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Abstract

Two new families of nonlinear 3-point subdivision schemes for curve design are introduced.

The first family is ternary interpolatory and the second family is binary approximation. All

these new schemes are circular-invariant, meaning that new vertices are generated from local

circles formed by three consecutive old vertices. As consequences of the nonlinear schemes, two

new families of linear subdivision schemes for curve design are established. The 3-point linear

binary schemes, which are corner-cutting depending on the choices of the tension parameter,

are natural extensions of the Lane-Riesenfeld schemes. The four families of both nonlinear and

linear subdivision schemes are implemented extensively by a variety of examples.
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1. Introduction

T
HE well-known family of 2-point corner-cutting subdivision schemes for curve design was

given by

λ
(n+1)
2k = (1 − w)λ

(n)
k + wλ

(n)
k+1,

λ
(n+1)
2k+1 = wλ

(n)
k + (1 − w)λ

(n)
k+1, k ∈ Z; n ∈ Z+, (1)

with λ
(0)
k , k ∈ Z, being the initial vertices of the 2D or 3D polygonal curve, where, for each natural
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number n, λ
(n)
k , k ∈ Z, are the nth level vertices, λ

(n+1)
k ’s are the (n+ 1)st level vertices, and w

is a tension parameter on (0, 1/2). The particular choice of w = 1/4 corresponds to the classical

de Rham-Chaikin scheme (Rham [11] and Chaikin [1]). It has a simple geometric interpretation:

Each line segment from λ
(n)
k to λ

(n)
k+1, or λ

(n)
k+1 − λ

(n)
k in its vector form, is partitioned based on

the ratio of w:(1− 2w):w; and the two points λ
(n)
k + w(λ

(n)
k+1 −λ

(n)
k ) and λ

(n)
k+1 −w(λ

(n)
k+1 − λ

(n)
k ),

named as λ
(n+1)
2k and λ

(n+1)
2k+1 , respectively, will be two new vertices to form the next level polygon.

The limiting curve has C1-continuity. More precisely, it is well-known that the de Rham-Chaikin

scheme converges to a linear combination of integer shifts of the quadratic B-spline N3(t), given

explicitly by

N3(t) =






1

2
t2 if t ∈ [0, 1),

3

4
−

(
t −

3

2

)2

if t ∈ [1, 2),

1

2
(3 − t)2 if t ∈ [2, 3),

0 otherwise.

Scheme deduced from the de Rham-Chaikin scheme for surface design was consequently devel-

oped by (Doo & Sabin [4]).

The generic form (1) is also referred as the Lane-Riesenfeld (refine and smooth) scheme (Land

& Riesenfeld [8]). The scheme (1) is linear, i.e., all current level vertices are generated by a

linear combination of consecutive local vertices of the previous level’s. It is an approximation

scheme, which means that old vertices are not explicitly kept for the new level. However, it is

not hard to verify that it is not circular-invariant, meaning, with the initial 2D polygon as cyclic

polygons, the limiting curve of the subdivision scheme is not a circle. Here c cyclic polygon is a

polygon that has c circumscribed circle, such as a square, a rectangle, or an isosceles trapezoid.

First of all, a circular-invariant subdivision scheme for curve design is in general nonlinear.

Secondly, the study of subdivision schemes nowadays is closely related to the development of

the refinable functions in wavelet theory. For instance, family of binary schemes can be induced

from refinable functions with dilation 2 (Daubechies [3]), while family of ternary schemes are

induced from refinable functions with dilation 3 (Chui & Lian [2]). As an example, the scheme

in (1) can be induced from the refinable function φ satisfying

φ(x) = wφ(2x) + (1 − w)φ(2x − 1) + (1 −w)φ(2x − 2) + wφ(2x − 3). (2)

With appropriate normalization conditions and up to a sign change, (2) determines a unique

continuous function φ for any w ∈ (0, 1). By taking the Fourier transform of (2) both sides, we

arrive at the two-scale equation of φ:

φ̂(ω) = P
(
e−iω/2

)
φ̂

(ω

2

)
, (3)

P (z) =
1

2

(
w + (1 − w)z + (1 − w)z2 + wz3

)
=

1 + z

2
(w + (1 − 2w)z + wz2), (4)

where P (z) in (3)-(4) is called the two-scale symbol of φ. All properties of φ are now reflected

on the two-scale symbol P (z) in (4). Meanwhile, recall that the classical 4-point interpolatory
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(a) Initial square & the 6th level sub-

division by using the de Rham-Chaikin

scheme.

