
Available at
http://pvamu.edu/aam

Appl. Appl. Math.

ISSN: 1932-9466

Vol. 11,  Issue 1  (June 2016),  pp. 1 – 44

Applications and Applied

Mathematics:

An International Journal

(AAM)

Construction of Energy Preserving QMF

Jian-ao Lian† & Yonghui Wang‡

Department of {Mathematics†, Engineering Technology‡}
Prairie View A&M University

Prairie View, TX 77446-0519 USA

e-mail: {jilian, yowang}@pvamu.edu

Received February 6, 2016; accepted May 9, 2016

Abstract

Recently, a family of perfect reconstruction (PR) quadrature mirror filterbanks (QMF) with finite

impulse response filters (FIR) from systems of biorthogonal refinable functions and wavelets were

introduced and also applied to image processing. However, a detailed procedure was absent. The

main objective of this paper is to present extensive examples that will provide a thorough process

of construction of the new family of PR QMF with FIR filterbanks. These new filters are linear-

phase due to the symmetry property of their corresponding biorthogonal refinable functions and

wavelets. In addition, these filters have odd lengths so that the symmetric extension can be easily

applied. Another important feature is that the filters preserve energy (EP) very well. The notion

of Condition EP was thus introduced for the purpose of further examining these features.
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1. Introduction

S
UBBAND image coders require high performance filterbanks. A family of these high-

performance filterbanks can be created from biorthogonal pairs of refinable functions and

wavelets. Contrary to the orthonormal wavelets (Daubechies, 1988), it is well-known that one of

the major advantages of the compactly supported biorthogonal wavelets is its symmetry (Le Gall

and Tabatabai, 1988; Cohen et al., 1992), (Daubechies, 1992, p.259). The symmetry property, in

turn, implies the existence of the linear-phase finite impulse response (FIR) lowpass and highpass
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perfect reconstruction (PR) quadrature mirror filters (QMF), which originate from the symmetry

of the underlying compactly supported refinable functions and wavelets. To avoid artifacts along

image boundaries when an image coder is applied, odd length filterbanks (FB) are desired so

that the symmetric extension can be easily applied. Moreover, wavelet subbands’ energy on

consecutive decomposition levels need to be relatively well preserved, where the energy of wavelet

coefficients is determined by the weights of the biorthogonal filterbanks (BFB). Here, weights of a

system of BFB is defined in Section 3 by the `2-norm squares of the lowpass and highpass filters.

Certainly, filterbanks from orthonormal wavelets have perfect energy preservation, namely, their

`2-norm squares are always one. However, filterbanks from biorthogonal wavelets are generally

not (Woods and Naveen, 1992; Usevitch, 1996; Usevitch, 2001). This criterion of determining

their performance can be defined by how close they are to filterbanks from orthonormal wavelets.

In other words, a pair of biorthogonal refinable function and wavelet is good only if they are

near orthonormal. Or, equivalently and more specifically, their weights must be as close to one

as possible.

For convenience, filterbanks (h, g), with lowpass filter h = {hk}k∈Z and highpass filter g =

{gk}k∈Z, are said to be energy-preserving, denoted by Condition EP, if their L2 norms are close

to 1, i.e., ‖h‖2 ≈ 1 and ‖g‖2 ≈ 1, with the `2-norm of h, e.g., defined by ‖h‖2
2 =

∑
k∈Z

|hk|2.

To be more specific, Conditions EP1–EP4 are introduced if both ‖h‖2 and ‖g‖2 satisfy one of

the following conditions:

Condition EP1: ‖h‖2 = 1,
∣∣‖g‖2

2 − 1
∣∣ = the smallest; (1)

Condition EP2: ‖g‖2 = 1,
∣∣‖h‖2

2 − 1
∣∣ = the smallest; (2)

Condition EP3: ‖h‖2 = ‖g‖2,
∣∣‖h‖2

2 − 1
∣∣ = the smallest; (3)

Condition EP4:
(
‖h‖2

2 − 1
)2

+
(
‖g‖2

2 − 1
)2

= the smallest. (4)

JPEG 2000, the new image compression standard, uses the biorthogonal 5/3, called LeGall 5/3 (Le

Gall and Tabatabai, 1988) for lossless compression. It is also referred to as Cohen-Daubechies-

Feauveau (CDF) wavelet filters (Cohen et al., 1992), or CDF 5/3 for short. For lossy compression,

JPEG 2000 uses the biorthogonal wavelet filters CDF 9/7 (Cohen et al., 1992). Notice that both

LeGall 5/3 and CDF 9/7 do not satisfy any of the four specific EP conditions in (1)–(4). However,

as we will see at the end of Section IV, CDF 9/7 does feature the energy-preserving property

very well, though LeGall 5/3 does not preserve energy well enough.

New filterbanks fin this paper eature all of the above listed properties, with Condition EP in

particular. Some of our results in this paper was successfully applied to image processing (Lian

and Wang, 2014). However, a detailed construction of the new family of biorthogonal PR FIR

QMF was not provided in (Lian and Wang, 2014). Henceforward, the main purpose of this paper

is to furnish more specifics or fill the gaps of the construction.

To facilitate presentation, some background information or preliminaries and literature review are

given in Section 2. Following (Woods and Naveen, 1992; Usevitch, 1996; Usevitch, 2001), weights

are re-defined and re-formulated in terms of two-scale sequences by convolution in Section 3. A

convenient algorithm of how to build up a system of biorthogonal wavelets constitutes Section 4.
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A new family of biorthogonal refinable functions and wavelets, and consequently, BFBs with

certain Condition EP’s, are constructed in Section 5. Smoothness of the new biorthogonal refinable

functions and wavelets are analyzed in Section 6. We demonstrate our new BFBs in Section 7.

by applying them to image compression and image denoising. Some concluding remarks and

discussions are found in Section 8. An efficient algorithm for evaluating the Riesz bounds by

using Euler-Frobenius polynomials is illustrated in Appendix I. In addition, for completeness,

some additional BFBs with certain EP conditions, including 7/5, 9/7, 11/9, and 13/11, are provided

in the Appendix II, while the even-length BFBs with Condition EP3 are discussed in Appendix III.

2. Background

It is well-known that under appropriate normalization conditions, a pair of compactly supported

refinable function φ and eavelet ψ are determined by functional equations

φ(t) =
√

2
∑

k∈Z

hkφ(2t− k), (5)

ψ(t) =
√

2
∑

k∈Z

gkφ(2t− k), t ∈ R, (6)

where both {
√

2hk}k∈Z and {
√

2gk}k∈Z have finite nonzero entries and are called the two-scale

sequences of φ and ψ. The functional equations (5) and (6) are referred to as the two-scale

relations of φ and ψ. In terms of Fourier transforms, the functional equations (5) and (6)

determining such a wavelet system (φ, ψ) are equivalent to

φ̂(ω) =H(z) φ̂
(ω

2

)
, (7)

H(z) =
1√
2

∑

k∈Z

hkz
k; (8)

ψ̂(ω) =G(z) φ̂
(ω

2

)
, (9)

G(z) =
1√
2

∑

k∈Z

gkz
k, (10)

where z = exp(−jω/2), j =
√
−1 ; H and G are the two-scale symbols of φ and ψ, respectively.

In signal and image processing, {hk}k∈Z in (5) or (8) is used for the lowpass filter, and {gk}k∈Z

in (6) or (10) is for the highpass filter. With H and G in (7)–(10), a square polynomial matrix

MH,G of order 2 is introduced as

MH,G(z) =

[
H(z) H(−z)
G(z) G(−z)

]
. (11)

For all QMF filters ({hk}k∈Z, {gk}k∈Z) to be with FIR, it is natural to require that

det (MH,G(z)) = εz2K−1, |z| = 1, (12)

for some integer K, where ε = 1 or −1. Under the condition (12), a new wavelet system (φ̃, ψ̃)

can be established, which is dual or biorthogonal to (φ, ψ). Analogous to (7)–(10) for (φ, ψ),
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the biorthogonal wavelet system (φ̃, ψ̃) can also be formulated by

̂̃
φ(ω) =H̃(z)

̂̃
φ
(ω

2

)
, (13)

H̃(z) =
1√
2

∑

k∈Z

h̃kz
k; (14)

̂̃
ψ(ω) =G̃(z)

̂̃
φ
(ω

2

)
, (15)

G̃(z) =
1√
2

∑

k∈Z

g̃kz
k, (16)

with H̃ and G̃ being the two-scale symbols of φ̃ and ψ̃, {
√

2h̃k}k∈Z and {
√

2g̃k}k∈Z the two-scale

sequences of φ̃ and ψ̃. The biorthogonality conditions between the wavelet system (φ, ψ) and its

dual (φ̃, ψ̃) are governed and reflected by the fact that M eH, eG(z) is the inverse of MH,G(z)? on

|z| = 1, namely,

M eH, eG(z)MH,G(z)? = I2, |z| = 1, (17)

where ? denotes the complex conjugation of the transpose, and I2 is the identity matrix of order

2.

With the natural requirement (12), G and G̃ can be obtained from H and H̃ directly from the

matrix identity (17):

G(z) = −εz2K−1H̃(−z), (18)

G̃(z) = −εz2K−1H(−z), (19)

with H and H̃ satisfying

H(z)H̃(z) +H(−z)H̃(−z) = 1, |z| = 1. (20)

In other words, a complete biorthogonal wavelet system, denoted by, e.g., (φ, ψ) and (φ̃, ψ̃), is

completely determined if H and H̃ are determined through the identity (20). For instance, for

LeGall 5/3, ε = −1 and K = 2 in (12), and and brusque calculation yields

H(z) =
1

2

(
1 + z

2

)2

(−1 + 4z − z2), (21)

H̃(z) = z

(
1 + z

2

)2

. (22)

For CDF 9/7, ε = −1 and K = 4 in (12), and

H(z) =

(
1 + z

2

)4 (
s0 + s1z + (1 − 2s0 − 2s1)z

2 + s1z
3 + s0z

4
)
, (23)

H̃(z) = z

(
1 + z

2

)4 (
s̃0 + (1 − 2s̃0)z + s̃0z

2
)
, (24)
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where

s0 =
1

336

(
70 − 7(5 −

√
15)α+ (2

√
15 − 5)α2

)
, (25)

s1 =
1

24

(
−36 + 2(6 −

√
15)α− (

√
15 − 3)α2

)
, (26)

s̃0 = − 1

168

(
56 + 14α − (3

√
15 − 11)α2

)
, (27)

with

α =
3

√
154 + 42

√
15. (28)

In the wavelet literature, although there is no clear standard for BFB’s energy preservation

or energy compaction measure, there are some studies regarding the energy preservation or

compaction of biorthogonal filterbanks (cf., e.g., (Wei et al., 1998; Yang et al., 1998; Abdelnour

and Selesnick, 2004; de Saint-Martin et al., 1999)). Due to the fact that |H(z)|2 + |H(−z)|2 = 1

on |z| = 1 is necessary if H is the two-scale symbol of an orthonormal refinable function,

Cohen et al. (Cohen et al., 1992) and Daubechies (Daubechies, 1992, p.283) used the method of

minimizing
∣∣∣∣
∫ π

−π

[
1 − |H(e−jω)|2 − |H(−e−jω)|2

]
dω

∣∣∣∣ , (29)

to obtain H first then established H̃ afterward. In fact, for any two-scale symbol H in (8) and

H̃ in (14),

1

2π

∫ π

−π

[
1 − |H(e−jω)|2 − |H(−e−jω)|2

]
dω = 1 −

∑

k∈Z

h2
k, (30)

1

2π

∫ π

−π

[
1 − |H̃(e−jω)|2 − |H̃(−e−jω)|2

]
dω = 1 −

∑

k∈Z

h̃2
k. (31)

Hence, ‖h‖2
2 = 1 in (1) for Condition EP1 is equivalent to allowing the integral on the left of

(30) to be zero; ‖g̃‖2
2 = 1 in (2) for Condition EP2 is equivalent to allowing the integral for H̃

on the left of (31) to be zero due to (18).

