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Abstract

Hyperbolic systems with functional arguments are studied, and sufficient conditions are
obtained for every solution of boundary value problems to be weakly oscillatory (that is, at
least one of its components is oscillatory) in a cylindrical domain. Robin-type boundary
condition is considered. The approach used is to reduce the multi-dimensional oscillation
problems to one-dimensional oscillation problems by using some integral means of solutions.
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1. Introduction

We are concerned with the oscillation of the system of hyperbolic equations with functional
arguments
2 4
%(U 1)+ HOU X p (t))j — A(t)AU (x,1)
i=1
K m
= Bi()AU (X, 7, (1) + 2 P (X1, (U (x, 0, (1)) 1)
i=1 i=1

=F(x1t), (xt)eQ=Gx(0,:),

where G is a bounded domain in R" with piecewise smooth boundary oG, A is the
Laplacianin R", and
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HO = )", AQ=(a,®)" ., B®=bxn)..
R(x,1) = (py (.01,

U (x,t) = (uy (X,1),...,uy (x,1))",

U (x, 2, (1) = (Uy (% 2, @®)),-...uyy (X 9 )

U (%, 7, (8)) = (U, (X, 73 (©)s .. Uy (X, 7y ()T

(U (%, (1)) = (2, Uy (%, 5 (O, s Uy (x5, ON)
F(x,t) = (f,(x1),..., f, (x.1)",

the superscript T denoting the transpose.

It is easy to see that (1) can be written in the following system:

[u (x.1) +i§h.,k O, (%, (t»j

—ia,-k 08U, ()~ Y > b, (DAY, (% 7, (1) )

+i2 P X, 0@y (U (X, o (1) = T, (x 1) (1=12,....,M)

i=1 k=1

for(x,t) e Q=G x (0,).

The boundary condition to be considered is the following:

(i)a—v'w( R)u; =a(R)y; +u(X)y, on Gx(0,) (j=12,...,M), (BC)
where y,i7; €C(6G x (0,0);R), a(X), u(X)e C(8G;[0,0)), a(X)’+u(X)* =0, and v
denotes the unit exterior normal vector to oG .

In case (X)=0 on 4G, then u(X)#0 on 4G, and hence the boundary condition (BC)

reduces to
u;=y; on dGx(0,2) (j=12,...,M).

If «(X)=1on &G, then (BC) can be written in the form

ou

EW() =y, +uR)y; on Gx(0,0) (j=12,...M),

moreover, if 4(X)=0 on G, then (BC) can be written as

ou, _ .
a—’=1//j on 0Gx(0,0) (j=12,...,M).
v
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We assume that:

(H,) hy(t)eC?([0,0);[0,0) (i=12,....0;]j,k=12,...,M),
a; (t) eC([0,0);[0,0)) (j,k=12,....,M),
by () €C([0,0);[0,0)) (i=12,...,K;]j,k=12,.,M),
Py (%,8) €C(G x[0,0):[0,0)) (1=12,....m;j,k=12,...,M),
f.(x)eC(G x[0,%);R) (j=12,...M);

(H,) pi(t)eC?([0,0);R), lim_, pi(t)=oo (i=12,...,0),
7, () eC([0,);R), lim_ 7, ()= (i=12,...K;k=12,....M),
o,(t)eC([0,%0);R), lim,_, o(t)=o (i=1,2,...,m);

(Hy) ¢4 (©)eC(RR), 9,(£)20 for £20, g, (-£) =—p (£) for £>0 and
@, (&) are convex in (0,0) (i=12,....m;k=12,...,M);

(H,) hikk(t)—ihijk(t)zo (i=12,....0:k=12...,M);

j=k

(H,) akk(t)—iajk(t)zo (k=12,...,M);

J=k

(H,) bikk(t)—ibijk(t)zo (i=12,...K:k=12..M);

2k

M

(H;) pic( )= pu (x,)20 (i=12,..., m;k=12,...,M);
j=1
J#k

(Hs) 0, (5)5221[} @, (£) 1s nondecreasing and convex in (0,)

(i=12,...,m).

Definition 1: By a solution of system (2) we mean a vector function (u,(x,t),...,u,, (x,t))
such thatuj(X,t)eCz(C_-)x[tfl,oo);R)ﬂC(ax[El,oo);R), and u;(xt) (j=12,....,M)
satisfy (2) in Q, where

I<i<K * t=0 1<i</ N t20
1<k<M

t, = min{o, min {inf T (t)}, _in{inf Pi (t)}}

t, = min{O, min{inf o, (t)}}.

