, (3)
j=—1
while the 5-point a-ary scheme is given by
) _ ¥ (m)
)‘ak—i-é = Z gp—aj—i-g)‘kz-ja l= _(a - 1)/27 RN (a - 1)/2> ne€ Ly. (4)
j=—2

The two-scale sequences {$pi rez and {¢py }rez are listed explicitly in the following,

1
gp_kzgpk:;(a—l—k‘)(a—k‘), k=0,...,(a—1)/2; (5)
1
§ﬂk=%m=i;@—kﬂ%—k% k=(a+1)/2,...,(3a - 1)/2; (6)
sk =0, [k| > (3a—1)/2, (7
and
1
o= 8 = ogla— Yot k)20~ K20+ k), k=0, (a—1)/2 ®)
1
s =4 = cogla— K+ B)(2a— K)Ba— k), k=(a+1)/2....(3a—1)/% ©)
ok = 89 = 5g(a— K)(20 — )(3a — k)(da — ),
k=Ga+1)/2...,(5a —1)/2 (10)
=0, [k > (50— 1)/2 (an

The interpolatory property of both schemes in (3) and (4) follows from (5)—(7) and (8)—(11).

More explicitly, it follows from (3) and (5)—(7) that the 3-point a-ary interpolatory subdivision
scheme is given by

)\(n_,_l) _ (a +1-— 25) (3& +1-— 25) )\(n) (a -1+ 25) (3& +1-— 25) )\(n)
ak—(a+1)/2+L — 8q2 k—1 + 4a2 k
a+1—20(a—1+20) ¢,
a2y =2 a2
i =N, (13)
n la—1) (a—O(a+0) )y La+¥) o
T et V2 Y Gl LA WAL G Y

(=1,...,(a—1)/2. (14)
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TABLE II

WEIGHTS OF a-ARY 5-POINT SUBDIVISION SCHEME

(n) (n) (n) (n) )
Ao A1 Ak )‘k+1 )‘k+2
(n+1) a a a a a
)\ak,(a,l)/g 5P(3a+1)/2 5P(a+1)/2 5P—(a—1)/2 5P—(3a—1)/2 5P—(5a—1)/2
A D ap . ap ap an o t
ak—(a—3)/2 | 5P(3a+3)/2 5P(a+3)/2 5P—(a—3)/2 5P—(3a—3)/2 5P—(5a—3)/2
)\((;tll) 5D2a—1 5Da—1 5D—1 5P—a—1 5P—2a—1
(n+1)
Aok 1
n+1 a a a a a
)‘me) 5D2a+1 5Pa+1 5D1 5P—a+1 5P—2a+1
)\(”+1) a . a, . a . a . a . .
ak+(a—3)/2 | 5P(5a=3)/2  5P(3a-3)/2 5P(a—3)/2 5P—(a+3)/2 5P—(3a+3)/2

)\(n+1) a a, a a a .
ak+(a—1)/2 | 5P(Ba—1)/2  5P(3a—1)/2 5P(a—1)/2 5P—(a+1)/2 5P—(3a+1)/2

Similarly, it is clear from (4) and (8)—(11) that the 5-point a-ary interpolatory subdivision scheme
is explicitly given by

(n+1) (a —1 -+ 26)(& + 1— 2@(3& + 1— 2@(5& + 1-— 2@ (n)
)\ak—(a+1)/2+€ == 38404 Ak
(a+1-20)(3a—1+20)3a+1—20)(5a+1—20)
* 96a1 At
(a—1420Ba—1+203a+1—20(5a+1—20)
+ AL
64a*
(a+1—=20(a—1+203a—1+20)(5a+1—20) ()
- 96@4 )\k—i-l
(a+1—=20)(a—1+20)3a+1—20)(3a —1420) | (n)
* 384a4 Az
(=1,...,(a—1)/2 (15)
At =N, (16)
yorny _ Ua=Ola+ 62— 0) oy la—02a—0OQa+8) wm
ak-+4 24 a4 k=2 6at k—1
(a—0)(a+0)(2a —0)(2a + ¢) (n) Ua+0)(2a —0)(2a + ¢) (n)
+ A+ A1
4a* 6a*
la—20)(a+0)(2a+0) (n
A )(24a4)( )A,ijz, (=1,...,(a—1)/2. (17)

We end this section by pointing out that the graphs of 3¢5 and °¢3 in Fig. 1 and the graphs of 3¢5
and °¢5 in Fig. 2 can also be obtained by the two subdivision schemes (12)—(14) and (15)—(17)
with the initial sequence A,io) = Ok0, k € Z.
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3. Proofs of Main Results

Proof of Theorem 1.