Wei et al. (Wei et al., 1998) constructed a family of general biorthogonal coifman wavelet systems

(GBCW) where the energy compaction capability was also concerned but not considered during

the filter construction. As an example, the GBCW 9/7 in (Wei et al., 1998) was

h = {hk}k=0,...,8 =
1

32
√

2
{1, 0,−8, 16, 46, 16,−8, 0, 1} ,

h̃ = {h̃k}k=1,...,7 =
1

16
√

2
{−1, 0, 9, 16, 9, 0,−1} .

However,

‖h‖2
2 =

1379

1024
= 1.3466796875,

‖h̃‖2
2 =

105

128
= .8203125,
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both relatively away from one.

Yang et al. (Yang et al., 1998) designed PR biorthogonal filterbanks that maximize orthonor-

mality subject to adjustable structural constraints in order to achieve various degrees of energy

compaction.

Due to the necessary conditions

∑

k∈Z

hkhk+2` = δ`,0, ` ∈ Z, (32)

for an orthogonal filter {hk}k∈Z, Abdelnour and Selesnick (Abdelnour and Selesnick, 2004) in-

troduced the angles among all even-integer shifts of a lowpass filter {hk}k∈Z and then constructed

symmetric nearly orthogonal biorthogonal filterbanks by requiring all these angles to be close

to 90◦, where the angle between a vector {hk}k∈Z and its even-interger shift {hk+2`}k∈Z was

conventionally defined and calculated by

arccos
〈{hk}k∈Z, {hk+2`}k∈Z〉

‖{hk}k∈Z‖2
2

, ` ∈ Z. (33)

The h and g had subsets of exactly equal coefficients, and lengths of both h and g were even

only. Observe that all angles in (33) for ` ∈ Z \ {0} are close to 90◦ is equivalent to that all

coefficients of z` in |H(z)|2+|H(−z)|2 for ` ∈ Z\{0} are close to zero, i.e., φ is near orthogonal.

A family {fk}k∈Z of functions in a Hilbert space is a Riesz basis, if there are constants A,B > 0

such that

A‖{ck}k∈Z‖2
2 ≤ ‖

∑

k∈Z

ckfk‖2
2 ≤ B‖{ck}k∈Z‖2

2, (34)

for all {ck}k∈Z ∈ `2(R), where A and B are the lower Riesz bound (LRB) and upper Riesz

bound (URB) for {fk}k∈Z. Saint-Martin et al. (de Saint-Martin et al., 1999) also concerned

energy preserving and established two even-length biorthogonal filterbanks 26/14 and 18/10.

The ratios of the upper and lower Riesz bounds were required to be close to one so the

resulting biorthogonal filterbanks were nearly orthogonal, where the Reisz bounds were calculated

iteratively. For the BFB 26/14 in (de Saint-Martin et al., 1999), w0,0 = .9951120811543 and w0,1 =

1.0076522344272; for the BFB 18/10 in (de Saint-Martin et al., 1999), w0,0 = 1.0210046900565

and w0,1 = .9834108802518, so that they both preserved energy well, but the corresponding

wavelets have only one vanishing moment.

We end this section by indicating that Appendix I gives a detailed procedure of how to evaluate

both the LRB and the URB for refinable functions φ and φ̃. All LRB and URB of φ and φ̃ for

our new BFBs with certain EP conditions will be listed at the end of Section 5.

3. Weights in Terms of Two-Scale Sequences

On one hand, lowpass and highpass filters {hk}k∈Z and {gk}k∈Z derived from any orthonormal

wavelet system (φ, ψ) are self-dual. The filterbanks satisfy the Condition EP at any level of
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decomposition, mainly due to the fact that
∑

k∈Z

|hk|2 =
∑

k∈Z

|gk|2 = 1,

and the Rayleigh Energy Theorem or Parseval’s Theorem

‖x‖2 = ‖X‖2 =

∫ π

−π

|X(e−jω)|2dω,

where X is the normalized discrete Fourier transform of a discrete time sequence x with finite

`2-norm.

On the other hand, the energy of a biorthogonal wavelet system is not 100% preserved. Here,

energy can be expressed in terms of the wavelet coefficients and can also be formulated by the

variance of a signal’s reconstructed output through its subband synthesis system. This variance,

in turn, can be expressed in terms of the weights, or `2-norm squares, of the lowpass and highpass

filters (Woods and Naveen, 1992; Usevitch, 2001).

More precisely, let ({hk}k∈Z, {gk}k∈Z) be the lowpass and highpass filters corresponding to a

pair of refinable function and wavelet (φ, ψ). Introduce (h`,0, g`,1), with ` ∈ Z+ indicating the

decomposition level, 0 for lowpass subband, and 1 for highpass subband, by

h`,0 = h`−1,0 ∗ {h2`k}k∈Z, (35)

g`,1 = h`−1,0 ∗ {g2`k}k∈Z, ` = 1, 2, . . . , (36)

h0,0 = {hk}k∈Z, (37)

g0,1 = {gk}k∈Z, (38)

where ∗ indicates the usual convolution, and {h2`k}k∈Z and {g2`k}k∈Z are the `-th 2-upsampling

of {hk}k∈Z and {gk}k∈Z. We define weights with respect to (h,k) = ({hk}k∈Z, {gk}k∈Z), by

w`,0 = ‖h`,0‖2, (39)

w`,1 = ‖g`,1‖2, ` = 0, 1, 2, . . . . (40)

Similarly, let (h̃, k̃) =
(
{h̃k}k∈Z, {g̃k}k∈Z

)
be the lowpass and highpass filters with respect to

(φ̃, ψ̃) that is biorthogonal to (φ, ψ); introduce
(
h̃`,0, g̃`,1

)
, ` ∈ Z+, by

h̃`,0 = h̃`−1,0 ∗ {h̃2`k}k∈Z, (41)

g̃`,1 = h̃`−1,0 ∗ {g̃2`k}k∈Z, ` = 1, 2, . . . , (42)

h̃0,0 = {h̃k}k∈Z, (43)

g̃0,1 = {g̃k}k∈Z; (44)

and define weights with respect to (h̃, k̃) by

w̃`,0 = ‖h̃`,0‖2, (45)

w̃`,1 = ‖g̃`,1‖2, ` = 0, 1, 2, . . . . (46)
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Conditions EP1–EP4 in (1)–(4) include specific criteria regarding how close is to one for each of

these weights at the initial level. For instance, Condition EP1 means minimizing w0,1 − 1 under

the condition w0,0 = 1.

We end this section by pointing out the following.

Proposition 1: The weights in (39)–(40) can also be determined by the constant term of the

two-scale symbols H and G of φ and ψ, i.e.,

w`,0 = the constant term of 2`+1
∏̀

k=0

∣∣∣H
(
z2k
)∣∣∣

2

, (47)

w`,1 = the constant term of 2`+1
∣∣∣G(z2`

)
∣∣∣
2

`−1∏

k=0

∣∣∣H
(
z2k
)∣∣∣

2

, (48)

for ` = 0, 1, 2, . . ..

Proof. A straightforward application of the fact that the z-transform of a convolution of two

sequences is the product of their z-transforms provides proof of Proposition 1. In details, without

loss of generality, represent the z-transform of a sequence {ak}k∈Z by

Z [{ak}k∈Z] (z) =
∑

k∈Z

akz
−k.

Then, take the z-transforms of (35) both sides to obtain

Z [h`,0] (z) = Z [h`−1,0] (z)Z
[
{h2`k}k∈Z

]
(z)

= Z [h`−1,0] (z)
√

2H
(
z−2`

)

= Z [h0,0] (z)
(√

2
)` ∏̀

k=1

H
(
z−2k

)

=
(√

2
)`+1 ∏̀

k=0

H
(
z−2k

)
,

where H in (8) has been used in the second equality. Similarly, utilize this result and G in (10)

and take the z-transforms of (36) both sides to yield

Z [g`,1] (z) = Z [h`−1,0] (z)Z
[
{g2`k}k∈Z

]
(z)

=
(√

2
)`+1

G
(
z−2`

) `−1∏

k=0

H
(
z−2k

)
.

The conclusion follows simply by using the fact that

∑

k∈Z

|ak|2 = the constant term of

(
∑

k∈Z

akz
k

) (
∑

k∈Z

akz
−k

)
.

This completes the proof of Proposition 1.
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4. An Algorithm for Constructing Biorthogonal Refinable Func-
tions and Wavelets

Let (φ, ψ) and (φ̃, ψ̃) be a biorthogonal pair of refinable functions and wavelets, with two-scale

symbols (H,G) and (H̃, G̃). For both φ and φ̃ to have even-length supports and both ψ and ψ̃

to have 2m vanishing moments (VM), H and H̃ can be written as

H(z) =

(
1 + z

2

)2m

S2n(z), (49)

H̃(z) = z

(
1 + z

2

)2m

S̃2n−2(z), (50)

where both S2n and S̃2n−2 are reciprocal polynomials of exact degrees 2n and 2n−2, and satisfy

(1 + z) 6
∣∣∣ S2n(z), (1 + z) 6

∣∣∣ S̃2n−2(z);

S2n(1) = S̃2n−2(1) = 1.

Here, a (Laurent) polynomial is reciprocal if it is symmetric, e.g., P (z) = −3/z+2+z+2z2−3z3

is reciprocal since P (1/z) = z2P (z). By doing so, the filterbanks will be CDF (2m + 2n +

1)/(2m + 2n − 1), i.e., both lowpass and highpass filters are with linear phases and both have

odd lengths. The integer K in (12) or (18)–(19) is K = m+n. By selecting ε = (−1)m+n+1 (so

that both ψ and ψ̃ look better in graphs), G and G̃ in (18) and (19) can simply be calculated by

G(z) = (−1)m+nz−1H̃(−z), (51)

G̃(z) = (−1)m+nz−1H(−z). (52)

As immediate simple examples, the LeGall 5/3 is when m = n = 1, while the CDF 9/7 is when

m = n = 2.

With the introduction of

t =
1

2

(
1 − z−1 + z

2

)
, (53)

the two polynomials H and H̃ in (49)–(50) can also be expressed as

H(z) = zm+n (1 − t)m Fn(t), (54)

H̃(z) = zm+n (1 − t)mGn−1(t), (55)

for some polynomials Fn and Gn−1 of exact degrees n and n− 1 that satisfy

Fn(0) = Gn−1(0) = 1. (56)

The identity (20) then becomes

(1 − t)2m Fn(t)Gn−1(t) + t2mFn(1 − t)Gn−1(1 − t) = 1, t ∈ [0, 1]. (57)
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Observe that n ≥ m in order for (57) to have any solution. Hence, it then follows from (Lian,

2001) that FnGn−1 must have the form

Fn(t)Gn−1(t) =
2m−1∑

k=0

(
2m− 1 + k

k

)
tk + t2m(1 − 2t)fn−m−1((1 − 2t)2), (58)

where fn−m−1 is a polynomial of exact degree n−m− 1.