I<i<m ' t>0

Definition 2- A solution (ul(x,t),...,uM (x,t)) of system (2) is said to be weakly oscillatory

in Q if at least one of its components is oscillatory in Q (cf. Ladde, Lakshmikantham and
Zhang (1987, Definition 6.2.1)).
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In 1984 the oscillations of delay hyperbolic equations have been first investigated by Mishev
and Bainov (1984) (cf. Mishev 1989, Mishev and Bainov, 1986). Parhi and Kirane (1994)
investigated the oscillatory properties of solutions of coupled hyperbolic equations.
Oscillation of hyperbolic systems with deviating arguments was studied by Li (1997), and
then oscillation results have been established by several authors, see, e.g., Li (2000),
Agarwal, Meng and Li (2002) and the references cited therein. However, all of them pertain
to the case where the matrices H, (t) are the diagonal matrices orH, (t) =0.

The purpose of this paper is to derive sufficient conditions for every solution of the boundary
value problem (2), (BC) to be weakly oscillatory in a cylindrical domain G x (0, ) . We note

that the matrices H, (t) are not necessarily the diagonal matrices.

2. Oscillation results

In this section we establish a lemma and two oscillation theorems for the boundary value
problem (2), (BC). Two examples are also given in this section to illustrate oscillation results.

-AwW=AWwW in G,
~\ OW A
a(R)—+u(H)w=0 on oG
ov

IS nonnegative, and the corresponding eigenfunction ®(x) can be chosen so that ®(x) >0 in
G (see Ye and Li, 1990, Theorem 3.3.22). In case x(X)=0 on 4G, then we can choose
A, =0 and ®(x)=1. If y(f()aéo on 0G, then there exist A4, >0 and the eigenfunction
d(x)>0in G.

We use the notation :
I, ={Xe€dG;a(X)=0},
I, ={ke€dG;al(X)=0}.

Lemma; If u; satisfy the boundary condition (BC) and ®(x) is the eigenfunction
corresponding to the smallest eigenvalue A, >0, then we obtain

ou

KfDIae {T;Cb(x) —U; 220

}ds — W (1), 3)
v

where

-1

Kq,:(.[GCD(x)dx) ,
\Pj(t)qu,(—j v, aqg(x)dmj (l;j+'u()2)l//j](D(X)dSJ.
o} T, o

v
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Proof- It is evident that

ou; 8<I)(x) , 8(D(x)
ja{a ®(x)-u; }ds j{ P(x)—u; — }ds

+ {%cp(x)—uj 8®(x)} ds

ov

Since u; =y; on I} and ®(x) =0 on I}, we obtain

ou; L 0D(x) o O0D(X)
.[{ECD(X) U= }ds_ J.vi =, S,

14

From the boundary condition (BC) we see that

ouj (%) p(X)
aV_WOE(ﬁ)‘”" or) "
oD (x) (X

5y - a()“()q)(x) on T,

Hence, we observe that

ou; 8<I>(X) B N @
J. |:al/ (D( ) oy :|dS —J.rz(l//j + 2 V/J]@(X) ds.

Combining (4)—(6) yields the desired identity (3).

We note that if «(X)=0 on G, then T, =0 and

au.
K‘DJ‘aG [%Q(X) - aq(;(/X)} 9 =" Iae Vi £y ds.

ov

If «(X)=1(X€dG) and u(X)=0 (X € 6G), then I, =0 and

au; oD(x) 1 ¢ -
K(DJ.GG{a—V'(D(X)—u =, }ds —@j%%ds,

where |G| = dex denotes the volume of G .

We use the notation :

87
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(5)

(6)
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Fit) =K, [ f,060@00dx (j=12,...,M),
[Ot)], = max{+o(t),0},
{ )”1.(—1"‘2,...,(—1"‘”);051-=O,1(j=1,2,...,M)}.

We note that #T" =2 and —y €T for y eT", and hence F:{iy;yel:} for some T
with #IT = 2", For example, we let M = 2. Then we observe that

={11), @ -1),(-11),(-1,-1)}

and

= {i(l,l),i(l,—l)}= {iJ/iJ/EF}'
where

r={11,@-1)}.

