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Abstract 
 

In a recent paper, Srivastava et al. (2016) have tested the proposed formula based on DS-

conjecture Datta and Srivastava, (1999) of Stokes drag on axially symmetric bodies placed 

under micropolar fluid to improve the drag value under Oseen’s limit. In the present work, 

proof of the proposed drag formula is given for both axial and transverse Stokes flow of 

micropolar fluid under certain body geometry constraints mainly of continuously turning 

tangent on body curve in meridional plane as assumed in DS-conjecture. The general 

expression of drag immediately reduces to the value of drag in classical Newtonian fluid as 

micro polarity parameter k approaches to zero. The proposed expressions of Stokes drag are 

applied to various axially symmetric bodies like sphere, spheroid, deformed sphere, cycloidal 

body, Cassini body, Hypocycloidal body and egg-shaped body and results are in agreement 

with some known values available in the literature in the limiting cases. 
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1. Introduction 
 

The theory of micro polar fluid was first introduced by Eringen (1966). The micro polar fluid 

differs with classical Newtonian fluid by only microstructure properties viz; micro-rotation 

and micro-inertia. Complex fluids like polymeric suspensions, animal blood, liquid crystals, 

lubricants, colloidal suspensions, bubbly fluids, granular fluids are few examples of micro 

polar fluids. In such fluid, solitary particle can rotate independently from the rotation and 

motion of fluid in complete form. The creep movement of small particles in a fluid is 

common in bio-engineering, chemical engineering and naval engineering. It should be noted 

that the important quantity in solving all problems of fluid dynamics is the drag force rather 
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than a detailed description of the flow field. To deal with the Stokes drag on axially 

symmetric body placed under the micro polar fluid or Stokes flow past an axially symmetric 

body in micro polar fluid is always a typical task though the nature of Stokes equations are 

linear.  

 

Ariman et al. (1973) provided a complete review over micro polar continuum fluid 

mechanics. Ramkissoon and Majumdar (1976) gave a formula for Stokes drag on axially 

symmetric body placed under micropolar fluid in terms of stream function which 

immediately reduces to the formula of drag provided by Payne and Pell (1960) on removing 

the micro polar effect from expression of drag. In their work, Datta and Rathore (1983) dealt 

a problem of slow uniform flow of a micropolar fluid past a prolate spheroid. In this paper, 

they proved that the drag for the polar case can be deduced from the non-polar by taking k=0, 

where k is micro polarity parameter, simply through multiplication by the factor 1 + /k with 

k  into the expression of drag or replacing k by  + k. Avoiding the selection of coordinate 

systems for chosen body, Datta and Srivastava (1999) provided a simple Stokes drag formula 

for axially symmetric body placed in classical Newtonian fluid which was purely based on 

geometry of axi-symmetric body with the condition of continuously turning tangent on body 

curve in meridional plane. Combining this fact with DS-conjecture (1999) along with 

Brenner’s formula (1961), Srivastava et al. (2016) provided the Oseen’s correction to Stokes 

drag on axially symmetric particle in micro polar fluid. In this paper, the proposed drag 

formula is tested for sphere, spheroid and deformed sphere. There exists some related work 

on Stokes flow past axially symmetric bodies of micro polar fluid mainly by Ramkissoon and 

O’Neill (1983), Iyengar and Charya (1993), Hayakawa (2000), Palaniappan and Ramkissoon 

(2005), Hoffmann et al. (2007), Shu and Lee (2008), Sherief et al. (2010), Deo and Shukla 

(2012) etc.  

 

Now, in the present paper, author attempted to provide complete proof of drag formula for 

axially symmetric body placed in Stokes flow of micro polar fluid. The method exploits the 

well-known drag formula for a sphere and the step used in its derivation [page 122, Happel 

and Brenner (1964)]. Using this method, first a simple formula is obtained for evaluating the 

drag force on axially symmetric body, with continuously turning tangent, placed in a uniform 

stream along the axis of symmetry, and then the method is extended to the transverse flow 

situation. In this process, we consider viscosity coefficient  + k instead of  for micro polar 

fluid where k is the small micro polarity parameter. 