In summary, here is an algorithm for constructing biorthogonal refinable functions and wavelets,

and consequently their corresponding BFBs.

Algorithm 1 (for Constructing BFB with Condition EP): Step 1.

(1) For ψ and ψ̃ to have 2m vanishing moments, select an integer n > m; and write explicitly

the three polynomials Fn, Gn−1, and fn−m−1 of exact degrees n, n − 1, and n −m − 1,

respectively.

(2) The identity (58), with the condition (56), gives rise to 2n− 1 equalities for the n, n− 1,

and n −m to-be-determined coefficients in Fn, Gn−1, and fn−m−1 . (Although the 2n − 1

equations constitute a nonlinear system, there should still be n−m additional freedoms.)

(3) For Condition EP1, minimize w0,1 − 1 under the condition w0,0 = 1; for Condition EP2,

minimize w0,0 − 1 under the condition w0,1 = 1; for Condition EP3, minimize w0,0 − 1

(or w0,1 − 1) under the condition w0,0 = w0,1; for Condition EP4, minimize (w0,0 − 1)2 +

(w0,1 − 1)2.

(4) After both Fn and Gn−1 being fixed, both H and H̃ are determined by (54)–(55), with t

in (53); and G and G̃ are determined from H and H̃ through (51)–(52).

(5) With H, G, H̃, and G̃ being determined, BFB (2m+ 2n + 1)/(2m + 2n − 1) filters with

appropriate EP conditions are consequently established through (8), (10), (14), and (16).

As convenient examples, for LeGall 5/3, m = n = 1 and

F1(t) = 1 + 2t, G0(t) = 1;

for CDF 9/7, m = n = 2 and

F2(t)G1(t) = 1 + 4t+ 10t2 + 20t3,

which leads to

F2(t) = 1 + a1t+ a2t
2, (59)

G1(t) = 1 + b1t, (60)
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where the three coefficients a1, a2, and b1 in (59)–(60) are explicitly expressed by

a1 =
8

3
− 1

3
α +

3
√

15 − 11

42
α2, (61)

a2 =
10

3
− 5 −

√
15

3
α+

2
√

15 − 5

21
α2, (62)

b1 =
4

3
+

1

3
α− 3

√
15 − 11

42
α2, (63)

with α already having been introduced in (28). For comparison purposes, weights for LeGall

5/3 are calculated and listed in Table 1. It is clear that they do not satisfy any of the four EP

conditions in (1)–(4); and the weights are relatively away from 1. Weights for CDF 9/7 are also

calculated by using our formulations in (35)–(40) and (41)–(46), and included in Table 2. Though

CDF 9/7 does not satisfy any of the four EP conditions in (1)–(4), Table 2 clearly indicates that

CDF 9/7 filters do preserve energy for all the first 4 levels very well (as all weights are relatively

close to 1).

We end this section by mentioning that the scenario n = m in Algorithm 1 corresponds to the

CDF (4m + 1)/(4m − 1) in the literature (of both wavelets and image and signal processing).

By allowing n ≥ m + 1, we have more flexibility or can require H and H̃ to satisfy certain

desirable conditions, such as our newly proposed EP conditions.

Table 1. Weights of LeGall 5/3, with h =
1√
2

{
−1

4
,
1

2
,
3

2
,
1

2
,−1

4

}
and h̃ =

1√
2

{
1

2
, 1,

1

2

}

Weights h eh Weights

w0,0 1.4375000000000000 .7500000000000000 ew0,0

w0,1 .7500000000000000 1.4375000000000000 ew0,1

w1,0 1.7382812500000000 .6875000000000000 ew1,0

w1,1 1.3359375000000000 .9218750000000000 ew1,1

w2,0 1.9162597656250000 .6718750000000000 ew2,0

w2,1 1.7592773437500000 .7929687500000000 ew2,1

w3,0 2.0167999267578125 .6679687500000000 ew3,0

w3,1 2.0131530761718750 .7607421875000000 ew3,1

Table 2. Weights of CDF 9/7

Weights h eh Weights

w0,0 1.0404359637949253 .9829536572876483 ew0,0

w0,1 .9829536572876483 1.0404359637949253 ew0,1

w1,0 .9938066630262757 1.0306024684922561 ew1,0

w1,1 1.1186419424407187 .9672158060329819 ew1,1

w2,0 .9708630123538691 1.0520930222440912 ew2,0

w2,1 1.0443177567099245 1.0396277874758167 ew2,1

w3,0 .9633462544497677 1.0584732545638578 ew3,0

w3,1 1.0037017315870575 1.0751205695491978 ew3,1
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5. New BFBs with Appropriate EP Conditions

We utilize the efficient Algorithm 1 in Section 4 to build a new family of compactly supported

biorthogonal refinable functions and wavelets, such that their corresponding BFBs satisfy one of

the four EP conditions in (1)–(4). The selected values for m in (49)–(50) will be 1, 2, and 3, so

that the numbers of VM for the corresponding wavelets will be 2, 4, and 6.

5.1. BFB 7/5 with Condition EP4: m = 1 and n = 2.

By writing the two polynomials F2 and G1 in (54)–(55) explicitly as

F2(t) = 1 + a1t+ a2t
2, (64)

G1(t) = 1 + b1t, (65)

it follows from (58) that they must satisfy

F2(t)G1(t) = 1 + 2t+ C0t
2(1 − 2t), (66)

for some constant C0. Solve (64)–(66) for a1, a2, and C0 to obtain

a1 = 2 − b1, a2 =
2b1(b1 − 2)

b1 + 2
, C0 = −b

2
1(b1 − 2)

b1 + 2
, (67)

with the last parameter b1 to be determined from one of the four EP conditions. For instance,

w0,0 = ‖h‖2
2 = 1 in Condition EP1 leads to

b41 − 12b31 − 68b21 − 192b1 + 224 = 0, (68)

while w0,1 = ‖g‖2
2 in Condition EP1 will remain a constant close to 1. Similarly, with Condition

EP2, Condition EP3, and Condition EP4, b1 is governed by

3b21 + 16b1 − 16 = 0, (69)

5b41 + 68b31 + 188b21 + 192b1 − 352 = 0, (70)

37b81 + 634b71 + 4560b61 + 17424b51 + 36720b41

+ 43488b31 + 21760b21 + 40192b1 − 109588 = 0, (71)

respectively. Solving (68)–(71) numerically, solutions for b1 satisfying Condition EP1–Condition

EP4 are given by

b1 = .8645028006282423, (72)

b1 = .8610017480861208, (73)

b1 = .8627181302055645, (74)

b1 = .8626844958636667. (75)

We point out that the value b1 in (73) was also obtained in (Cohen et al., 1992) and (Daubechies,

1992, p.283) where the expression in (29) was minimized, or equivalently, w0,0 = 1. Similar
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BFBs were also constructed in (Antonini et al., 1992), where filter entries were rational numbers,

namely,

{hk}k=−3,...,3 =
1

280
√

2

{
− 3,−15, 73, 170, 73,−15,−3

}
,

{h̃k}k=−2,...,2 =
1

20
√

2
{−1, 5, 12, 5,−1} .

Here, by using our notations, the corresponding b1 in (65), and consequently a1, a2, and C0 in

(67) are

b1 =
4

5
; a1 =

6

5
, a2 = −24

35
; C0 =

48

175
;

and the weights w0,0 and w0,1 in (45)–(46) are

w0,0 =
2859

2800
= 1.0210714285714286,

w0,1 =
49

50
= .98.

Turning to the four values for b1 in (72)–(75), they are all close to each other. We here only

focus on the BFB with Condition EP4 in this section, i.e., with b1 in (75). We use φEP4
7,5 , ψEP4

7,5 ,

φ̃EP4
7,5 , and ψ̃EP4

7,5 to denote the corresponding biorthogonal refinable functions and wavelets. It

follows from (54)–(55), (64)–(65), (67), and (75), the BFB 7/5 with Condition EP4 is created

and listed in Table 3.

Table 3. BFB 7/5 with Condition EP4

k h g k

0, 6 −.0151469253895285 −.0762512571312121 0, 4

1, 5 −.0702315873863679 −.3535533905932738 1, 3

2, 4 .3687003159828022 .8596092954489717 2

3 .8475699559592833

k eh eg k

1, 5 −.0762512571312121 .0151469253895285 −1, 5

2, 4 .3535533905932738 −.0702315873863679 0, 4

3 .8596092954489717 −.3687003159828022 1, 3

.8475699559592833 2

Weights of the BFB 7/5 with Condition EP4 are illustrated in Table 4. The graphs of φEP4
7,5 , ψEP4

7,5 ,

φ̃EP4
7,5 , and ψ̃EP4

7,5 are plotted in Fig. 1. Additional three BFB 7/5’s with Conditions EP1–EP3 are

included in the Appendix II.

5.2. BFB 9/7 with Condition EP1: m = 1 and n = 3.

Using φEP1
9,7 , ψEP1

9,7 , φ̃EP1
9,7 , and ψ̃EP1

9,7 to denote the biorthogonal refinable functions and wavelets,

it follows from (56)-(58) that we need to find F3 and G2, e.g.,

F3(t) = 1 + a1t+ a2t
2 + a3t

3, (76)

G2(t) = 1 + b1t+ b2t
2, (77)
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Table 4. Weights of BFB 7/5 with Condition EP4

Weights h eh Weights

w0,0 1.0005784866875877 1.0005566492504580 ew0,0

w0,1 1.0005566492504580 1.0005784866875877 ew0,1

w1,0 1.0076302279709638 .9942931852525390 ew1,0

w1,1 .9949013664034054 1.0082125289423012 ew1,1

w2,0 1.0109731444897238 .9911227078550452 ew2,0

w2,1 1.0055307248134918 .9987303196390679 ew2,1

w3,0 1.0121574495762324 .9898977949364849 ew3,0

w3,1 1.0109555946963996 .9935355807715416 ew3,1

0 2 4 6

0

1

φEP4

7,5

0 2 3 5

−1

0

1

2
ψEP4

7,5

1 2 4 5

0

1

φ̃EP4

7,5

0 2 3 5

−1

0

1

2
ψ̃EP4

7,5

Figure 1. Plots of refinable functions and wavelets for BFB 7/5 with Condition EP4: φEP4
7,5 ,

ψEP4
7,5 , φ̃EP4

7,5 , and ψ̃EP4
7,5 .

so that they satisfy

F3(t)G2(t) = 1 + 2t+ t2(1 − 2t)(C0 + C1(1 − 2t)2), (78)

for some constants C0 and C1.
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We focus on BFB filters, derived from the refinable function φ and wavelet ψ, satisfying Condition

EP1 in (1), i.e.,

w0,0 = 1, |w0,1 − 1| = the smallest. (79)

To demonstrate the elegance of our Algorithm 1, we enumerate the procedure for calculating the

7 to-be-determined coefficients a1, a2, a3, b1, b2, C0, and C1 in details (similar details will be

omitted for the remaining seven constructions in the sequel).