Theorem 1- Assume that the hypotheses (Hi) —(Hsg) hold. If the following conditions are
satisfied :

(Hy) P.(t)<t (i= o 0);
(H,,) ZZh”(t)<1 on [t,,©) for some t,>0; and

(H,,) there exist functions © (t)eC ([ty,©);R)(y €T) such that © (t) isos-
(100 cillatryat t=0 and @) =y - (G (t)) ( - denotes the scalar product);
if for some j, €{L 2,...,m} and for any ¢ >0
. R (M .
J.t Pi, ® ?j, [{(1_ ZZ hij (Gj0 (t))]c + ®}/ (O-jo (t)):| ] dt = oo, (7)
0 i=1 j=1 .

then every solution (ul(x,t) Uy (X, t)) f the boundary value problem (2), (BC) is
weakly oscillatory in Q, where

(t) = max hljk (t)

1<k<M

G,(t)y=— (F (t)+2a,k(t)\1' (t)+2 by (), (r.k(t)))

i=1 k=1

p (t) mln I;nln p|kk (X t) Z puk (X t)

j#k

6,(0=0,1-Y 310, (n ).

i=l j=1

Proof- Suppose that there exists a solution (ul(x,t),...,uM (x,t)) of the problem (2), (BC)
which is not weakly oscillatory in Q. Then, each component u; (x,t) is nonoscillatory in Q.
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We easily see that there is a number t >t, such that |u;(xt)>0 forxeG,
t>t, (j=12,...,M). Letting

W, (X,t) = 5;u;(x,1),
where o, =sgnu;(x,t), we see that w;, (x,t):‘uj(x,t)‘>0 in Gx[t;,»). There exists a
number t, >t, such thatw,(x,t) >0,w;(x, p;(t)) >0, w;(X,7;(t)) >0, w;(x,0;(t)) >0 in

G x[t,,o). Proceeding as in the proof of Theoem 1 of Shoukaku and Yoshida (2005), we
observe that the following identity holds :

((:t_z(v (t)+ ﬁz Z 00, hijk OW, (p; (t))] + i p; (D)o, (V (o (t)))
) i=1 jk=1 i=1 (8)
<2661, txt,
where }
2 W
v = S
Thereisa y e I such that 2115]6] t)=y- (Gj (t))j“il . Setting
VO =VO Y 35,5, (W, (0,0) -0, ().
we see that |
Y'(t) < —Z b, ()P V(o (t)<0, t=xt,. ©)

Therefore, Y (t) >0 or Y (t) <0 on [t,,) forsome t, >t,. If Y(t) <0 on [t,,»), then

VO E Y Y50 OW ()6, tat,

i=1 jk=1
and therefore

VO LYY e h 0 W (p, ) £0,0, t>t. (10)

i=1 k=1
J#k

The left hand side of (10) is positive in view of the hypothesis (H4), whereas the right hand
side of (10) is oscillatory at t=00. This is a contradiction. Hence, we conclude that
Y (t) >0 on [t;,00). Since Y"(t) <0, Y(t) >0 on [t,,), we obtain Y'(t) >0 on [t,,o) for
some t, >t,. Hence, Y (t) >Y(t,)

for t >t,. Inview of the fact that V (t) <Y (t) + ®,(t) and Y (t) is nondecreasing, we obtain
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2515k hijk OW, (o (1) + ®y (t)

j,k=1

h, (OV (o, (1) + ©, (£)

V() =Y()-

zEM\

Y (1) -

1

LN

> h, O (0, ©) + 0, (0, 1))+ O, (1)

i=L

z(l—iz i jY(t)+® (t), tx>t,.

i=1 j=1

[u—

(11)

MN\

> Y (t) -

g&

Since Y (t) >Y(t,) and V(t) >0 for t >t,, from (11) we have

i=1 j=1

V(t)2Hl—iiﬁj(t)]Y(t4)+(:)7(t)}, t>t,

+

and therefore

i=1 j=1

V(o (1) 2 Kl— Z(‘,i hy (o), (t))jY (t,)+0, (o, (t))} =T (12)

+

forsome T >t,. Since ¢ ;, (1) is nondecreasing, from (9) and (12) we obtain

P, o, [Hl ii h (o, (t))jY t)+0, (o, (t))} ] (13)

i=1 j=1

<=Y'"(t), t=>T.
Integrating (13) over [T,t] yields

['p, (s)@,o[ﬁliiﬁ, @, (s))jv(t4)+éy(a,-o (s))} ]ds

i=1 j=1

<-Y'(t)+Y'(T)<Y'(T), t=>T.
This contradicts the hypothesis (7) and completes the proof.