 

2.  Method 
 

2.1. Axial Flow 

 

Let us consider the axially symmetric body of characteristic length L placed along its axis(x-

axis, say) in a uniform stream 𝑈  of micropolar viscous fluid of density 
1

ρ , kinematic 

viscosity , viscosity coefficient  and micro polar parameter 𝑘 . When Reynolds number 

𝑈𝐿/  is small, the steady motion is governed by Stokes equations (Ramkissoon and 

Majumdar, 1976), 

 

     0 ,
1

k u k p F                  (1) 

( ) ( . ) ( ) 2 0,
1 2 3 3

k u k                      (2) 

. 0.          u             (3) 
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subject to the no-slip and no spin boundary condition. In the above equations, 𝒖  is the 

velocity vector,  the micro-rotation or spin vector,  the viscosity coefficient, p the pressure, 

‘𝑘’ the coupling constant or micro polarity of the fluid, F the external force per unit mass and 

1, 2, 3 are characteristics constants of the particular fluid under consideration. It should be 

noted here that the general expression for Stokes drag on small axially symmetric particle 

placed under slow incompressible viscous micro polar fluid with small micro polarity 

experiencing no external body forces is proposed with the restriction of no-slip and no spin 

boundary conditions.  

 
Figure 1(a). Elemental force system on the sphere 

 

 
Figure 1(b). Geometry of axially symmetric body 

 
For the case of a sphere of radius 𝑅, the solution is easily obtained and on evaluating the 

stress, the drag force 𝐹 comes out as in Happel and Brenner (1964, p. 122)  
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 
9 3     sin   ,
2 0

F k U R d R


              (4) 

 

where 

 

 6  ( ) .k U              (5) 

 

This shows that the drag force increases linearly with the radius of the sphere. In other words, 

the difference between drag force on two spheres of radii 𝑦 and 𝑦 + 𝑑𝑦 is given by 

 

.dF dy            (6) 

 

A sphere of radius ‘𝑏’ is obtained by rotating the curve 𝑥 =  𝑏 𝑐𝑜𝑠 𝑡, 𝑦 =  𝑏 𝑠𝑖𝑛 𝑡(0  𝑡  ) 

about the x-axis and the force F b  is obtained from (6) as 
b

0
dy λ  exhibiting that the force 

system 𝑑𝐹  may be considered as lying in the xy plane. The element force 𝑑𝐹  may be 

decomposed into two parts (1/2) 𝑑𝐹 , each acting over the upper half and lower half; 

(1/2) 𝑑𝐹 on the upper half acts at a height y(say) above the x-axis. The total force 𝐹/2 on 

the upper half, may be considered as made up of these differential forces 𝑑𝐹/2 acting over 

elements corresponding to a system of half spheres of radii increasing from 0 to b and spread 

over from A to A(Figure 1(a)). The moment of this force system (taken to be in the xy-plane) 

about O, provides 

 

ℎ (
𝐹

2
) = 𝑀 =

1

2
∫  𝑦 𝑑𝐹 =

1

2

𝑏

0

 𝜆 ∫  𝑦 𝑑𝑦 =
1

4
𝜆𝑏2

𝑏

0

, 

 
or 

𝐹 =
1

2

𝜆𝑏2

ℎ
 ,                                                    (7) 

 

where ‘h’ is the height of centroid of the force system. In the case of a sphere of radius ‘𝑏’ we 

have 𝐹 =  𝑏, and so we get from (7), ℎ =  𝑏/2, as it should be. Next, we can express (4) 

also as 

 

,                   
0

F df



 


          (8) 

 

where 

  

3 3 sin  .
4

df R d              (9) 

 

Is the elemental force on a circular ring element at 𝑃 Figure 1(a). as in Happel and Brenner 

(1964, equation (4-17.23), p. 122). For the purpose of calculating 𝐹/2, the force on upper 

half, (1/2)𝑑𝑓  may be taken to be acting at height  (say), above x-axis, given by 
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3 3  sin  
342 30        sin  ,

3 43 0  sin  
2 40

df
R d

h d
df

R d


    

  
  

  
   

  
   

 

 

 

taking  =  𝑅/2, the result is seen to correspond to the value ℎ =  𝑏/2 confirmed earlier. 

Thus, we have 

 

3 3  sin  .     
8 0

h R d


                     (10) 

 

It is proposed that the formula (10) holds good for an axially symmetric body also, when R is 

interpreted as the normal distance PM between the point P on the body and the point of 

intersection M of the normal at P with axis of symmetry and  as its slope in Figure 1(b). On 

inserting the value of h from (10) in (7), we finally obtained the expression of drag on axially 

symmetric body in axial flow 

 

 𝐹||  =
1

2

𝜆𝑏2

ℎ||
=

4

3

𝜆𝑏2

∫ 𝑅 𝑠𝑖𝑛3 𝛼 𝑑𝛼
𝜋

0

, 𝑤ℎ𝑒𝑟𝑒 𝜆 = 6𝜋(𝜇 + 𝑘) 𝑈||, 

 

       =
8𝜋(𝜇+𝑘)𝑏2𝑈||

∫ 𝑅 𝑠𝑖𝑛3 𝛼 𝑑𝛼
𝜋

0

,                                                                   (11) 

 

where the suffix ‘’ has been introduced to assert that the force is in the axial direction. While 

using (11), it should be kept in mind that ‘𝑏’ denotes intercept between the meridian curve 

and the axis of the normal perpendicular to the axis i.e., 𝑏 =  𝑅 𝑎𝑡  =  /2. 