First of all, the identity (78) yields 5 equations involving the 7 coefficients a1, a2, a3, b1, b2, C0,

and C1, namely,

a1 + b1 − 2 = 0, (80)

a2 + a1b1 + b2 − C0 − C1 = 0, (81)

a1b2 + a2b1 + a3 + 2C0 + 6C1 = 0, (82)

a2b2 + a3b1 − 12C1 = 0, (83)

a3b2 + 8C1 = 0. (84)

Solve the 5 equations (80)–(84) in such a way that a1, a2, a3, C0 and C1 are being expressed in

terms of b1 and b2:

a1 = −b1 + 2, (85)

a2 =
(2b1 + 3b2)(b1b2 + 2b21 − 4b1 − 4b2)

(b1 + b2)(2b1 + b2 + 4)
, (86)

a3 = −2b2(b2b1 − 4b2 + 2b21 − 4b1)

(b1 + b2)(2b1 + b2 + 4)
, (87)

C0 = −1

4
(b32b1 − 8b32 + 6b22b

2
1 − 36b22b1 − 48b2b

2
1 + 32b2b1 − 16b31

+ 32b22 + 8b41 + 12b31b2)/((b1 + b2)(2b1 + b2 + 4)), (88)

C1 =
1

4

b22(b2b1 − 4b2 + 2b21 − 4b1)

(b1 + b2)(2b1 + b2 + 4)
. (89)

Second, by using (53)–(55) and (18), the two conditions in (79) are

w0,0 = the constant term of 2(1 − t)2F3(t)
2
∣∣∣
t= 1

2
(1− z−1+z

2
)
= 1, (90)

and

w0,1 − 1 = the constant term of 2(1 − t)2G2(t)
2
∣∣∣
t= 1

2
(1− z−1+z

2
)
− 1 = the smallest. (91)

With (85)–(89), the requirement (90) leads to

28672b22 + 28672b21 + 57344b2b1 − 58368b2b
2
1 − 43008b22b1 − 9216b32 − 10144b32b1

− 25168b22b
2
1 − 25088b31b2 − 1736b32b

2
1 − 4016b22b

3
1 − 4096b2b

4
1 − 24576b31

− 8704b41 − 1360b42 − 1536b51 + 128b61 − 280b42b1 + 11b42b
2
1

+ 76b32b
3
1 + 204b22b

4
1 + 256b2b

5
1 = 0, (92)
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while, by denoting w0,1 − 1 in (91) by T (b1, b2), meaning the target function, T (b1, b2) becomes

T (b1, b2) =
1

512
(24b21 + 24b1b2 + 7b22 + 128b1 + 48b2 − 128). (93)

Third, a direct application of the method of Lagrange multipliers to finding local extrema of the

target function T (b1, b2) in (93) under the constraint (92) gives rise to a group of four solutions

for b1 and b2. The best solution among these four solutions that minimizes T (b1, b2) in (93) is

b1 = 1.0165426408592217, b2 = −.3862070404605876,

so that

a1 = .9834573591407783, a2 = −.2081412616407905,

a3 = −.1838511497717023, C0 = .4142536149868504,

C1 = −.0088755760548257.

Finally, with these seven coefficients and by using (53)–(55) and (51)–(52), all linear-phase filters

for the BFB 9/7 with Condition EP1 are established and listed in Table 5.

Weights of the BFB 9/7 with Condition EP1 are illustrated in Table 6, and graphs of φEP1
9,7 , ψEP1

9,7 ,

φ̃EP1
9,7 , and ψ̃EP1

9,7 are plotted in Fig. 2.

Table 5. BFB 9/7 with Condition EP1

k h g k

0, 8 .0010156437088478 .0085340505391147 0, 6

1, 7 −.0086618903838575 −.0727824232613753 1, 5

2, 6 −.0736649650247083 −.3620874411323884 2, 4

3, 5 .3622152809771313 .8526716277092981 3

4 .8524054238182686

k eh eg k

1, 7 −.0085340505391147 .0010156437088478 −1, 7

2, 6 −.0727824232613753 .0086618903838575 0, 6

3, 5 .3620874411323884 −.0736649650247083 1, 5

4 .8526716277092981 −.3622152809771313 2, 4

.8524054238182686 3

Table 6. Weights of BFB 9/7 with Condition EP1

Weights h eh Weights

w0,0 1.0000000000000000 1.0000037570608299 ew0,0

w0,1 1.0000037570608299 1.0000000000000000 ew0,1

w1,0 0.9990932489588953 1.0009111516155897 ew1,0

w1,1 1.0009115240449724 .9991011381205513 ew1,1

w2,0 .9986816393628597 1.0013234581092678 ew2,0

w2,1 .9995090864790113 1.0005030836707783 ew2,1

w3,0 .9985328256234965 1.0014729408738587 ew3,0

w3,1 .9988343927834451 1.0011779289611062 ew3,1
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Figure 2. Plots of refinable functions and wavelets for BFB 9/7 with Condition EP1: φEP1
9,7 ,

ψEP1
9,7 , φ̃EP1

9,7 , and ψ̃EP1
9,7 .

5.3. BFB 9/7 with Condition EP2: m = 1 and n = 3.

The biorthogonal refinable functions and wavelets are denoted by φEP2
9,7 , ψEP2

9,7 , φ̃EP2
9,7 , and ψ̃EP2

9,7 .

Completely analogous to the previous BFB 9/7, we simply change the two conditions for Con-

dition EP1 in (79) to those for Condition EP2. , namely,

w0,1 = 1, |w0,0 − 1| = the smallest. (94)

Exact procedure yields slightly different values for the coefficients of F3 and G2 in (76)–(77),

as follows:

a1 = .9834776030341662, a2 = −.2081618721169732,

a3 = −.1838536169545349, b1 = 1.0165223969658338,

b2 = −.3861851306324918, C0 = .4142551992841438,

C1 = −.0088751916351054,

which consequently gives rise to the BFB in Table 7.
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Table 7. BFB 9/7 with Condition EP2

k h g k

0, 8 .0010156573382361 .0085335663957390 0, 6

1, 7 −.0086624003328945 −.0727816022238401 1, 5

2, 6 −.0736657889684743 −.3620869569890128 2, 4

3, 5 .3622157909261683 .8526699856342277 3

4 .8524070444470239

k eh eg k

1, 7 −.0085335663957390 .0010156573382361 −1, 7

2, 6 −.0727816022238401 .0086624003328945 0, 6

3, 5 .3620869569890128 −.0736657889684743 1, 5

4 .8526699856342277 −.3622157909261683 2, 4

.8524070444470239 3

Weights of the BFB 9/7 with Condition EP2 are illustrated in Table 8, with graphs of φEP2
9,7 ,

ψEP2
9,7 , φ̃EP2

9,7 , and ψ̃EP2
9,7 plotted in Fig. 3.

Again, two additional BFB 9/7 with Condition EP3 and Condition EP4 are included in the

Appendix II.

Table 8. Weights of BFB 9/7 with Condition EP2

Weights h eh Weights

w0,0 1.0000037622228576 1.0000000000000000 ew0,0

w0,1 1.0000000000000000 1.0000037622228576 ew0,1

w1,0 .9990988954780349 1.0009054989309133 ew1,0

w1,1 1.0009134049382975 .9990992796363417 ew1,1

w2,0 .9986879784923395 1.0013171027585935 ew2,0

w2,1 .9995140471602881 1.0004981404135577 ew2,1

w3,0 .9985393907845092 1.0014663545786470 ew3,0

w3,1 .9988405145018811 1.0011718131709768 ew3,1

5.4. BFB 11/9 with Condition EP3: m = 2 and n = 3.

The biorthogonal refinable functions and wavelets are denoted by φEP3
11,9 , ψEP3

11,9 , φ̃EP3
11,9 , and ψ̃EP3

11,9 .

Again, write F3 and G2 the same as in (76)–(77). By using (56)-(58), F3 and G2 must satisfy

F3(t)G2(t) = 1 + 4t+ 10t2 + 20t3 + C0t
4(1 − 2t), (95)

for some constant C0. It turns out that, with (95) and the first condition of Condition EP3, all

coefficients are settled. Among all possible solutions, select the one that satisfies the minimum

`2-norm in Condition EP3. By doing so, we arrive at

a1 = 1.0097370825100568, a2 = 6.7709624774527519,

a3 = −.4586576392294149, b1 = 2.9902629174899432,

b2 = .2096581683029422, C0 = .0480806602594954,
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Figure 3. Plots of refinable functions and wavelets for BFB 9/7 with Condition EP2: φEP2
9,7 ,

ψEP2
9,7 , φ̃EP2

9,7 , and ψ̃EP2
9,7 .

which gives rise to the BFB in Table 9. Weights of the BFB 11/9 with Condition EP3 are

illustrated in Table 10. Graphs of φEP3
11,9 , ψEP3

11,9 , φ̃EP3
11,9 , and ψ̃EP3

11,9 are plotted in Fig. 4. Once more,

the other additional BFB 11/9 with Conditions EP4 only is provided in the Appendix II.

5.5. BFB 13/11 with Condition EP1: m = 2 and n = 4.

The biorthogonal refinable functions and wavelets are denoted by φEP1
13,11, ψEP1

13,11, φ̃
EP1
13,11, and ψ̃EP1

13,11.

Similar to (76)–(77), write F4 and G3 as

F4(t) = 1 + a1t+ a2t
2 + a3t

3 + a4t
4, (96)

G3(t) = 1 + b1t+ b2t
2 + b3t

3. (97)

The identity that F4 and G3 must satisfy, from (58), is

F4(t)G3(t) = 1 + 4t+ 10t2 + 20t3 + t4(1 − 2t)(C0 + C1(1 − 2t)2), (98)
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Table 9. BFB 11/9 with Condition EP3

k h g k

0, 10 .0006334373573089 .0011582086917044 0, 8

1, 9 .0361377618710581 .0660760995777440 1, 7

2, 8 −.0242125601425010 −.0483966862739871 2, 6

3, 7 −.1007871959770629 −.4196294901710178 3, 5

4, 6 .3771325133784659 .8015837363511130 4

5 .8364056493985571

k eh eg k

1, 9 .0011582086917044 −.0006334373573089 −1, 9

2, 8 .0660760995777440 .0361377618710581 0, 8

3, 7 −.0483966862739871 .0242125601425010 1, 7

4, 6 −.4196294901710178 −.1007871959770629 2, 6

5 .8015837363511130 −.3771325133784659 3, 5

.8364056493985571 4

Table 10. Weights of BFB 11/9 with Condition EP3

Weights h eh Weights

w0,0 1.0081335676751557 1.0081335676751557 ew0,0

w0,1 1.0081335676751557 1.0081335676751557 ew0,1

w1,0 .9541164667665928 1.0655080241114951 ew1,0

w1,1 1.0852491451960252 .9745025929210217 ew1,1

w2,0 .9302457372972378 1.0905114015916696 ew2,0

w2,1 .9960085866006116 1.0610423509148224 ew2,1

w3,0 .9227785728377510 1.0979194977962053 ew3,0

w3,1 .9531638802345701 1.1017627855395372 ew3,1

where C0 and C1 are to-be-determined constants. Similar to BFB 9/7 with Condition EP1, eight

nonlinear equations are generated from (98) and (1). Again, with another application of the

method of Lagrange multiplier, all 7 coefficients of F4 and G3 in (96)–(97) and 2 constants C0

and C1 in (98) are determined and listed in the follows

a1 = .9593321752494364, a2 = 12.2162082406675360,

a3 = −24.4791147610354754, a4 = 22.6398493240698941,

b1 = 3.0406678247505636, b2 = −5.1332187191964663,

b3 = 12.2581453031028809, C0 = −68.0515225967840965,

C1 = −34.6903203318505382.