(b) Initial square & the 6th level sub-

division by using the 4-point scheme

induced from the two-scale symbol P4

in (5).

(c) Initial square & the 6th level subdi-

vision by using our ternary interpolatory

scheme (6) in Section 2.

(d) Initial square & the 6th level subdi-

vision by using our binary approxima-

tion scheme (9) in Section 2.

Figure 1. Four different schemes are applied to an initial polygon as a unit square. The four schemes are the de Rham-Chaikin

corner-cutting scheme, the classical 4-point scheme, our 3-point circular-invariant ternary interpolatory scheme, and our 3-point

circular-invariant binary approximation scheme.

scheme for curve design, introduced in (Dyn, et al. [5]) and consequently studied by many

other researchers (cf., e.g., Ivrissimtzisa, et al. [7] & Lian [9]), can be induced from a refinable

function. If we denote by φ4 the refinable function associated to the 4-point interpolatory scheme

and satisfying (3) with two-scale symbol, denoted by P4, then P4 is given explicitly by

P4(z) =
1

2z3

(
−

1

16
+

9

16
z2 + z3 +

9

16
z4 −

1

16
z6

)
=

1

2z3

(
1 + z

2

)4

(−1 + 4z − z2). (5)

When both the corner-cutting scheme in (1) with w = 1/4 and the 4-point scheme induced

from (2) are applied to the unit square, the results are shown in Fig. 1. The limiting curves in

both Fig. 1(a) and Fig. 1(b) are not circles. On the other hand, by using our 3-point circular-

invariant ternary interpolatory and binary approximation schemes described in Section 2, the

limiting curves in both Fig. 1(c) and Fig. 1(d) are circles.

We point out that the 4-point interpolatory scheme was established way before the rapid devel-

opment of wavelets. Not only is it interesting to observe the overlap among researchers in both

CAD/CAGD/CAM and wavelet communities but it definitely triggers off innovative tools for
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the smoothness analysis of subdivision schemes and stimulate research development of the two

communities.

One of the main objectives of this paper is to introduce two new families of nonlinear 3-point

subdivision schemes for curve design, both planar and 3D. The first family is ternary interpolatory

while the second family is binary approximation. All these new schemes are circular-invariant,

with the local three or two new vertices being generated from local circles formed by the three

consecutive old vertices. Again, the schemes can be applied to both planar and 3D polygons.

Our main results are listed in Section 2. A brief analysis of convergence is provided in Section

3. Extensive demonstrations are included in Sections 4. Conclusions constitute Section 5.

2. Main Results

We establish two families of subdivision schemes. The first family is ternary and interpolatory,

given by

λ
(n+1)
3k−1 = wλ

(n)
k−1 + (1 − w)λ

(n)
k + α

(n)
k (λ

(n)
k − λ

(n)
k+1),

λ
(n+1)
3k = λ

(n)
k ,

λ
(n+1)
3k+1 = (1 − w)λ

(n)
k + wλ

(n)
k+1 + β

(n)
k (λ

(n)
k − λ

(n)
k−1), k ∈ Z; n ∈ Z+, (6)

where both α
(n)
k and β

(n)
k are so chosen that both λ

(n+1)
3k−1 and λ

(n+1)
3k+1 in (6) are two intersections

of the circle formed by λ
(n)
k−1, λ

(n)
k , and λ

(n)
k+1; and w is a tension parameter on (0, 1). See Fig.2

for a geometric illustration with w = 2/9.

Figure 2. The geometric illustration of the nonlinear 3-point ternary interpolatory subdivision scheme in (6) with w = 2/9.

The two segments are partitioned based upon the ratio of 2:7, or w:(1 − w) in general, from the interpolatory vertex (marked

blue). Then a new line is drawn from each partitioned point in such a way that the line is parallel to the other line segment. The

intersections of the two new lines with the circle formed by the three vertices are the new vertices for the next level (marked

solid and dark). Here the intersections are chosen to be outside of the triangle (formed by the three old vertices). The two gray

dots are the new vertices generated from the linear ternary subdivision scheme. They are plotted here for reference only.