 

Sometimes it will be convenient to work in Cartesian co-ordinates. Therefore, referring to the 

Figure 1(b), for the profile geometry, we have 

 

1

   sin   ,   tan       .    
dy dx

y R x
dx dy

 


 

       
 

              (12) 

 

Using above transformation, we may express (10) as 

 

 
||

3
 ,     

24 20 1

a yy
h dx

y


  



                  (13) 

where 2am represents the axial length of the body and dashes represents derivatives with 

respect to x. In the sequel, it will be found simpler to work with y as the independent variable. 

Thus, hx assumes the form 

 

𝒉|| = −
𝟑

𝟒
∫

𝒚𝒙′𝟐𝒙″

(𝟏+𝒙′𝟐)𝟐
𝒅𝒚

𝒃

𝟎
,                         (14) 
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where dashes represents derivatives with respect to y. 

 

2.2. Transverse Flow 

 

We set up a polar coordinate system (𝑅, , ) with  as the polar angle with y-axis and  the 

azimuthal angle in zx plane. Since y-axis is not the axis of symmetry for the body we cannot 

make use of circular ring elemental force (3/4) R sin3  d corresponding to (9). But we can 

easily write down the elemental force on the element R2 sin d d as 

 

3  3sin   .
8

R
f d d


   


  

 

Transforming the above to the polar coordinate (𝑅, ,) with the x-axis as the polar axis, we 

have 

 3  3 21 sin  cos  sin   
8

R
f d d


     


  , 

 

as the force on the element R2 sin  d d. On integrating over  from 0 to 2, we get 

 

𝑑𝑓⊥ =
3 𝜆 𝑅

8
(2 − 𝑠𝑖𝑛3 𝛼)  𝑠𝑖𝑛 𝛼  𝑑𝛼,                   (15) 

 

where the suffix ‘’ has been placed to designate the force due to the external flow along the 

y-axis, the transverse direction. 

 

Integrating df


over the surface of the sphere, we get 

 

 3 3 2 sin sin  .
8 0

F d R


     
                (16) 

 

Agreeing with the correct value. This suggests we can take the force df as given by (15) as 

the element force on the circular ring element at P. Although the force F is along the y 

direction, we have reduced it to elemental forces on a system of spheres cantered on the x-

axis. Since F and df themselves are scalar quantities, on comparing (15) and (9), we can 

use the analysis as in the axial flow case with ‘h’ replaced by 

 

 3 3 2 sin sin .  
16 0

h R d


   
                 (17) 

 

Thus, we get from (2.5) 
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2
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We have taken up the class of those axially symmetric bodies which possesses continuously 

turning tangent, placed in a uniform stream U along the axis of symmetry (which is x-axis), 

as well as constant radius ‘b’ of maximum circular cross-section at the middle of the body. 

 

In the same manner as we did in axial flow, equation (17) may also be written in Cartesian 

form as (in both cases having x and y treated as independent) 

 

 

 
0

2
1 2

3
,      

28 2
1

a
yy y

h dx

y



  
   

 
  

                  (19) 

 

and 

 

 

 
0

2
2

3
.    

28 2
1

b
yx x

h dy

x



  
   

 
  

                  (20) 

 

In (19) and (20), the dashes represents derivative with respect to x and y, respectively. 

 

This axi-symmetric body is obtained by the revolution of meridional plane curve (depicted in 

Figure 1(b)) about axis of symmetry which obeys the following limitations: 

 

i. Tangents at the points A, on the x-axis, must be vertical, 

ii. Tangents at the points B, on the y-axis, must be horizontal, 

iii. The semi-transverse axis length ‘b’ must be fixed. 

 

The point P on the curve may be represented by the Cartesian coordinates (x,y) or polar   

coordinates (r,) respectively , PN and PM are the length of tangent and normal at the point 

P. The symbol R stands for the intercepting length of normal between the point on the curve 

and point on axis of symmetry and symbol  is the slope of normal PM which can be vary 

from 0 to . 