These coefficients, consequently, give rise to the BFB in Table 11.

Weights of the BFB 13/11 with Condition EP1 are calculated by using (35)–(40) and (41)–(46),

and are tabulated in Table 12, and graphs of φEP1
13,11, ψEP1

13,11, φ̃EP1
13,11, and ψ̃EP1

13,11 are plotted in Fig. 5.

5.6. BFB 13/11 with Condition EP2: m = 2 and n = 4.

The biorthogonal refinable functions and wavelets are denoted by φEP2
13,11, ψEP2

13,11, φ̃
EP2
13,11, and ψ̃EP2

13,11.
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Similar to BFB 13/11 with Condition EP1, write F4 and G3 as in (96)–(97). It then naturally

follows from (98) and (1) that the coefficients of F4 and G3 in (96)–(97) are

a1 = .9606616521702165, a2 = 12.3210523814804282,

a3 = −24.8502477444418170, a4 = 23.0390962745854443;

b1 = 3.0393383478297835, b2 = −5.2408281802108841,

b3 = 12.4370634141304899; C0 = −69.2965856199102679,

C1 = −35.8173376714095869.

The BFB 13/11 with Condition EP2 is now established, with all filters being listed in Table 13.

Weights of the BFB 13/11 with Condition EP2 are included in Table 14; and the graphs of φEP2
13,11,

ψEP2
13,11, φ̃

EP2
13,11, and ψ̃EP2

13,11 are plotted in Fig. 6.
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Table 11. BFB 13/11 with Condition EP1

k h g k

0, 12 .0078167924717244 .0169293313839728 0, 10

1, 11 .0025401505134383 .0055013677237460 1, 9

2, 10 .0155045979503007 .0164019070423589 2, 8

3, 9 −.0288188979943560 −.0679969256352202 3, 7

4, 8 −.0863780693064859 −.3868846290196054 4, 6

5, 7 .3798321380741915 .8320978970094958 5

6 .8332201389554692

k eh eg k

1, 11 −.0169293313839728 .0078167924717244 −1, 11

2, 10 .0055013677237460 −.0025401505134383 0, 10

3, 9 −.0164019070423589 .0155045979503007 1, 9

4, 8 −.0679969256352202 .0288188979943560 2, 8

5, 7 .3868846290196054 −.0863780693064859 3, 7

6 .8320978970094958 −.3798321380741915 4, 6

.8332201389554692 5

Table 12. Weights of BFB 13/11 with Condition EP1

Weights h eh Weights

w0,0 1.0000000000000000 1.0021652860677171 ew0,0

w0,1 1.0021652860677171 1.0000000000000000 ew0,1

w1,0 .9691101165459206 1.0337693640811553 ew1,0

w1,1 1.0333369523914061 .9729356908868231 ew1,1

w2,0 .9480793557865392 1.0561556123339834 ew2,0

w2,1 .9922475548642841 1.0135738984465527 ew2,1

w3,0 .9407923016330405 1.0642030540923618 ew3,0

w3,1 .9569019736628954 1.0498050885055738 ew3,1

5.7. BFB 15/13 with Condition EP2: m = 3 and n = 4.

The biorthogonal refinable functions and wavelets are denoted by φEP2
15,13, ψEP2

15,13, φ̃
EP2
15,13, and ψ̃EP2

15,13.

With F4 and G3 in (96)–(97), and by using (58), the identity that F4 and G3 must satisfy

F4(t)G3(t) = 1 + 6t+ 21t2 + 56t3 + 126t4 + 252t5 + C0t
6(1 − 2t), (99)

for some constant C0. Again, by using (98) and (2), the 8 coefficients a1, a2, . . ., C0 in (96)–(97)

and (99) are

a1 = 3.6479393214173282, a2 = 9.1438541182872717,

a3 = −4.7482443902585054, a4 = 7.6579720661169862;

b1 = 2.3520606785826718, b2 = 3.2759712459514760,

b3 = 27.2908003439998804; C0 = −104.4960933481634606,

which gives rise to the BFB 15/13 with Condition EP2 in Table 15.

Weights of the BFB 15/13 with Condition EP2 are in Table 16. Graphs of φEP2
15,13, ψ

EP2
15,13, φ̃

EP2
15,13,

and ψ̃EP2
15,13 are plotted in Fig. 7.
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5.8. BFB 15/13 with Condition EP3: m = 3 and n = 4.

The biorthogonal refinable functions and wavelets are denoted by φEP3
15,13, ψEP3

15,13, φ̃
EP3
15,13, and ψ̃EP3

15,13.

The two polynomials F4 and G3, again, can be expressed by (96)–(97), along with the identity

(99) they must satisfy. With (99) and (3), we have all coefficients in (96)–(97) as

a1 = 2.2984779015187734, a2 = 3.3402901113058788,

a3 = 25.1604546292217135, a4 = 8.1821330613446772;

b1 = 3.7015220984812266, b2 = 9.1518431433516251,

b3 = −2.5599215147185578; C0 = 10.4728092300131280.

Hence, this The new BFB 15/13 with Condition EP3 is listed in Table 17. Weights of the BFB

15/13 with Condition EP3 are posted in Table 18.

Graphs of their corresponding refinable functions and wavelets, φEP3
15,13, ψ

EP3
15,13, φ̃

EP3
15,13, and ψ̃EP3

15,13

are plotted in Fig. 8.
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Table 13. BFB 13/11 with Condition EP2

k h g k

0, 12 .0079546392618013 .0171764294495679 0, 10

1, 11 .0025013232150223 .0054010999517869 1, 9

2, 10 .0153343593296121 .0156312352785074 2, 8

3, 9 −.0287317936661742 −.0675370994132515 3, 7

4, 8 −.0869964910685564 −.3863610553213491 4, 6

5, 7 .3797838610444257 .8313787801094767 5

6 .8345217661408334

k eh eg k

1, 11 −.0171764294495679 .0079546392618013 −1, 11

2, 10 .0054010999517869 −.0025013232150223 0, 10

3, 9 −.0156312352785074 .0153343593296121 1, 9

4, 8 −.0675370994132515 .0287317936661742 2, 8

5, 7 .3863610553213491 −.0869964910685564 3, 7

6 .8313787801094767 −.3797838610444257 4, 6

.8345217661408334 5

Table 14. Weights of BFB 13/11 with Condition EP2

Weights h eh Weights

w0,0 1.0022953021927952 1.0000000000000000 ew0,0

w0,1 1.0000000000000000 1.0022953021927952 ew0,1

w1,0 .9722152774656418 1.0306138911543154 ew1,0

w1,1 1.0348547593000506 .9717849441532523 ew1,1

w2,0 .9512382279231992 1.0527195851470402 ew2,0

w2,1 .9953879658869954 1.0107808048799724 ew2,1

w3,0 .9439283959214199 1.0606965102716203 ew3,0

w3,1 .9602096683055518 1.0465689771764431 ew3,1

5.9. BFB 17/15 with Condition EP2: m = 3 and n = 5.

Denote by φEP2
17,15, ψ

EP2
17,15, φ̃

EP2
17,15, and ψ̃EP2

17,15, the refinable functions and wavelets. With

F5(t) = 1 + a1t+ a2t
2 + a3t

3 + a4t
4 + a5t

5, (100)

G4(t) = 1 + b1t+ b2t
2 + b3t

3 + b4t
4, (101)

the identity that F5 and G4 must satisfy is

F5(t)G4(t) = 1 + 6t + 21t2 + 56t3 + 126t4 + 252t5 + t6(1 − 2t)(C0 + C1(1 − 2t)2), (102)

for some constants C0 and C1. Again, the requirements (102) and (2), plus another application

of the method of Lagrange multiplier, lead to the coefficients in (100)–(101) as

a1 = 3.6850326693942465, a2 = 8.8887467265749782,

a3 = −11.9308411108643810, a4 = 12.6664830888352934,

a5 = 23.4927022045793695;
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and

b1 = 2.3149673306057535, b2 = 3.5805230315624288,

b3 = 34.1593384839883973, b4 = −16.7516163451564283;

C0 = −505.9056340980933762, C1 = 49.1925917802655278.

All these coefficients consequently yield the BFB 17/15 with Condition EP2, being listed in

Table 19.

Weights of the BFB 17/15 with Condition EP2 are in Table 20; and graphs of φEP2
17,15, ψ

EP2
17,15,

φ̃EP2
17,15, and ψ̃EP2

17,15 are plotted in Fig. 9.

All Riesz bounds of these new BFBs with certain EP conditions are calculated and listed in

Table 21, by using Proposition 1 in Appendix I, where the lower Riesz bounds (LRB) and upper

Riesz bounds (URB) for both LeGall 5/3 and CDF 9/7 are also included for reference.
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Table 15. BFB 15/13 with Condition EP2

k h g k

0, 14 .0006610112277940 −.0094226122984621 0, 12

1, 13 .0003173895595891 −.0045243388339540 1, 11

2, 12 .0093232275587282 .0525909291493993 2, 10

3, 11 .0032000219790237 .0434496188269085 3, 9

4, 10 −.0904474953662203 −.0969250629132126 4, 8

5, 9 −.0442917369506223 −.3924786705862283 5, 7

6, 8 .4340166471729719 .8146202733110984 6

7 .7886554320105664

k eh eg k

1, 13 −.0094226122984621 −.0006610112277940 −1, 13

2, 12 .0045243388339540 .0003173895595891 0, 12

3, 11 .0525909291493993 −.0093232275587282 1, 11

4, 10 −.0434496188269085 .0032000219790237 2, 10

5, 9 −.0969250629132126 .0904474953662203 3, 9

6, 8 .3924786705862283 −.0442917369506223 4, 8

7 .8146202733110984 −.4340166471729719 5, 7

.7886554320105664 6

Table 16. Weights of BFB 15/13 with Condition EP2

Weights h eh Weights

w0,0 1.0191987060160679 1.0000000000000000 ew0,0

w0,1 1.0000000000000000 1.0191987060160679 ew0,1

w1,0 1.0776869258063536 .9418685936641299 ew1,0

w1,1 .9857716654214979 1.0813468364854223 ew1,1

w2,0 1.0967326329441575 .9236485338394675 ew2,0

w2,1 1.0792592488226427 .9769729448918817 ew2,1

w3,0 1.1016426945108856 .9189712518338777 ew3,0

w3,1 1.1108518864873426 .9431374022762024 ew3,1

6. Smoothness of Refinable Functions and Wavelets

The smoothness of all 9 new pairs of biorthogonal refinable functions and wavelets (φ, ψ) and

(φ̃, ψ̃) constructed in Section V can be described and determined by the Hölder exponents of

the refinable function. A function f is said to have Hölder exponent ν = n+ α, with n being a

nonnegative integer and 0 ≤ α < 1, and can be denoted by f ∈ Cν(R), if f ∈ Cn(R), i.e., f is

n-th order differentiable, and
∣∣f (n)(u)− f (n)(v)

∣∣ ≤ C |u− v|α , u, v ∈ R,

where C is a positive constant.