Observe that, first, both α
(n)
k and β

(n)
k for each k depend on w and λ

(n)
k−1, λ

(n)
k , and λ

(n)
k+1. The
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actual detailed expressions of α
(n)
k and β

(n)
k in (6) are omitted here. Secondly, if we write

α
(n)
k = α

(n)
k (w, λ

(n)
k−1, λ

(n)
k , λ

(n)
k+1), β

(n)
k = β

(n)
k (w, λ

(n)
k−1, λ

(n)
k , λ

(n)
k+1), (7)

the symmetry of the scheme in (6) is guaranteed by the fact that

α
(n)
k (w, λ

(n)
k−1, λ

(n)
k , λ

(n)
k+1) = β

(n)
k (w, λ

(n)
k+1, λ

(n)
k , λ

(n)
k−1), (8)

simply due to the fact that the circle formed by λ
(n)
k−1, λ

(n)
k , and λ

(n)
k+1 is the same as that formed

by λ
(n)
k+1, λ

(n)
k , and λ

(n)
k−1.

The second family is binary approximation, given by

λ
(n+1)
2k−1 = wλ

(n)
k−1 + (1 − w)λ

(n)
k + α

(n)
k (λ

(n)
k − λ

(n)
k+1),

λ
(n+1)
2k = (1 − w)λ

(n)
k + wλ

(n)
k+1 + β

(n)
k (λ

(n)
k − λ

(n)
k−1), k ∈ Z; n ∈ Z+, (9)

with both α
(n)
k and β

(n)
k being chosen in the same manner as in ternary interpolatory schemes,

and w is, again, a tension parameter ∈ (0, 1). We also point out that the schemes in (9) are indeed

corner-cutting. Analogously, the symmetry of the schemes in (9) is reflected by (7)– (8).

Fig. 2 is also valid for illustration of the binary schemes in (9), but with the blue dot marked as

open, i.e., not kept or not interpolated.

When both α
(n)
k and β

(n)
k in (6) are depending only on the tension parameter w, say,

α
(n)
k = β

(n)
k =

1

3
− w, (10)

the schemes are linear. So, as consequences of (6), we have the following family of 3-point linear

ternary interpolatory subdivision schemes

λ
(n+1)
3k−1 = wλ

(n)
k−1 +

(
4

3
− 2w

)
λ

(n)
k +

(
w −

1

3

)
λ

(n)
k+1,

λ
(n+1)
3k = λ

(n)
k ,

λ
(n+1)
3k+1 =

(
w −

1

3

)
λ

(n)
k−1 +

(
4

3
− 2w

)
λ

(n)
k + wλ

(n)
k+1, k ∈ Z; n ∈ Z+, (11)

The choice of w = 2/9 is a linear stationary scheme, studied in (Hassan & Dodgson [6]) and is

a special case in (Lian [10]). The choice of w = 1/6 makes the three new vertices collinear.

Analogously, when both α
(n)
k and β

(n)
k in (9) are depending only on w, say,

α
(n)
k = β

(n)
k =

1

4
− w, (12)

the schemes are also linear. So, again, as consequences of (9), we arrive at the following family

of 3-point corner-cutting, linear, and binary approximation subdivision schemes

λ
(n+1)
2k−1 = wλ

(n)
k−1 +

(
5

4
− 2w

)
λ

(n)
k +

(
w −

1

4

)
λ

(n)
k+1,

λ
(n+1)
2k =

(
w −

1

4

)
λ

(n)
k−1 +

(
5

4
− 2w

)
λ

(n)
k + wλ

(n)
k+1, k ∈ Z; n ∈ Z+. (13)
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When w = 1/4, (13) becomes the de Rham-Chaikin scheme. So (13) is de facto a natural

extension of the Lane-Riesenfeld schemes in (1). When w = 1/8, the three new vertices are

collinear. These schemes converge to continuous curves when w ∈ (−1/8, 7/8); in at least a C1

fashion when w ∈ (1/8, 5/8); at least C2 when w ∈ (1/4, 1/2); and C4 only when w = 5/16

(quartic B-splines).

3. Brief Analysis of Convergence

To ensure the convergence of all new subdivision schemes in this paper, we provide a brief

convergence analysis in this section without giving too many details.