 

The proposed drag formulae is, of, course, subject to restrictions on the geometry of the 

meridional body profile y(x) of continuously turning tangent implying that y(x) is continuous 

together with 𝑦(𝑥)  0, thereby avoiding corners or sharp edges or other kind of nodes and 

straight line portions, 1 2     ,     .y ax b x x x     If such type of cases arises in the body, the 

contribution of drag corresponding to those parts will be zero and true drag value experienced 

by the body may not be achieved.  Also, it should be noted here that the method holds good 

for convex axially symmetric bodies which possesses fore-aft symmetry about the equatorial 

axis perpendicular to the axis of symmetry (polar axis). Apart from this argument, It is 

interesting to note here that the proposed conjecture is applicable also to those axi-symmetric 

bodies which fulfills the condition of continuously turning tangent but does not possesses 

fore-aft symmetry like egg shaped body (Datta and Srivastava, 1999). This conjecture is 

much simpler to evaluate the numerical values of drag than other existing numerical methods 

like Boundary Element Method (BEM), Finite Element Analysis (FEA) etc. as it can be 
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applied to a large set of convex axi-symmetric bodies possessing fore-aft symmetry about 

maximal radius situated in the middle of the body for which analytical solution is not 

available or impossible to evaluate. The presence of height of C.G. of force system in the 

denominator of the expressions of drag (11) and (18) is the conjecture for the proposed 

formula of drag. 

 

3.  Flow past a sphere 

 
Let us consider the parametric equation of sphere having radius ‘a’ as 

 

cos ,   sin  ,   0 π.  x a t y a t t                     (21) 

 

After careful calculation, the expressions of axial and transverse Stokes drag on this sphere 

placed in micropolar fluid, by using (11) and (18) with fact 𝑏 =  𝑎,  comes out to be 

 

𝐹𝑥 = 𝐹𝑦 = 6 𝜋 𝜇 (1 +
𝑘

𝜇
)  𝑈 𝑎 ,                                 (22) 

 

where ‘k’ is small micro polarity coefficient. This expression matches with the expression of 

drag on sphere of radius ‘a’ placed under micro polar fluid given by Ramkissoon and 

Majumdar (1976), Datta and Rathore (1984), Shu and Lee (2008) which immediately reduces 

to classical Stokes drag, 6Ua, on sphere having radius ‘a’, as 𝑘  0. On normalizing with 

drag on sphere having radius ‘a’ placed under Newtonian fluid, i.e., 6𝑈𝑎, we can have the 

expressions of drag coefficient in both axial and transverse cases as 

 

6 (1 )

1 ,   0.
6x yF F

k
Ua

k k
C C

Ua




  



                     (23) 

 

3. Flow past spheroid 

 
3.1. Prolate spheroid 

 

Suppose a prolate spheroid is generated by the rotation of an ellipse about the x-axis. The 

parametric equation of the ellipse may be taken as 

 

cos ,   sin  ,   0 π.x a t y a t t                     (24) 

 

After careful calculation, the expressions of axial Stokes drag on this prolate spheroid placed 

in micro polar fluid, by using equation 11, comes out to be 

 

 
1

3 2 1
16 1 2 1 log ,

1
x

k e
F Uae e e

e






     
            

               (25) 

 

2 42 17
      6 1  1  .

5 175

k
Ua e e



   
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  
                  (26) 
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This expression matches with axial Stokes drag calculated by Datta and Rathore (1984) with 

the help of singularity distribution method which further reduces to the classical expression 

of drag on prolate spheroid by Datta and Srivastava (1999), as micro polarity coefficient 

tends to zero, i.e. , 𝑘  0. On normalizing with drag on sphere having radius ‘a’ placed under 

Newtonian fluid i.e. 6𝑈𝑎, we can have the expressions of drag coefficient in axial flow as 

 

 
1

3 2

2 4

8 1
1  2 1 log ,

6 3 1

2 17
                      1 1  .          

5 175

x

x
F

F k e
C e e e

Ua e

k
e e
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



    
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   

   
       

                 (27) 

 

The expressions of transverse Stokes drag on this prolate spheroid placed in micro polar 

fluid, by using equation 18, comes out to be 

 

 
1

3 2 1
32 1 2 3 1 log ,

1
y

k e
F Uae e e

e
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



     
           

               (28) 

 

2 43 57
6 1 1 .