Theorem 2- Assume that the hypotheses (Hi)—(Hs) hold. Every solution
(ul(x,t),...,uM (x,t)) of the boundary value problem (2), (BC) is weakly oscillatory in
Q ifforany yel’

t—o

liminf :(1_3(7.(@](5))]“3)(15:_oo

for all large T .

Proof- Suppose that there exists a solution (ul(x,t),...,uM (x,t)) of the problem (2), (BC)
which is not weakly oscillatory in . Arguing as in the proof of Theorem 1, we observe that
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(8) holds, and hence

%{vanﬁi ia,-akhi,-k(t)wk(pia))]sia,-e,-(t), t>t, (14)

i=1 j,k=1

for some t, > 0. Letting

M
k=

~ 1
V(1) :V(t)+ﬁz

i=1 j,

5j5k hijk OW, (o (1)),

1

we note that \7(t) >0 (t>t;) for some t, >t, (cf. the proof of Theorem 1). Integrating
(14) twice over [t,,t], we obtain

t) c t, t S\ -
T < T‘I’ Cz(l_Tj+J.t3 (1_TJ[E5JG] (S)J dS

for some constants ¢, and c,. The left hand side of the above inequality is positive, whereas
the right hand side is not bounded from below by the hypothesis. This is a contradiction.

Remark 1: We find that " = {ir yiye 1:} for some I = I" with #I" = 2", Hence, Theorem
1 holds true if the hypothesis (Hi;) and the condition (7) are replaced by
(H,,) there exist functions @ (t) eC?([t,,©);R)(y €T) such that 0,(t) 1s

(100 oscillatory at t=ow and ©] (t):;/-(G J-('[))2":1( - denotes the scalar and

product)
J, P, [Hl‘ ZZHJ (o (t))j c£0, (o, (t))} J dt = oo,

respectively.

Remark 2- Under the same hypotheses of Theorem 2, the conclusion of Theorem 2 holds
true if forany y el

.ot S

liminf (1—;)(;/-(61. (s))_Ml)ds = —oo,

tow T ]=

IimsupLt [1—%)(7/.(Gj (s))j“il)ds = oo

t—w

forall large T .

Example 1- We consider the hyperbolic system



92 Y. Shoukaku and N. Yoshida

2
st—z(ul(x,t)+%ul(x,t—27r)+%u2(x,t—2ﬂ))

2 2 2 2
—3%(x,t)—%e”a@x—“§(x,t)—%x‘il (x,t—n)—%%x—”;(x,t—zfz)
+%ul(x,t—7z)+%e”u2(x,t—7z):ez”(sinx)e‘t,

2 15
%(uz(x,t)+%u1(x,t—27r)+%u2(x,t—27z)) (15)

2 2 2 2
-2 %Xil (x,t)—e* aax—uf(x,t —%%Xu; (x,t —n)—%aaxuj (x,t—27)
+%ul(x,t—7z)+%e”u2(x,t—n):(sinx)sint+(1+3ez”)(sinx)e“,

(x,t) € (0,7) x (0,)
with the boundary condition
0,0t =u,(z,)=0, t>0 (j=12). (16)

Here G=(0,7), n=1, M=2, (=K=m=1, h,t)=1/2, h,>{t)=h,(t)=
h,(t)=1/4, pt)=t-27, a,(t)=3, a,(t)=(/8) e’ ay(t)=2, ay(t) =e”",
by, (t)=1, by, (t)=1/8, by, ()=1/2, b,WU=1/4, z,t)=t-z, 7,{)=t-27,
Puy (XD)=U2, pyy, (X)=(U2)e7, Py (X, 1) =114, py, (1) = (3/2) €7, 0y(t) = t — 7,

P (&) =p,&)=¢&, f(xt)=e(sinx)e™,  f,(xt)=(sin x)sint+(1+3e2”)(sin x)e™,
w,=0(j=12), a(%)=0and ', =0. We observe that