There are two ways to study the limiting behavior of the two families of subdivision schemes in

(6) and (9). First, observe that, considering λ
(n)
k ’s as column vectors for each n, the schemes in

(6) can be rewritten into the following matrix form

[λ
(n+1)
3k−1 , λ

(n+1)
3k , λ

(n+1)
3k+1 ] = [λ

(n)
k−1, λ

(n)
k , λ

(n)
k+1] M

(n)
k , (14)

where

M
(n)
k =




w 0 −β

(n)
k

1 − w + α
(n)
k 1 1 − w + β

(n)
k

−α
(n)
k 0 w



 ,

The convergence of the schemes in (6) can then be confirmed by analyzing the convergence of

the product
n∏

`=0

M
(`)

3`k
= M

(0)
k M

(1)
3k M

(2)

32k · · ·M
(n)
3nk

of the matrix sequence {M
(`)

3`k
}`∈Z+

. Another way is to check the behavior of the product of

polynomials (or two-scale symbols) P , namely,
n∏

`=0

P
(`)

3`k

(
e−iω/3n+1−`

)
= P

(n)
3nk

(
e−iω/3

)
P

(n−1)

3n−1k

(
e−iω/32

)
P

(1)
3k

(
e−iω/3n)

P
(0)
k

(
e−iω/3n+1

)
,

where P is defined by

P
(n)
k (z) =

1

3

(
− β

(n)
k + wz2 + (1 − w + β

(n)
k )z3 + z4 + (1 − w + α

(n)
k )z5 + wz6 − α

(n)
k z8

)
.

Analogously, two adjacent pairs of new level vertices in (9) can be reformulated by the following

matrix form

[λ
(n+1)
2k−1 , λ

(n+1)
2k , λ

(n+1)
2k+1 , λ

(n+1)
2k+2 ] = [λ

(n)
k−1, λ

(n)
k , λ

(n)
k+1, λ

(n)
k+2] L

(n)
k ,

where the 4 × 4 square matrix L
(n)
k is given by (15). The convergence behavior of schemes in

(9) can be analyzed similarly. More precisely, we need to investigate the convergence behavior

of the matrix product
n∏

`=0

M
(`)

3`k
= L

(0)
k L

(1)
2k L

(2)

22k
· · ·L

(n)
2nk,
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L
(n)
k =





w −β
(n)
k 0 0

1 − w + α
(n)
k 1 − w + β

(n)
k w −β

(n)
k+1

−α
(n)
k w 1 −w + α

(n)
k+1 1 − w + β

(n)
k+1

0 0 −α
(n)
k+1 w




. (15)

(a) Initial triangle (b) Initial triangle & 1st

level subdivision

(c) Initial triangle & 2nd

level subdivision

(d) Initial triangle & after

6th level subdivision

Figure 3. Ternary nonlinear interpolatory subdivision scheme in (6), with w = 2/9, is applied to an initial polygon as a triangle.

or the polynomial product

n∏

`=0

Q
(`)

2`k

(
e−iω/2n+1−`

)
= Q

(n)
2nk

(
e−iω/2

)
Q

(n−1)
2n−1k

(
e−iω/22

)
Q

(1)
2k

(
e−iω/2n)

Q
(0)
k

(
e−iω/2n+1

)
,

where the polynomial Q is defined by

Q
(n)
k (z) =

1

2

(
− β

(n)
k + wz + (1 − w + β

(n)
k )z2 + (1 − w + α

(n)
k )z3 + wz4 − α

(n)
k z5

)
.

Finally, the subdivision matrices for schemes in (13) can also be given by (15), with α
(n)
k , α

(n+1)
k ,

β
(n)
k and β

(n+1)
k replaced by 1/4−w. These matrices have eigenvalues 1, 1/2, 1/4, and 3/4−2w.

Therefore, they converge to continuous curves when w ∈ (−1/8, 7/8); in at least a C1 fashion

when w ∈ (1/8, 5/8); in at least C2 when w ∈ (1/4, 1/2). For w = 5/16, the associated refinable

function is the quartic B-spline N5, so the scheme converges to a C4 curve.