10 700

k
Ua e e



   
       

  
                    (29) 

 

This expression matches with transverse Stokes drag calculated by Datta and Rathore (1984) 

with the help of singularity distribution method which further reduces to the classical 

expression of drag on prolate spheroid by Datta and Srivastava (1999), as micro polarity 

coefficient tends to zero, i.e., 𝑘  0. On normalizing with drag on sphere having radius ‘a’ 

placed under Newtonian fluid i.e. 6𝑈𝑎, we can have the expressions of drag coefficient in 

transverse flow as 
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   
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  

              (30) 

 

3.2. Oblate spheroid 

 

Suppose an oblate spheroid is generated by the rotation of an ellipse about the x-axis. The 

parametric equation of the ellipse may be taken as 

 

cos ,   sin  ,   0 π.x a t y a t t                     (31) 

 

After careful calculation, the expressions of axial Stokes drag on this prolate spheroid placed 

in micro polar fluid, by using equation 11, comes out to be 
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                         (32) 
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                (33) 

 

This expression matches with axial Stokes drag calculated by Datta and Rathore (1984) with 

the help of singularity distribution method which further reduces to the classical expression 

of drag on prolate spheroid by Datta and Srivastava (1999), as micro polarity coefficient 

tends to zero, i.e., 𝑘  0. On normalizing with drag on sphere having radius ‘a’ placed under 

Newtonian fluid, i.e., 6𝑈𝑎, we can have the expressions of drag coefficient in axial flow as  
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              (34) 

 

The expressions of transverse Stokes drag on this oblate spheroid placed in micro polar fluid, 

by using equation 18, comes out to be 
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k
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μ


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            (35) 
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This expression matches with transverse Stokes drag calculated by Datta and Rathore (1984) 

with the help of singularity distribution method which further reduces to the classical 

expression of drag on prolate spheroid by Datta and Srivastava (1999), as micro polarity 

coefficient tends to zero, i.e., 𝑘  0. On normalizing with drag on sphere having radius ‘a’ 

placed under Newtonian fluid, i.e., 6𝑈𝑎, we can have the expressions of drag coefficient in 

transverse flow as  
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                                              (37) 

 

5. Flow past deformed sphere 
 

We consider the polar equation of deformed sphere as 

 

 
0

1  ,    cos ,       k k

k

r a d P   




 
   

 
                 (38) 

 

where ‘ ’ is deformation parameter and (𝑟, ) are polar coordinates.  
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After careful calculation, the Stokes drag experienced by this deformed sphere placed in axial 

and transverse uniform stream is given by use of equation (11) and (18) up to first order of 

‘’, as 
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These expressions reduces to those for deformed sphere placed under Newtonian fluid given 

in paper [Datta and Srivastava, 1999] in the limiting case as 𝑘  0. On normalizing with drag 

on sphere having radius ‘𝑎’ placed under Newtonian fluid, i.e., 6𝑈𝑎, we can have the 

expressions of drag coefficient in both axial and transverse flow cases as  
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4. Cycloidal body of revolution 

 
Case 1. We consider the equation of cycloidal body of revolution as 

 

( sin ),   (1 cos ),   0 π.  x a t t y a t t                      (43) 

 

The Stokes drag on this axially symmetric body of revolution is given by using equation 11 

and 18, as 
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These expressions reduces to those for cycloidal body placed under Newtonian fluid given in 

Datta and Srivastava (1999) in the limiting case as 𝑘  0. On normalizing with drag on 

sphere having radius ‘ 𝑎 ’ placed under Newtonian fluid, i.e., 6𝑈𝑎,  we can have the 

expressions of drag coefficient in both axial and transverse flow cases as  
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 2.7176(1 ).    
6y

y

F

F k
C

Ua 
                   (47) 

 

Case 2. Consider the body generated by the rotation about x-axis of the curve composed of 

arcs of two cycloidal parts represented parametrically by 

 

   1 cos ,   sin  ,  0 ,x a t y a t t t                     (48) 

 

   1 cos ,   sin ,   0  .x a t y a t t t                       (49) 

 

The Stokes drag on this axially symmetric body of revolution is given by equation 11 and 18, 

as 
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These expressions reduces to those for cycloidal body placed under Newtonian fluid given in 

Datta and Srivastava (1999) in the limiting case as 𝑘  0. On normalizing with drag on 

sphere having radius ‘ 𝑎 ’ placed under Newtonian fluid, i.e., 6𝑈𝑎 , we can have the 

expressions of drag coefficient in both axial and transverse flow cases as 
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and 

2.61319(1 ). 
yF

k
C
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                                (53) 

 

5. Flow past Cassini body of revolution 

 
We consider the Cassini body of revolution obtained by revolving the curve 

 

 
1/ 2

2 2 22 1
1 3  ,   0 1 ,

3 3
y x x x                     (54) 

 

about x-axis. The Stokes drag on this axially symmetric Cassini body of revolution, on taking 