All the Hölder exponents of the nine biorthogonal pairs of refinable functions we have established

are listed in Table 22, where, for additional information, the numbers of VM for all nine

biorthogonal wavelets are also included in the fourth column of the table.

The Hölder exponents for LeGall 5/3 (φ53, ψ53) and (φ̃53, ψ̃53) and CDF 9/7 (φ97, ψ97) and
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(φ̃97, ψ̃97) were also included in Table 22 for comparison purposes. The negative value of the

Hölder exponent for φ53 indicates that the corresponding refinable function φ53 was discontinuous.

7. Image Coding Performance Analysis

Energy compaction, as an important property, can be used to assess the coding efficiency of a

transform. A transform with strong energy compaction property is desired for data compression

applications. Here, to evaluate coding performance of wavelet transform with a specific set of

filterbanks, we calculate the transform’s potential energy compaction (PEC) (Hamou and El-

Sakka, 2003)

Potential Energy Compaction (PEC) =
1

M

M∑

n=0

x2
n, (103)

where x represents the coefficients in all of the high frequency subbands and M is the total

number of such coefficients. PEC is a direct indicator of energy compaction property for a
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Table 17. BFB 15/13 with Condition EP3

k h g k

0, 14 .0007062550991513 .0008838563781069 0, 12

1, 13 −.0100995844590737 −.0126393170840225 1, 11

2, 12 .0010818920605614 −.0004727179798768 2, 10

3, 11 .0571264253782391 .0976137198571110 3, 9

4, 10 −.0361757858198670 −.0370670250452229 4, 8

5, 9 −.1066062518195251 −.4385277933663622 5, 7

6, 8 .3879410292534281 .7804185544805331 6

7 .8262656029872668

k eh eg k

1, 13 .0008838563781069 −.0007062550991513 −1, 13

2, 12 .0126393170840225 −.0100995844590737 0, 12

3, 11 −.0004727179798768 −.0010818920605614 1, 11

4, 10 −.0976137198571110 .0571264253782391 2, 10

5, 9 −.0370670250452229 .0361757858198670 3, 9

6, 8 .4385277933663622 −.1066062518195251 4, 8

7 .7804185544805331 −.3879410292534281 5, 7

.8262656029872668 6

Table 18. Weights of BFB 15/13 with Condition EP3

Weights h eh Weights

w0,0 1.0157926905885902 1.0157926905885902 ew0,0

w0,1 1.0157926905885902 1.0157926905885902 ew0,1

w1,0 .9514641687951524 1.0783320075958603 ew1,0

w1,1 1.1173065448109509 .9934809219211633 ew1,1

w2,0 .9310991607803551 1.0984191634975949 ew2,0

w2,1 1.0007436172766918 1.0937005405721780 ew2,1

w3,0 .9257638157233974 1.1036000188435020 ew3,0

w3,1 .9626051964723454 1.1269848896338305 ew3,1

wavelet transform. The compression efficiency will be inversely proportional to the PEC rating.

We compared the PEC values of our newly constructed BFBs to those of CDF 5/3 and CDF 9/7

on four different images (as shown in Fig. 10), and the results are tabulated in Table 23. From

the results, we can see that BFB 15/13 with EP3 gives the smallest PEC values for all of the

six images. In fact, BFB 11/9 with EP3 and CDF 9/7 produce similar PEC values as BFB 15/13

with EP3 does, which indicates that all of the three filterbanks shall demonstrate comparable

compression performance, with BFB 15/13 with EP3 performs little better than the other two.

This can be proven with real image compression results, which is tabulated in Table 24. Some

image examples are shown in Fig. 10.

8. Conclusion

Weights within the energy of lowpass and highpass filters derived from a pair of compactly

supported biorthogonal refinable functions and wavelets are re-defined and re-formulated. The

recently newly introduced notion energy preservation (EP) is further investigated in detail. Exten-
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sive examples of biorthogonal filterbanks (BFB) with PR FIR QMF were established, by using the

efficient construction algorithm. It is worth mentioning that there is no other choice to improve

the performance of a PR FIR QMF system but make the length of each filter longer in order to

have all desirable features when applied to image processing. These features include, but may not

limited to, the high number of vanishing moments (VM), the symmetry or linear-phase, FIR, and,

very substantially, the Condition EP proposed in this paper. Meanwhile, it is still immature with

regard to how to choose one of the four EP conditions over the others. For a fixed VM of 2m,

one or two of the EP conditions may not yield any solution. To demonstrate the performance of

these new BFB m/n’s with Condition EPs, their potential energy compaction (PEC) values are

evaluated and compared to those of CDF 5/3 and CDF 9/7, and, also for comparison purposes,

they are applied to four typical images for demonstrating their image coding performance.
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Table 19. BFB 17/15 with Condition EP2

k h g k

0, 16 −.0005069534007951 .0014459450089716 0, 14

1, 15 .0031211432035101 −.0089022017217417 1, 13

2, 14 .0019326663143561 −.0121746705835542 2, 12

3, 13 −.0033297529577634 .0505145928320875 3, 11

4, 12 .0027378744569749 .0569052890877736 4, 10

5, 11 −.0680690006051480 −.0916641029662372 5, 9

6, 10 −.0505086931108201 −.3997299541064647 6, 8

7, 9 .4218310009526751 .8072102048983305 7

8 .7997969926671159

k eh eg k

1, 15 −.0014459450089716 −.0005069534007951 −1, 15

2, 14 −.0089022017217417 −.0031211432035101 0, 14

3, 13 .0121746705835542 .0019326663143561 1, 13

4, 12 .0505145928320875 .0033297529577634 2, 12

5, 11 −.0569052890877736 .0027378744569749 3, 11

6, 10 −.0916641029662372 .0680690006051480 4, 10

7, 9 .3997299541064647 −.0505086931108201 5, 9

8 .8072102048983305 −.4218310009526751 6, 8

.7997969926671159 7

Table 20. Weights of BFB 17/15 with Condition EP2

Weights h eh Weights

w0,0 1.0099916839491913 1.0000000000000000 ew0,0

w0,1 1.0000000000000000 1.0099916839491913 ew0,1

w1,0 1.0643121756317232 .9457021959789806 ew1,0

w1,1 .9709123773677931 1.0685914739068977 ew1,1

w2,0 1.0842075968188536 .9272365112295471 ew2,0

w2,1 1.0568817300321149 .9743135751774849 ew2,1

w3,0 1.0895329160787905 .9224913670893828 ew3,0

w3,1 1.0901047307450765 .9406097856641525 ew3,1

APPENDIX I

Evaluation of Euler-Frobenius Polynomials

For a refinable function φ, its integer-translates {φ(· − k) : k ∈ Z} constitutes a Riesz basis. Its

autocorrelation symbol or Euler-Frobinius polynomial is

Φ(z) =
∑

k∈Z

〈φ(·), φ(· − k)〉zk. (104)

It is also known that, in terms of Fourier transforms,

Φ(e−jω) =
∑

k∈Z

∣∣∣φ̂ (ω + 2πk)
∣∣∣
2

, ω ∈ R. (105)
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Similarly, let Φ̃, Ψ, and Ψ̃ be the Euler-Frobenius polynomials for φ̃, ψ, and φ̃; and introduce

Θ(z) =
∑

k∈Z

〈φ(·), ψ(· − k)〉zk, (106)

Θ̃(z) =
∑

k∈Z

〈φ̃(·), ψ̃(· − k)〉zk. (107)

Then, with the notation in (11), all two-scale relations and Fourier transforms lead us to the

following matrix identity

MH,G(z)

[
Φ(z) 0

0 Φ(−z)

]
MH,G(z)∗ =

[
Φ(z2) Θ(z2)

Θ(z2) Ψ(z2)

]
, |z| = 1, (108)

which is equivalent to

|H(z)|2Φ(z) + |H(−z)|2Φ(−z) = Φ(z2), (109)

|G(z)|2Φ(z) + |G(−z)|2Φ(−z) = Ψ(z2), (110)

H(z)G(z)Φ(z) +H(−z)G(−z)Φ(−z) = Θ(z2). (111)
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Table 21. Lower Riesz Bounds (LRB) and Upper Riesz Bounds (URB) of all New

Biorthogonal Refinable Functions and Wavelets in Section 5 & with LRBs and URBs for

LeGall 5/3 and CDF 9/7

LRB URB LRB URB

Φ
EP4
7,5 .9875 1.0123 .9884 1.0125 eΦ

EP4
7,5

Ψ
EP4
7,5 .9833 1.0369 .9648 1.0187 eΨ

EP4
7,5

Φ
EP1
9,7 .9983 1.0018 .9982 1.0017 eΦ

EP1
9,7

Ψ
EP1
9,7 .9948 1.0024 .9976 1.0052 eΨ

EP1
9,7

Φ
EP2
9,7 .9983 1.0019 .9982 1.0017 eΦ

EP2
9,7

Ψ
EP2
9,7 .9948 1.0024 .9976 1.0052 eΨ

EP2
9,7

Φ
EP3
11,9 .9031 1.1135 .8917 1.1011 eΦ

EP3
11,9

Ψ
EP3
11,9 .7329 1.1531 .8713 1.3549 eΨ

EP3
11,9

Φ
EP1
13,11 .9525 1.0663 .9368 1.0488 eΦ

EP1
13,11

Ψ
EP1
13,11 .9221 1.0801 .9255 1.0837 eΨ

EP1
13,11

Φ
EP2
13,11 .9511 1.0627 .9399 1.0504 eΦ

EP2
13,11

Ψ
EP2
13,11 .9185 1.0827 .9233 1.0879 eΨ

EP2
13,11

Φ
EP2
15,13 .8643 1.1234 .8834 1.1447 eΦ

EP2
15,13

Ψ
EP2
15,13 .8643 1.4217 .6959 1.1447 eΨ

EP2
15,13

Φ
EP3
15,13 .8638 1.2021 .8173 1.1442 eΦ

EP3
15,13

Ψ
EP3
15,13 .6329 1.2021 .8173 1.5521 eΨ

EP3
15,13

Φ
EP2
17,15 .8949 1.1052 .9003 1.1119 eΦ

EP2
17,15

Ψ
EP2
17,15 .8768 1.3555 .7341 1.1352 eΨ

EP2
17,15

Φ
53 .4675 1.7662 .5000 1.5000 eΦ

53

Ψ
53 .4416 1.7662 .5000 2.0000 eΨ

53

Φ
97 .8920 1.1802 .8388 1.1085 eΦ

97

Ψ
97 .6757 1.2016 .8336 1.4650 eΨ

97

Evidently Φ(z) = Ψ(z) = 1 and Θ(z) = 0 when φ is orthonormal. Certainly, with H, G, Φ, and

Ψ replaced by H̃, G̃, Φ̃, and Ψ̃, (109)–(111) becomes

|H̃(z)|2Φ̃(z) + |H̃(−z)|2Φ̃(−z) = Φ̃(z2), (112)

|G̃(z)|2Φ̃(z) + |G̃(−z)|2Φ̃(−z) = Ψ̃(z2), (113)