First, an a-ary 3-point scheme needs at most 3a weights, i.e., the two-scale sequence {$pi }rez
of “¢3 has at most 3a consecutive nontrivial entries. Secondly, for “¢3 to have the highest
possible m of PP,,, its two-scale symbol “P5 has to have the highest possible order of factor of
(1+ 2+ -+ 21, This leads to both m = 3 and “P; must have the form

“Ps(z) = Z(1-30)/2 (l 1=2

al—z

)3 (So<+-S1Z<+-5222)

for some constant sg, 51, and s, satisfying sy = sg and sg + s; + s2 = 1. By using (1 —2)73 =

oo [(2+L) ¢
Yoo ( 5 )z we have

(50 + 512 + 5222) (1—2) Z ,ugz where

(42 (41 l
,ug:< 9 )So‘l‘( 9 >81+<2>82, EEZ_,.. (18)

Hence, by defining i, = 0 for all £ < 0 and multiplying by the expansion of (1 — 2%)? we obtain
the explicit expressions for {§py }rez in terms of {/}, namely,

“ 1
3Pk = g(,u(ga_l)/g_,_k — 3,u(a_1)/2+k + 3M—(a+1)/2+k - ,u—(3a+1)/2+k)>
k=—(3a—1)/2,...,(3a—1)/2. (19)

Next, the three identities §p_, = 0,5po = 1, and §p, = 0, lead to

1
a2 = 0,

1
;(M(sa—n/z - 3M(a—1)/2) =1,

1
— (I(sa—1)/2 = 3p43a-1)/2 T 3fi(a—1)/2) = 0,
a

or simply fi(4—1)/2 = 0, fi(30-1)/2 = %, l5a—1)/2 = 3a°, oI, equivalently,
at3 at1 a—1
(30 (5) (5 )
3a+3 3a+1 —

2 2 2 _
(5 ) (5 ) (2)2 |
5a+3 5a+1
<;>SQ+<;>51+<;>82:3G2.

By solving this linear system, sg, s1, and s are given by

1—a? a’+3
S g
g ! 3
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as they were in (1). Substituting sg, s1, and s, into (18) leads to
L, 2

Finally, by substituting 4,’s into (19) we arrive at the explicit expressions for §pi’s in (5)—(7).
This completes the proof of Theorem 1. O

Proof of Theorem 2.

Similar to the proof of Theorem 1, the two-scale symbol *P;5 of “¢5 must have the form

11— 2¢
al—z

5
“Py(z) = Z1750)/2 ( ) (so + 8512 + 5922 + 532° + s4z4)

for some constants s, ..., s, satisfying s4 = sg,s3 = S1, and sg + - - - + s4 = 1. First, multiply
So+ 812+ $222 + 532° + s4zt and (1 —2)7° =22, (416) 2 to get

(so + 512 + S922 + 532° + s4z4) (1—2)""=> 2", where
=0

0+ 4 (+3 0+ 2 (+1 ¢
l/g:< 4 )So—l-( 4 >S1—l—< 4 >52+< 4 >53—|—<4>54, tezy (20)

Secondly, multiply by the expansion of (1 — 2%)°, {¢py }rez can be expressed in terms of {v,} in
(20). Then, with v, = 0 for all ¢ < 0, all coefficients of *P;5(z) are now in terms of So, ..., S4,
namely,

5Dk = E(V(Sa—l)/}i-k — OV(3a-1)/24k T L0V (a—1)/24& — L0V_(a11)/24k

+BV_(3a41) 24k — V—(542)/2+k)5 |k| < (5a —1)/2. (21)
The five requirements
5P-2a =5P-a =0,  Spo=1 §pa=5p2a=0
yield

Via-1y72 = 0,

V(3a—1)/2 — (a—1)/2 = 0,

V(sa—1)/2 — 9V3a—1)/2 T 10V (q_1)/2 = a’,

V(ta—1)/2 — V5a—1)/2 + 10V340-1)/2 — 10V (q1)/2 = 0,

V(©9a-1)/2 — W (1a-1)/2 + 10V(50-1)/2 — 10V(34-1)/2 + SV(a—1)/2 = 0,
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which is equivalent to
a+7 a+5 a+3 a+1 a—1
2 2 2 _
So + S1 + So + S3 + 84—0
< ) < 4 ) 4 4 4 ’
3a+7 3a+5
< So + < 2 )Sl +

5a+7 5a+5 5a+3 5a+1 5a—1
(3 ) (5 )ore (5 )oe (5 e ()
Ta+7 Ta+5 Ta+3 Ta+1 Ta—1
(5 )t (3 ) (7 )oer (3 Jore (T Joummns
9a+7 9a+5 9a+3 9a+1 9a—1
< i )So‘l‘( i >$1+< i >$2+< i )Sg—l—( i >s4:15a4
Solving this linear system we have sy, ..., ss in (2), i.e.,
S0 = 84 = L(a2 —1)(9a* — 1)
384 ’
1
S1 = 83 = —%(a —1)(9a* + 19),
1
S = 192(115 + 50a® 4 274" ).