𝑎 =  1, 𝑏 =  0.577, by using equation 11 and 18, as 
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These expressions reduces to those for Cassini body of revolution placed under Newtonian 

fluid given in Srivastava (2001) in the limiting case as k  0. On normalizing with drag on 

sphere having radius ‘a’ placed under Newtonian fluid, i.e., 6Ua, we can have the 

expressions of drag coefficient in both axial and transverse flow cases as  
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6. Hypocycloidal body of revolution 

 
We consider the hypocycloidal body of revolution obtained by revolving the curve 

 

 2 2 43 1 8  ,   0 1 .  y x x x                     (59) 

 

about x-axis. The Stokes drag on this axially symmetric hypocycloidal body of revolution is 

given by using equation 11 and 18, with 𝑎 = 1, as 
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These expressions reduces to those for Hypocycloidal body of revolution placed under 

Newtonian fluid given in Srivastava (2001) in the limiting case as 𝑘  0. On normalizing 

with drag on sphere having radius ‘a’ placed under Newtonian fluid, i.e., 6𝑈𝑎, we can 

have the expressions of drag coefficient in both axial and transverse flow cases as 
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7. Egg-shaped body 
 

We consider the drag for an egg-shaped body in which the right portion is in the shape of 𝑎 

half prolate spheroid given parametrically by 

 

𝑥 = 𝑎 𝑐𝑜𝑠 𝑡 ,  𝑦 = 𝑎 𝑠𝑖𝑛 𝑡  ,  0 ≤ 𝑡 ≤
𝜋

2
,                         (64) 
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and left portion is a hemisphere given by 

 

π
cos ,   sin  ,   π.       

2
x b t y b t t                     (65) 

 

The Stokes drag on this egg-shaped body of revolution is given by using equation 11 and 18, 

as 
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This expression reduces to those for egg-shaped body of revolution placed under Newtonian 

fluid given in Datta and Srivastava (1999) in the limiting case as 𝑘  0. On normalizing with 

drag on sphere having radius ‘𝑎’ placed under Newtonian fluid, i.e., 6𝑈𝑎, we can have the 

expressions of drag coefficient in both axial and transverse flow cases as 
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8. Numerical Tables 
 

Table 1.  Variation of drag coefficient for spherical body (equation 23) with respect to 𝑘/, the ratio of 

micro polar parameter and viscosity coefficient of fluid 

 k/ 

 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 

xFC  
1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0 

yFC  
1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0 

 

Table 2(i). Variation of drag coefficient for prolate spheroidal body (equation 27 & 30) with respect to 𝑘/ 

and eccentricity 𝑒, the ratio of micro polar parameter and viscosity coefficient of fluid 

k/ 

 0.0 0.2 0.4 0.6 0.8 1.0 

e 
xFC  

yFC  
xFC  

yFC  
xFC  

yFC  
xFC  

yFC  
xFC  

yFC   
xFC  

yFC  

0.0 1.00 1.00 1.20 1.20 1.40 1.40 1.60 1.60 1.80 1.80 2.00 2.00 

0.2 0.98 0.99 1.18 1.18 1.38 1.38 1.57 1.58 1.77 1.78 1.97 1.97 

0.4 0.93 0.95 1.12 1.14 1.31 1.33 1.49 1.52 1.68 1.71 1.87 1.90 
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Table 2(ii). Variation of drag coefficient for oblate spheroidal body (equation 34 and 37) with respect to k/ 

and eccentricity e, the ratio of micro polar parameter and viscosity coefficient of fluid 

 

Table 3. Variation of drag coefficient for deformed sphere (equation 41 and 42) with respect to 𝑘/ and 

deformation parameter , the ratio of micro polar parameter and viscosity coefficient of fluid 

(𝑑0 = 𝑑2 = 0.5) 

 0.0 0.2 0.4 0.6 0.8 1.0 

 
xFC  

yFC  
xFC  

yFC  
xFC  

yFC  
xFC  

yFC  
xFC  

yFC    
xFC  

yFC  

0.0 1.00 1.00 1.20 1.20 1.40 1.40 1.60 1.60 1.80 1.80 2.00 2.00 

0.2 1.08 1.11 1.30 1.33 1.51 1.55 1.73 1.78 1.94 1.99 2.16 2.22 

0.4 1.16 1.22 1.32 1.46 1.62 1.70 1.78 1.95 2.08 2.19 2.32 2.44 

0.6 1.24 1.33 1.48 1.59 1.73 1.86 1.98 2.13 2.23 2.39 2.48 2.66 

0.8 0.70 0.77 0.84 0.92 0.98 1.08 1.12 1.23 1.27 1.39 1.40 1.54 

1.0 1.40 1.55 1.68 1.86 1.96 2.17 2.24 2.48 2.52 2.79 2.80 3.10 

 