H̃(z)G̃(z)Φ̃(z) + H̃(−z)G̃(−z)Φ̃(−z) = Θ̃(z2). (114)

The identities (109)–(111) and (112)–(114) are both convenient and ultrapractical for the eval-

uation of all Euler-Frobenius polynomials. For instance, for LeGall 5/3, a brusque calculation

yields the following explicit expressions

Φ53(e−jω) = 1 − 201

308
cosω +

9

77
cos 2ω +

1

308
cos 3ω, (115)

Φ̃53(e−jω) = 1 +
1

2
cosω, (116)

Ψ53(e−jω) =
12

11
+

51

77
cosω +

1

77
cos 2ω, (117)

Ψ̃53(e−jω) =
9

8
− 3

4
cosω +

1

8
cos 2ω, (118)
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Table 22. Hölder exponents of the nine BFBs

φ eφ VM of ψ and eψ

BFB 7/5 EP4 .4814 .4117 2

BFB 9/7 EP1 .4149 .4476 2

BFB 9/7 EP2 .4179 .4189 2

BFB 11/9 EP3 .9722 1.4355 4

BFB 13/11 EP1 .8749 .8958 4

BFB 13/11 EP2 .8684 .8941 4

BFB 15/13 EP2 2.0958 1.5348 6

BFB 15/13 EP3 1.4099 2.3061 6

BFB 17/15 EP2 1.6633 1.6825 6

LeGall 5/3 −.0606 1.0000 2

CDF 9/7 .9496 1.5467 4

Table 23. Comparison of PEC in (103), with transform level being 5

Potential Energy Compaction (PEC)

image LeGall CDF BFB BFB BFB BFB BFB BFB BFB BFB BFB

5/3 9/7 7/5 9/7 9/7 11/9 13/11 13/11 15/13 15/13 17/15

EP4 EP1 EP2 EP3 EP1 EP2 EP2 EP3 EP2

barbara 1743 924 1233 1153 1153 897 1023 1025 1449 881 1359

house 3573 2015 2434 2314 2314 1954 2128 2133 2855 1952 2715

lenna 1277 591 860 792 792 570 679 682 995 552 923

sandiego 2141 1074 1293 1225 1225 1033 1137 1141 1536 1028 1447

and

Θ53(e−jω) = e−jω/2
(
− 89

308
cos

ω

2
+

87

308
cos

3ω

2
+

1

154
cos

5ω

2

)
, (119)

Θ̃53(e−jω) = e−jω/2

(
1

4
cos

ω

2
− 1

4
cos

3ω

2

)
. (120)

For comparison purposes, we plot all Euler-Frobenius polynomials for LeGall 5/3 and CDF 9/7 in

Fig. 11: Φ53 and Φ̃53, Φ97 and Φ̃97, Ψ53 and Ψ̃53, Ψ97 and Ψ̃97, ejω/2Θ53(ejω) and ejω/2Θ̃53(e−jω),

and ejω/2Θ97(e−jω) and ejω/2Θ̃97(e−jω). The closer the |Φ| and |Φ̃| to one, |Ψ| and |Ψ̃| to one,

and |Θ| and |Θ̃| to zero, the more near-orthogonal the φ and φ̃ are.

In general, we establish an efficient procedure for finding all Euler-Frobenius polynomials of any

BFB. First, Φ, Ψ, and Θ are clearly reciprocal polynomials satisfying

Φ(z) = Φ(z), (121)

Ψ(z) = Ψ(z), (122)

Θ(z) = z−1Θ(z). (123)

With t in (53), Φ(z) is a polynomial of exact degree 2m + 2n− 1, denoted by

U2m+2n−1(t) = Φ(z). (124)
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Figure 10. Test images and compression results. Top to bottom: barbara, house, lenna, and

sandiego. Left to right: original, CDF 9/7 with SPIHT (Said and Pearlman, 1996) at 0.5 bpp,

BFB 11/9 EP3 with SPIHT at 0.5 bpp, and BFB 15/13 EP3 with SPIHT at 0.5 bpp

Hence,

Φ(−z) = U2m+2n−1(1 − t), (125)

Φ(z2) = U2m+2n−1(4t(1 − t)). (126)

Second, with H and H̃ in (54)–(55), together with F and G satisfying (56), the identity (109)

becomes

(1 − t)2m [Fn(t)]
2 U2m+2n−1(t) + t2m [Fn(1 − t)]2 U2m+2n−1(1 − t)

= U2m+2n−1(4t(1 − t)). (127)
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Table 24. Comparison of rate-distortion performance with SPIHT (Said and Pearlman, 1996)

algorithm, with bit rate being 0.5 bpp

PSNR (dB)

Image LeGall CDF BFB BFB BFB BFB BFB BFB BFB BFB BFB

5/3 9/7 7/5 9/7 9/7 11/9 13/11 13/11 15/13 15/13 17/15

EP4 EP1 EP2 EP3 EP1 EP2 EP2 EP3 EP2

barbara 29.9 31.3 29.7 29.9 29.9 31.3 30.5 30.5 30.8 31.8 31

house 25.5 25.9 25.3 25.5 25.5 25.9 25.7 25.7 25.4 25.8 25.6

lenna 36.4 37.1 35.7 36 36 37.1 36.5 36.5 36.4 37.2 36.6

sandiego 23.4 23.9 23.3 23.4 23.4 23.9 23.6 23.6 23.5 24 23.7

Theorem 1: The polynomial U2m+2n−1 in (127) is unique with U2m+2n−1(0) = 1, and determined

by the Maclaurin polynomial of degree 2m + 2n− 1 of the following function

− t2m [Fn(1 − t)]2

(1 − t)2m [Fn(t)]
2U2m+2n−1(1 − t) +

1

(1 − t)2m [Fn(t)]
2U2m+2n−1(4t(1 − t)). (128)

Similarly, the unique polynomial V2m+2n−3(t) = Φ̃(z) of degree 2m + 2n − 3 and satisfying

V2m+2n−3(0) = 1 and

(1 − t)2m [Gn−1(t)]
2 V2m+2n−3(t) + t2m [Gn−1(1 − t)]2 V2m+2n−3(1 − t)

= V2m+2n−3(4t(1 − t)), (129)

can also be evaluated by Proposition 1. After both Φ and Φ̃ are obtained, Ψ, Ψ̃, Θ and Θ̃ can

all be obtained by (110), (113), (111), and (114), respectively.

APPENDIX II

Additional BFBs

Table 25. BFB 7/5 with Condition EP1

k h g k

0, 6 −.0151449638228338 −.0764119740848740 0, 4

1, 5 −.0700747935660952 −.3535533905932738 1, 3

2, 4 .3686983544161076 .8599307293562955 2

3 .8472563683187380

k eh eg k

1, 5 −.0764119740848740 .0151449638228338 −1, 5

2, 4 .3535533905932738 −.0700747935660952 0, 4

3 .8599307293562955 −.3686983544161076 1, 3

.8472563683187380 2

Although there are no striking differences performance-wise, we have listed some additional

BFBs here for additional reference.

B1. BFB 7/5 with Condition EP1
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Figure 11. Plots of Euler-Frobenius polynomials Φ53 and Φ̃53, Φ97 and Φ̃97, Ψ53 and Ψ̃53, Ψ97

and Ψ̃97, ejω/2Θ53(e−jω) and ejω/2Θ̃53(e−jω), and ejω/2Θ97(e−jω) and ejω/2Θ̃97(e−jω).

With b̃ in (72), the BFB 7/5 with Condition EP1 is created and listed in Table 25. Weights of

the BFB 7/5 with Condition EP1 are in Table 26.

B2. BFB 7/5 with Condition EP2

With b̃ in (73), the BFB 7/5 with Condition EP2 is listed in Table 27. Weights of the BFB 7/5

with Condition EP2 are in Table 28.

B3. BFB 7/5 with Condition EP3

With b̃ in (74), the BFB 7/5 with Condition EP3 is listed in Table 29. Weights of the BFB 7/5
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Table 26. Weights of BFB 7/5 with Condition EP1

Weights h eh Weights

w0,0 1.0000000000000000 1.0011584388583453 ew0,0

w0,1 1.0011584388583453 1.0000000000000000 ew0,1

w1,0 1.0068238600793053 .9951317153039584 ew1,0

w1,1 .9945841422399645 1.0086122849043330 ew1,1

w2,0 1.0100895003967167 .9920412683722906 ew2,0

w2,1 1.0048421375340930 .9995308201053070 ew2,1

w3,0 1.0112494712026609 .9908412812103105 ew3,0

w3,1 1.0101396571595314 .9944741248265543 ew3,1

Table 27. BFB 7/5 with Condition EP2

k h g k

0, 6 −.0151486519354670 −.0761025218356459 0, 4

1, 5 −.0703768695900569 −.3535533905932738 1, 3

2, 4 .3687020425287408 .8593118248578394 2

3 .8478605203666614

k eh eg k

1, 5 −.0761025218356459 .0151486519354670 −1, 5

2, 4 .3535533905932738 −.0703768695900569 0, 4

3 .8593118248578394 −.3687020425287408 1, 3

.8478605203666614 2

with Condition EP3 are in Table 30.

B4. BFB 9/7 with Condition EP3

Similar to the BFB 9/7 with Condition EP1 & Condition EP2 in Section 5, BFB 9/7 with

Condition EP3 is tabulated in Table 31, and weights of the BFB 9/7 with Condition EP3 are in

Table 32.

B5. BFB 9/7 with Condition EP4

Meanwhile, BFB 9/7 with Condition EP4 is in Table 33, and weights of the BFB 9/7 with

Condition EP4 are in Table 34.

B6. BFB 11/9 with Condition EP4

Due to their minor differences, we omit the BFB 11/9’s with Condition EP1 & Condition EP2

and list only the BFB 11/9 with Condition EP4 here.

With (95), the BFB 11/9 with Condition EP4 is in Table 35, and weights of the BFB 11/9 with

Condition EP4 are in Table 36.

B7. BFB 13/11 with Condition EP3

With (98) and (3), the BFB 13/11 with Condition EP3 is in Table 37, and weights of the BFB

13/11 with Condition EP3 are in Table 38.



38 J.-A. Lian & Y. Wang

Table 28. Weights of BFB 7/5 with Condition EP2

Weights h eh Weights

w0,0 1.0011146251836722 1.0000000000000000 ew0,0

w0,1 1.0000000000000000 1.0011146251836722 ew0,1

w1,0 1.0083778820416620 .9935179995006257 ew1,0

w1,1 .9951958546531894 1.0078431000042233 ew1,1

w2,0 1.0117926119215717 .9902737777554436 ew2,0

w2,1 1.0061697083456300 .9979907125132796 ew2,1

w3,0 1.0129995565062208 .9890259382163199 ew3,0

w3,1 1.0117128639350284 .9926686881641895 ew3,1

Table 29. BFB 7/5 with Condition EP3

k h g k

0, 6 −.0151468900092339 −.0762542300151167 0, 4

1, 5 −.0702286852630524 −.3535533905932738 1, 3

2, 4 .3687002806025077 .8596152412167809 2

3 .8475641517126523

k eh eg k

1, 5 −.0762542300151167 .0151468900092339 −1, 5

2, 4 .3535533905932738 −.0702286852630524 0, 4

3 .8596152412167809 −.3687002806025077 1, 3

.8475641517126523 2

APPENDIX III

Even-Length BFBs

Although the odd-length BFB filters with certain EP conditions are emphasized and constructed,

even-length BFBs are exhibiting eminence in some other applications (Balasingham et al., 1997;

Muthuvel and Makur, 2000; Zanjani et al., 2006; Tay, 2008). For completeness, we include in

this appendix the construction of even-length BFB, with Condition EP3 in particular.