Substitute sg, ..., s4 into (20) to get

1 2 2
5@ — U100 = (20 +1)),  lez,.

Vy =

Then £py’s in (8)—(11) subsequently follow. This completes the proof of Theorem 2.

Fig. 3. The geometric illustration of the 3-point ternary subdivision scheme in (22).

4. Applications to Curve Design

183

With a = 3, it follows either from Table I and (5)—(7) or directly from (12)—(14) that the 3-point
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ternary interpolatory subdivision scheme is

At — /\ 1+ W /\,m,
A — /\ (22)

A :——/\ 1+ W /\,m, ke,

By observing from (22) that

n+1) 2 n 7 n 1 n)

7

n+1) n n n

)\ék—l—l = 5)‘12 )‘k+1 ()\1(f = )\;(C_)l) , kez,.

the 3-point ternary scheme has a clear geometric interpretation as illustrated by Fig. 3. We also

point out that the ternary scheme (22) was also studied in (Hassan & Dodgson [3]) by using the
method of “generating function formalism.”

] ]
) 00 L 00

i U

=5 0 5 =5 0 5

(a) Initial polygons (b) Initial polygons & 1st level subdivision
5 : 5
—

o 00

=]

—
-5 ; -5 ;
5 0 5 -5 0 S
(c) Initial polygons & 2nd level subdivision (d) Result after 4th subdivision

Fig. 4. Three planar polygons with 12, 4, and 4 initial control points.

While when a = 3, it follows either from Table II together with (8)—(11) or directly from (15)—
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(a) Initial 3D polygon (b) Initial polygon & 1st level subdivision

1 N 1
\/0/ M

-1 I -1

(c) Initial polygon & 2nd level subdivision (d) Result after 4th subdivision

Fig. 5. A space curve with 16 initial control points selected from the Viviani’s curve in (24).

(17) that the 5-point ternary interpolatory subdivision scheme is

7 70 70
AP — a0 W 3w, O o
3k=1 7 943 2t 243 243 ’f+1 243 ’f+2’
At = A (23)
n 70 . 70 7
)‘ék——ﬁ = 243 )‘k 2 ﬁ)\ >\( 243 )‘k+1 243 )‘k+2> ke

To demonstrate the elegance of all these schemes, we apply the 3-point ternary scheme (22) to
the 3 closed 2D polygons in Fig. 4(a).

The space polygon in Fig. 5(a) was formed by eight initial control points, selected from the
Viviani’s curve (Gray [2], p. 201), which is the intersection between a sphere and a right circular
cylinder passing through the center of the sphere whose diameter is half of the sphere. Its
parametric equation is given by

x(t) = g(l +cos2t), y(t)= gsin%, z(t) = —rsint, t € 0,2, (24)

with r the radius of the sphere. By applying the 3-point ternary scheme (22), the resulting
polygon” after 4" subdivision is shown in Fig. 5(d) .
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1 1
0 0
-1 _
1 i
1 1
0 0 0 0

y ! ‘ -1 1

(a) Initial 3D polygon (b) Initial polygon & 1st level subdivision
1 1
-1 -1
1 1
1 1
0 0 0 0
-1 -1 -1 -
(c) Initial polygon & 2nd level subdivision (d) Result after 4th subdivision

Fig. 6. A closed space curve with 16 initial control points selected from the baseball’s seam curve in (25).

A family of curves of a baseball’s seam can be given by the following parametric equation
x(t) = rcos ((g — b) Ccos 2t> cos (t + bsin4t) ,
y(t) = rcos ((g — b) Ccos 2t> sin (¢ 4 bsin4t), (25)

2(t) = rsin ((g — b) Ccos 2t> , t €0, 2n],

where r is the radius of the baseball, and b is a constant. With the choice of b = 0.4, we select
16 points on this curve as shown in Fig. 6(a). We apply the 5-point ternary scheme (23) to get
the 3D “curve” in Fig. 6(d) after 4*® subdivision.

5. Conclusion

The 3- and 5-point a-ary interpolatery subdivision schemes for curve design were established for
any odd integer a > 3. The polynomial preservation orders of the scaling functions corresponding
to these schemes are fixed, namely, either 3 or 5, which is independent of a. The smoothness of
the corresponding scaling functions for various values of a > 3 are needed to and will be studied
in detail in the forthcoming paper.
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