Table 4(i). Variation of drag coefficient for Cycloidal body (case-1, equation 46 and 47) with respect to 𝑘/, 
the ratio of micro polar parameter and viscosity coefficient of fluid 

 𝑘/ 

 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 

xFC  
2.265 2.492 2.718 2.944 3.171 3.307 3.624 3.8505 4.077 4.3035 4.530 

yFC  
2.718 2.989 3.262 3.533 3.805 4.077 4.349 4.621 4.892 5.164 5.436 

 

Table 4(ii). Variation of drag coefficient for Cycloidal body (case-2, equation 52 & 53) with respect to 𝑘/, 
the ratio of micro polar parameter and viscosity coefficient of fluid 

 𝑘/ 

 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 

xFC  
3.461 3.807 4.1532 4.499 4.845 5.191 5.537 5.884 6.230 6.576 6.922 

yFC  
2.613 2.874 3.136 3.397 3.658 3.919 4.181 4.442 4.704 4.965 5.226 

 

Table 5.  Variation of drag coefficient for Cassini body (equation 57 & 58) with respect to 𝑘/, the ratio of 

micro polar parameter and viscosity coefficient of fluid 
 𝑘/ 

 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 

xFC  
0.8 0.88 0.96 1.04 1.12 1.2 1.28 1.36 1.44 1.52 1.6 

0.6 0.84 0.88 1.01 1.06 1.18 1.23 1.34 1.41 1.52 1.59 1.69 1.76 

0.8 0.70 0.77 0.84 0.92 0.98 1.08 1.13 1.24 1.27 1.39 1.40 1.54 

1.0 0.50 0.62 0.60 0.74 0.70 0.87 0.80 0.98 0.90 1.11 1.00 1.23 

 0.0 0.2 0.4 0.6 0.8 1.0 

𝑒 
xFC  

yFC  
xFC  

yFC  
xFC  

yFC  
xFC  

yFC  
xFC  

yFC   
xFC  

yFC  

0.0 1.00 1.00 1.20 1.20 1.40 1.40 1.60 1.60 1.80 1.80 2.00 2.00 

0.2 0.99 0.99 1.19 1.19 1.39 1.39 1.59 1.59 1.79 1.78 1.99 1.98 

0.4 0.98 0.96 1.18 1.16 1.37 1.35 1.57 1.55 1.77 1.74 1.97 1.93 

0.6 0.96 0.92 1.15 1.10 1.34 1.30 1.54 1.47 1.73 1.65 1.92 1.84 

0.8 0.92 0.85 1.11 1.01 1.23 1.18 1.48 1.36 1.67 1.53 1.85 1.69 

1.0 0.88 0.74 1.05 0.89 1.23 1.04 1.40 1.19 1.58 1.34 1.75 1.48 
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yFC  
0.82 0.982 0.984 1.066 1.148 1.23 1.312 1.394 1.476 1.558 1.64 

 

Table 6.  Variation of drag coefficient for Hypocycloidal body (equation 62 & 63) with respect to 𝑘/, the 

ratio of micro polar parameter and viscosity coefficient of fluid 
 𝑘/ 

 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 

xFC  
1.044 1.148 1.252 1.357 1.462 1.566 1.670 1.775 1.879 1.984 2.088 

yFC  
1.320 1.452 1.584 1.716 1.848 1.980 2.112 2.244 2.376 2.508 2.640 

 

Table 7.  Variation of drag coefficient for egg-shaped body (equation 68 & 69) with respect to 𝑘/ and 

eccentricity ‘𝑒’ 

 

9. Numerical Analysis 
 

 According to table-1, the drag coefficients for spherical body increases with respect to 

the increasing values of k/ for both cases of axial and transverse flow of micro-polar 

fluid. For k/=1, the drag values are doubled to the drag values for k/=0, the case of 

Newtonian fluid. 

 According to table-2(i), the drag coefficients for prolate spheroid decreases with 

respect to the increasing values of eccentricity ‘e’ for specific ratio k/ and for 

k/=1,the values of drag coefficients are more than double to that at k/=0 for 

Newtonian fluid. Similar variation pattern to drag may be explained from table-2(ii) 

for oblate spheroid. 

 According to table-3, the drag coefficients for deformed sphere increases with respect 

to the increasing values of deformation parameter ‘’ for specific ratio k/ and for 

k/=1, the values of drag doubled to that at k/=0 for Newtonian fluid. Further, for 

specific deformation parameter ‘’, the drag coefficients increases with respect to 

increasing values of k/. 