(a) Initial quadrilateral (b) Initial quadrilateral & 1st

level subdivision

(c) Initial quadrilateral & 3rd

level subdivision

(d) Initial quadrilateral & af-

ter 6th level subdivision

Figure 4. Ternary nonlinear interpolatory subdivision scheme in (6), with w = 2/9, is applied to an initial polygon as a

quadrilateral.
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4. Implementations

To show the elegance of our schemes, we will demonstrate the four families of schemes by

applying them to mainly planar polygons.

4.1. Implementations of Nonlinear Ternary Interpolatory Schemes

We first implement our ternary interpolatory schemes to some simple polygons.

Fig. 3 shows the result with the initial polygon as a triangle. Fig. 4 shows the result with the initial

polygon as a cyclic quadrilateral (with all its four vertices on a single circle). Not surprisingly, the

limiting curves in both cases are the circumscribed circles of the triangle and cyclic quadrilateral.

(a) Initial regular 5-star

shaped polygon

(b) Initial polygon & 1st

level subdivision

(c) Initial polygon & 2nd

level subdivision

(d) Result after 6th level

subdivision

Figure 5. Ternary nonlinear interpolatory subdivision scheme in (6), with w = 2/9, is applied to an initial polygon as a regular

5-star shaped polygon.

(a) Initial eight-shaped

polygon

(b) Initial polygon & 1st

level subdivision

(c) Initial polygon & 2nd

level subdivision

(d) Initial polygon & after

4th level subdivision

Figure 6. Ternary nonlinear interpolatory subdivision scheme in (6), with w = 2/9, is applied to an initial polygon as a

eight-shaped polygon.

Fig. 5 shows the result with the initial polygon as a regular 5-star shaped polygon. Fig. 6 shows

the result with the initial polygon as a eight-shaped polygon. These two figures show the behavior

of the scheme for non-convex initial polygons.

4.2. Implementations of Nonlinear Binary Approximation Schemes

For comparison purpose, we first implement our corner-cutting binary approximation schemes to

the triangle in Fig. 3(a). Fig. 7 shows the result with w = 1/3.
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(a) Initial triangle (b) Initial triangle & 1st

level subdivision

(c) Initial triangle & 2nd

level subdivision

(d) Initial triangle & after

6th level subdivision

Figure 7. Binary nonlinear approximation subdivision scheme in (9), with w = 1/3, is applied to an initial triangle in Fig. 3(a).

(a) Initial quadrilateral & 1st

level subdivision

(b) After 3rd level subdivision (c) After 6th level subdivision

(d) Initial rectangle & 1st level

subdivision

(e) After 3rd level subdivision (f) After 6th level subdivision

Figure 8. Binary nonlinear approximation subdivision scheme in (9), with w = 1/4, is applied to the quadrilateral in Fig. 4(a)

and a rectangle.

Fig. 8(a)–8(c) shows the result with the initial polygon as the quadrilateral in Fig. 4(a). Fig. 8(d)–

8(f) are results when the scheme is applied to a rectangle. Observe the corner-cutting behavior

of our binary approximation schemes in both Fig. 8(a) and Fig. 8(d). Again, the limiting curves

are the circumscribed circles of the quadrilaterals.

We end this section by pointing out that, similar to the choice for the tension parameter w in

(1), some choices of w for both (6) and (9) will make the polygons themselves overlap.

4.3. Implementations of Both Linear Ternary Interpolatory and Linear Binary Corner-

Cutting Schemes

In this section, we briefly demonstrate our 3-point linear ternary interpolatory schemes in (11)
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(a) Initial triangle & 1st

level subdivision with w =

1/6 (3 new vertices being

collinear)

(b) Initial quadrilateral &

3rd level subdivision with

w = 1/4

(c) Initial 5-star polygon &

4th level subdivision with

w = 1/4

(d) Initial 8-shaped polygon

& after 5th level subdivision

with w = 1/4

Figure 9. Linear ternary interpolatory subdivision schemes in (11), with w = 1/6, 1/4, 1/4, and 1/4, respectively, are applied

to the triangle in Fig. 3(a), the quadrilateral in Fig. 4(a), the 5-star polygon in Fig. 5(a), and the 8-shaped polygon in Fig. 6(a).