Similar to (49)–(50) and to be more specific, we write

H(z) =

(
1 + z

2

)2m−1

S2m(z), (130)

H̃(z) =

(
1 + z

2

)2m−1

S̃2m(z), (131)

where, again, S2m and S̃2m are reciprocal polynomials of exact degree 2m that satisfy

(1 + z) 6
∣∣∣ S2m(z), S̃2m(z);

S2m(1) = S̃2m(1) = 1.

Consequently, the filterbanks will be CDF 4m/4m, i.e., both lowpass and highpass filters are

with linear phases and both have the same even length 4m. Moreover, all wavelets will have
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Table 30. Weights of BFB 7/5 with Condition EP3

Weights h eh Weights

w0,0 1.0005677781225810 1.0005677781225810 ew0,0

w0,1 1.0005677781225810 1.0005677781225810 ew0,1

w1,0 1.0076152978003301 .9943086876100272 ew1,0

w1,1 .9948954892055626 1.0082199181408479 ew1,1

w2,0 1.0109567818589060 .9911396873261831 ew2,0

w2,1 1.0055179699539433 .9987451146284400 ew2,1

w3,0 1.0121406356051454 .9899152340376341 ew3,0

w3,1 1.0109404797885825 .9935529244813030 ew3,1

Table 31. BFB 9/7 with Condition EP3

k h g k

0, 8 .0010156505199965 .0085338086354344 0, 6

1, 7 −.0086621451841133 −.0727820130233624 1, 5

2, 6 −.0736653767141652 −.3620871992287082 2, 4

3, 5 .3622155357773871 .8526708072332723 3

4 .8524062335748848

k eh eg k

1, 7 −.0085338086354344 .0010156505199965 −1, 7

2, 6 −.0727820130233624 .0086621451841133 0, 6

3, 5 .3620871992287082 −.0736653767141652 1, 5

4 .8526708072332723 −.3622155357773871 2, 4

.8524062335748848 3

2m−1 VM. The integer K in (12) or (18)–(19) is 2m. Again, with t defined in (53) and similar

to (54)–(55), H and H̃ in (130)–(131) can be re-written as

H(z) = z2m−1 1 + z

2
(1 − t)m−1 Fm(t), (132)

H̃(z) = z2m−1 1 + z

2
(1 − t)m−1Gm(t), (133)

for Fm and Gm of exact degrees m and satisfying

(1 − t)2m−1 Fm(t)Gm(t) + t2m−1Fm(1 − t)Gm(1 − t) = 1, t ∈ [0, 1]; (134)

Fm(0) = Gm(0) = 1. (135)

Hence, it follows from (Lian, 2001) that FmGm must have the form

Fm(t)Gm(t) =
2m−2∑

k=0

(
2m− 2 + k

k

)
tk + C0t

2m−1(1 − 2t), (136)

for some constant C0, which is determined by one of the four EP conditions. With ε = 1, G and

G̃ in (18) and (19) are

G(z) = H̃(−z), (137)

G̃(z) = H(−z). (138)



40 J.-A. Lian & Y. Wang

Table 32. Weights of BFB 9/7 with Condition EP3

Weights h eh Weights

w0,0 1.0000018798175388 1.0000018798175388 ew0,0

w0,1 1.0000018798175388 1.0000018798175388 ew0,1

w1,0 .9990960702729141 1.0009083272092260 ew1,0

w1,1 1.0009124638458001 .9991002095131160 ew1,1

w2,0 .9986848067419229 .9995115651108249 ew2,0

w2,1 1.0013202826100966 1.0005006137345623 ew2,1

w3,0 .9985361059398271 1.0014696499812666 ew3,0

w3,1 .9988374515320433 1.0011748731599354 ew3,1

Table 33. BFB 9/7 with Condition EP4

k h g k

0, 8 .0010156505153183 .0085338088016166 0, 6

1, 7 −.0086621450090733 −.0727820133051835 1, 5

2, 6 −.0736653764313465 −.3620871993948904 2, 4

3, 5 .3622155356023471 .8526708077969146 3

4 .8524062330186039

k eh eg k

1, 7 −.0085338088016166 .0010156505153183 −1, 7

2, 6 −.0727820133051835 .0086621450090733 0, 6

3, 5 .3620871993948904 −.0736653764313465 1, 5

4 .8526708077969146 −.3622155356023471 2, 4

.8524062330186039 3

Observe that if (φEP1
4m,4m, ψ

EP1
4m,4m) and (φ̃EP1

4m,4m, ψ̃
EP1
4m,4m) constitute a biorthogonal system, then

φEP2
4m,4m = φ̃EP1

4m,4m and ψEP2
4m,4m = ψ̃EP1

4m,4m. In other words, BFBs 4m/4m with Condition EP1 and

BFBs 4m/4m with Condition EP2 are constructed simultaneously mainly due to the fact that all

filters have the same length 4m.

As a demonstrative example, we set m = 3 and construct the BFB 12/12 with Condition EP3.

Write F3 and G3 as

F3(t) = 1 + a1t+ a2t
2 + a3t

3,

G3(t) = 1 + b1t+ b2t
2 + b3t

3.

Then (134)–(136) and Condition EP3 lead to

a1 = 1.3337433665494807, a2 = 5.4443351973811674,

a3 = 14.0786114247078130; b1 = 3.6662566334505193,

b2 = 4.6658193376861715, b3 = −5.2619470479918829;

C0 = 37.0404539130330370.
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Table 34. Weights of BFB 9/7 with Condition EP4

Weights h eh Weights

w0,0 1.0000018785261557 1.0000018811071500 ew0,0

w0,1 1.0000018811071500 1.0000018785261557 ew0,1

w1,0 .9990960683347463 1.0009083291495102 ew1,0

w1,1 1.0009124632001835 .9991002101510407 ew1,1

w2,0 .9986848045660166 1.0013202847915708 ew2,0

w2,1 .9995115634080709 1.0005006154313355 ew2,1

w3,0 .9985361036863355 1.0014696522420125 ew3,0

w3,1 .9988374494307633 1.0011748752591805 ew3,1

Table 35. BFB 11/9 with Condition EP4

k h g k

0, 10 .0006498856781080 .0011905000307570 0, 8

1, 9 .0360931817123812 .0661176809801392 1, 7

2, 8 −.0242203237025032 −.0486090144349880 2, 6

3, 7 −.1005257125375647 −.4196710715734130 3, 5

4, 6 .3771238286176690 .8019438099950095 4

5 .8359718428369145

k eh eg k

1, 9 .0011905000307570 −.0006498856781080 −1, 9

2, 8 −.0661176809801392 .0360931817123812 0, 8

3, 7 −.0486090144349880 .0242203237025032 1, 7

4, 6 .4196710715734130 −.1005257125375647 2, 6

5 .8019438099950095 −.3771238286176690 3, 5

.8359718428369145 4

Table 36. Weights of BFB 11/9 with Condition EP4

Weights h eh Weights

w0,0 1.0072840523965583 1.0088330936461765 ew0,0

w0,1 1.0088330936461765 1.0072840523965583 ew0,1

w1,0 .9530846410106563 1.0664856176370199 ew1,0

w1,1 1.0843858100807528 .9747330034352886 ew1,1

w2,0 .9291943194242402 1.0915900107533816 ew2,0

w2,1 .9947688827217231 1.0616741591490110 ew2,1

w3,0 .9217294743698444 1.0990277801836811 ew3,0

w3,1 .9518735266152172 1.1025443025356975 ew3,1

Hence, (132)–(133) yields

h0 = h11 = −.0097217593829114, h1 = h10 = .0247597528872896,

h2 = h9 = .0489108688744086, h3 = h8 = −.1087743617414911,

h4 = h7 = .0488653797296422, h5 = h6 = .7030669008196096;
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Table 37. BFB 13/11 with Condition EP3

k h g k

0, 12 .0078836658313995 .0170492651873219 0, 10

1, 11 .0025213736454515 .0054527384641817 1, 9

2, 10 .0154219421943901 .0160277522896776 2, 8

3, 9 −.0287769207330297 −.0677737019116951 3, 7

4, 8 −.0866780132051877 −.3866304080702732 4, 6

5, 7 .3798089376808520 .8317487080815741 5

6 .8338515915453438

k eh eg k

1, 11 −.0170492651873219 .0078836658313995 −1, 11

2, 10 .0054527384641817 −.0025213736454515 0, 10

3, 9 −.0160277522896776 .0154219421943901 1, 9

4, 8 −.0677737019116951 .0287769207330297 2, 8

5, 7 .3866304080702732 −.0866780132051877 3, 7

6 .8317487080815741 −.3798089376808520 4, 6

.8338515915453438 5

Table 38. Weights of BFB 13/11 with Condition EP3

Weights h eh Weights

w0,0 1.0011132049134615 1.0011132049134615 ew0,0

w0,1 1.0011132049134615 1.0011132049134615 ew0,1

w1,0 .9706153388077445 1.0322355935379490 ew1,0

w1,1 1.0340729222243983 .9723761734666035 ew1,1

w2,0 .9496103586911090 1.0544853745092700 ew2,0

w2,1 .9937697324329497 1.0122158919865541 ew2,1

w3,0 .9423122148861941 1.0624985209271279 ew3,0

w3,1 .9585048727295536 1.0482316824973282 ew3,1

and

h̃0 = h̃11 = .0036335531639449, h̃1 = h̃10 = .0092540737636692,

h̃2 = h̃9 = −.0457869346277827, h̃3 = h̃8 = −.1107089552735895,

h̃4 = h̃7 = .1652490973141165, h̃5 = h̃6 = .6854659468461891;

and, by using (137)–(138),

gk = (−1)kh̃k, g̃k = (−1)khk, k = 0, . . . , 11.

The initial level weights are

w0,0 = w0,1 = w̃0,0 = w̃0,1 = 1.0232451703981401.

Again, by using (109)–(112), the Riesz bounds for {φEP3
12,12(· − k)}k∈Z and {φ̃EP3

12,12(· − k)}k∈Z are

found in the following

.8440350201656507 ≤ ΦEP3
12,12(e

−jω) ≤ 1.2136551093739243,

.8046326219081530 ≤ Φ̃EP3
12,12(e

−jω) ≤ 1.1673948582780465,
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where ΦEP3
12,12 and Φ̃EP3

12,12 are the Euler-Frobenius polynomials of φEP3
12,12 and φ̃EP3

12,12, as introduced

in (104) or (105). In addition, the corresponding refinable functions φEP3
12,12 and φ̃EP3

12,12 have Hölder

exponents 1.0943 and 2.1108, i.e., φEP3
12,12 ∈ C1.0943 and φ̃EP3

12,12 ∈ C2.1108.
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