~ 1 ~ 1 . 1
hll(t)zgi hlz(t) =Z’ pl(t) :Z-

It is easy to see that A, =1, ®(x)=sinx,¥;(t)=0(j=12),G,{)=Q1/2F )=
(z18)e*"e™ and G,(t) = 1/ 2)F,(t) = (= /8)sint + (7 /8) (1+ 3e2”)e“. Since we can choose

®(1,1) (t) = %(—sint + (1+ 462”)(3‘t )'

Ou ()= %(Sint - (1+ 2027 )e—l ),
we obtain

¢ 7| L A3,
®(1,1)(t)=§(—Zsmt+(1+4e2 )[1_262 je IJ’
é(ZL,—:L) (t) = %[%Sint—(l‘F 262”)[1_%e2ﬂje_1j’

and therefore
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e

> (" 1sint+(1+4e2”) 1- 362 leret |
3270 | 4 4 R

=0

Jmi (1—§j0i£ lsin(t—ﬂ)—(1+2e2”)[1—§e2”je““”) dt
th 4 4 8\ 4 4 )
S —Esint—(1+2e2”)(1_§e2”je”et dt

3276 4 4 .

=00

and

for any ¢>0. Hence, it follows from Theorem 1 and Remark 1 that every solution
(ul(x,t),uz(x,t)) of the problem (15), (16) is weakly oscillatory in (0, ) x (0,%) . One such

solution is
UxD) = (S|_n x)5|r_1t |
(sinx)e™

Example 2- We consider the hyperbolic system

2
aat—(ul(x,t) +%u1(x,t —7) +%u2(x,t —ﬂ)j
82 1

(t)— 2(xt> W%(x —)— 2(xt+7r)

+gu1(x,t — 1) +%u2(x,t —7) = (2+ 3e”)(cos x)e‘

2 (17)
;—(uz(x,t)+%ul(x,t—7z)+%u2(x,t—ﬁ)]
2 2 2
_d'u 1( t)— Z(X t) 2 e12)r Xl»il (X,,H_%)_ga u22 (x.t+7)
+U (x,t 7r)+u (x,t— 72)—— (cosx)sint+(2e” +1§(cosx)et,
(x,t) € (0,) x (0,00)
with the boundary condition
aul (0.1 =0, %(z,tj=—e‘t,
au aalj( i (18)
2(0 t) =0, —[ tj——sint, t>0.
ox \ 2
HereG = (0,(z/2)),n=1,M =2, ¢=K=m=1,hy(t)=hy, () =1/2,h, () =1/3,

hyp, (1) =172, pt)=t-=, a, () =a,(t)=a,(t)=a,t)=1,b,,(t) = e®27
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by, (1) =1,by, (1) = (2/3)e®P7 by, (1) =3/2, 7, (t) =t + (71 2) , 7, (1) =t + 7,

p111(X’t) =3/2, P (x,t)=1/2, plZl(X t)= plZZ(X t)=1, O-l(t) =t-7, @11(5) =01, (&)=,
f,(x,t) = (2+3e7)(cosx)e ", f,(x,t) = —2(cosx)sint + (2e” +1)(cosx)et,  a(¥)=1,
u#(X)=0 and T, =0. We find that

hy, (1) = I:\-12 ®= %, p, (1) :%

It is easy to check that 4, =0, ®(x) =1 and that
G, (t) _—(2+4e Je,

1 8
G,(t)=—| —3sint+—e"e™" |.
() zﬂ( : j

Choosing
Oy (t) = L (33mt+(20e”+2jet],
27 3
1 ) 4
¢) t)=—| —3sint+| —e”" +2 " |,
as () zﬂ( (3 } J
we see that
1 20 . N
Oy () = ﬂ(GsmH( 3¢ +2)(1—e )e tj,
~ 1 ] 4
® ty=—/| —6sint+| —e” +2 |[1-e")e™ |.
e 2%( (3 j( ) j
Since
w]
J 5160, - )| dt
Ly 65mt+(§e +2j(e”—e2”)e‘t dt
A7 vt 3 .
=
and

j%[ oy (t=m)] dt

zij {63int+(%e” +2j(e” —ez”)et} dt

+

= o0,

Theorem 1 and Remark 1 imply that every solution (u, (x,t),u, (x,t)) of (17), (18) is weakly
oscillatory in (0,%)x (0,0). In fact,

(cosx)e™ J

U= ((cos x)sint

is such a solution.
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