 According to table-4(i), the drag coefficients for cycloidal body(case-1, equation 43) 

increases with respect to the increasing values of k/ and k/=1, the values are 

doubled to that at k/=0 for Newtonian fluid. Similar variation pattern to drag reflects 

from table-4(ii) for cycloidal body(case-2, equation 48 & 49). 

 According to table-5 and 6, the drag coefficients for cassini body of revolution and 

hypocycloidal body of revolution increases with respect to increasing values of k/  

and k/ =1, the values are doubled to that at k/ =0 for Newtonian fluid. 

 According to table-7, the drag coefficients for egg-shaped body decreases with respect 

to the increasing values of eccentricity ‘e’ for specific ratio k/ and for k/ =1, the 

 0.0 0.2 0.4 0.6 0.8 1.0 

𝑒 
xFC  

yFC  
xFC  

yFC  
xFC  

yFC  
xFC  

yFC  
xFC  

yFC

 

 
xFC  

yFC  

0.0 1.00 1.00 1.20 1.20 1.40 1.40 1.60 1.60 1.80 1.80 2.00 2.00 

0.2 0.98 0.99 1.18 1.18 1.38 1.38 1.57 1.58 1.77 1.78 1.96 1.97 

0.4 0.93 0.94 1.11 1.12 1.29 1.31 1.48 1.5 1.67 1.68 1.85 1.87 

0.6 0.82 0.84 0.99 1.00 1.15 1.17 1.32 1.34 1.48 1.51 1.65 1.67 

0.8 0.67 0.66 0.79 0.80 0.93 0.93 1.07 1.06 1.19 1.20 1.33 1.33 

1.0 0.44 0.39 0.52 0.46 0.61 0.54 0.70 0.62 0.79 0.70 0.87 0.77 
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values are almost doubled to that at k/ =0 for Newtonian fluid. While for specific 

eccentricity, the drag value increases with respect to increasing value of k/ . 

 All the variations, in every class of bodies, are depicted in figures 2-8.  

 

10. Conclusion 

 
In the authors previous published paper [IJAAMM, (2016)], the drag formula was 

conjectured and Oseen’s drag were evaluated with the help of Brenner’s formula (1961) on 

axially symmetric body with continuously turning tangent. The novelty of the manuscript 

belongs to the proof of previously conjectured drag formula. It is clear from the proposed 

proof of drag on axially symmetric bodies placed under micro-polar fluid geometric 

parameters related to the body and micro-rotation parameter of micro-polar fluid contribute 

significantly in the analytical expression of drag on axially symmetric body. This statement 

directly leads us to the conclusion that we may find the analytic expression of drag on axially 

symmetric body by knowing some geometrical parameters along with micro-rotation 

parameter for micro-polar fluid without solving the cumbersome differential equations 

governing the physical phenomenon.  

 

The general expression of Stokes drag on axially symmetric particle placed under axial and 

transverse flow of micro polar fluid is advanced as an extension from Newtonian fluid. The 

proposed expressions of Stokes drag are applied to various axially symmetric bodies like 

sphere, spheroid, deformed sphere, cycloidal body, Cassini body, Hypocycloidal body and 

egg-shaped body and results are in agreement with some known values available in the 

literature in the limiting cases. It is found, as expected, that the drag values in the present 

cases are larger to that in case of Newtonian fluid for the same bodies. It is interesting here to 

note that the proposed result is based on some geometric parameters of body based on DS-

conjecture avoiding complex and tedious calculations of coordinate based differential 

equations of motion. This method may further be advanced to solve many more problems of 

micropolar fluid-particle interaction in variety of flows. The proposed proof of drag on 

axially symmetric body placed under micro-polar fluid which was conjectured in previous 

paper (2016) of author is the main contribution in the present manuscript. This study, in my 

views, may open the door for the further study of those properties that differs the Newtonian 

fluid with Micro-polar fluid. Author is working on these problems which may appear in 

future work. 
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APENDIX 

 

 
Figure 2. Variation of drag coefficient for Sphere with respect to k/ 
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Figure 3(i).     Variation of drag coefficient for Prolate spheroidal with respect to k/ and eccentricity 
                         'e' (based on data of table 2(i)) 
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Figure 3(ii). Variation of drag coefficient for Oblate spheroidal with respect to k/ and

eccentricity 'e' (based on data of table 2(ii))
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Figure 4. Variation of drag coefficient for deformed spherewith respect to k/ and 

deformation parameter 
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