(a) Initial triangle & 1st

level subdivision with w =

1/8 (3 new vertices being

collinear)

(b) Initial quadrilateral &

3rd level subdivision with

w = 3/16

(c) Initial 5-star polygon &

4th level subdivision with

w = 7/16

(d) Initial 8-shaped polygon

& after 5th level subdivision

with w = 5/16

Figure 10. Corner-cutting binary linear approximation subdivision schemes in (12), with w = 1/8, 3/16, 7/16, and 5/16,

respectively, are applied to the triangle in Fig. 3(a), the quadrilateral in Fig. 4(a), the 5-star polygon in Fig. 5(a), and the

8-shaped polygon in Fig. 6(a).

and our 3-point linear, corner-cutting binary approximation schemes in (13).

Fig. 9 shows the results when (11) is applied to the triangle in Fig. 3(a) with w = 1/6, the

quadrilateral in Fig. 4(a) with w = 1/4, the 5-star in Fig. 5(a) with w = 1/4, and the 8-shaped

polygon in Fig. 6(a) with w = 1/4.

Fig. 10 shows the results when (13) is applied to the triangle in Fig. 3(a) with w = 1/8, the

quadrilateral in Fig. 4(a) with w = 3/16, the 5-star in Fig. 5(a) with w = 7/16, and the 8-shaped

polygon in Fig. 6(a) with w = 5/16 (quartic B-spline). Without going into details, the limiting

curves have Hölder smoothness of C .9062+ε, C1.3076+ε, C2.8597+ε, and C4, respectively, for some

small ε > 0.

In addition, to summarize and demonstrate the implementation to 3D polygons, we apply our

schemes to a 3D polygon that is formed from 6 edges and two diagonals of a cube, plotted

progressively in Fig. 11(a). For comparison purposes, we have also included the graphs when

the 4-point scheme is used.
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5. Conclusion

Two new families of 3-point nonlinear subdivision schemes for curve design were established.

The first family is ternary interpolatory and the second family is binary approximation. All of

these new schemes are circular-invariant, meaning the limiting curves are circles when they

are applied to cyclic polygons, such as triangles, squares, or rectangles. As consequences of

both families, two new families of 3-point linear ternary interpolatory and binary approximation

subdivision schemes were developed as well, where the latter is a naturally extension of the Lane-

Riesenfeld schemes, which are corner-cutting depending on the choices of the tension parameter.

The four families of schemes were implemented extensively by a variety of examples. Our future

work will be three-fold: (1) to establish detailed smoothness analysis near vertices; (2) to develop

“local adaptive” schemes for curve design; and (3) to incorporate the similar idea to developing

efficient nonlinear subdivision schemes for surface design.
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(a) Initial 3D polygon
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(b) Initial 3D polygon &

2nd level ternary subdivi-

sion with w = 2/9
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(c) Initial 3D polygon &

5th level ternary subdivi-

sion with w = 2/9
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(d) After 6th level

ternary subdivision with

w = 2/9
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(e) Initial 3D polygon &

1st level binary subdivi-

sion with w = 1/10
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(f) Initial 3D polygon &

2nd level binary subdivi-

sion with w = 1/10
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(g) Initial 3D polygon &

5th level binary subdivi-

sion with w = 1/10
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(h) After 6th level binary

subdivision with w =

1/10
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(i) Initial 3D polygon &

1st level corner-cutting

binary subdivision with

w = 3/16
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(j) Initial 3D polygon &

2nd level corner-cutting

binary subdivision with

w = 3/16
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(k) Initial 3D polygon &

5th level corner-cutting

binary subdivision with

w = 3/16
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(l) After 6th level corner-

cutting binary subdivi-

sion with w = 3/16
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(m) Initial 3D polygon &

1st level 4-point binary

subdivision
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(n) Initial 3D polygon &

2nd level 4-point binary

subdivision
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(o) Initial 3D polygon &

5th level 4-point binary

subdivision
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(p) After 6th level 4-

point binary subdivision

Figure 11. For comparison purposes, four schemes: nonlinear ternary interpolatory scheme, (a)–(d); binary approximation

scheme with w = 1/10, (e)–(h); corner-cutting linear binary approximation scheme in (12) with w = 7/16, (i)–(l); and 4-point

binary scheme, (m)–(p), are applied to a 3D polygon formed by 6 edges and 2 diagonals of a cube in Fig.11(a). The 6th-level

subdivisions are given in Fig.11(d), Fig.11(h), Fig.11(l), and Fig.11(p), respectively.


