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Abstract

In this paper we are going to obtain fuzzy traveling wave solutions for fuzzy linear partial differ-
ential equations by considering the type of generalized Hukuhara differentiability. In particular,
the fuzzy traveling wave solutions for fuzzy Advection equation, fuzzy linear Diffusion equation,
fuzzy Convection-Diffusion-Reaction equation, and fuzzy Klein-Gordon equation are obtained.
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1. Introduction

This paper examines the fuzzy solution of the following generic form of the second-order fuzzy
linear partial differential equation under generalized Hukuhara partial differentiability,

utgH = F
(
u, uxgH

, uxxgH
, uttgH

)
. (1)

We are interested in a particular class of solutions to the fuzzy linear partial differential equations,
the traveling wave fuzzy solution.

Various complex phenomena in different branches of science and engineering such as plasma
physics, fluid mechanic and optical fibers can be expressed in the form of Equation (1) because
most of these phenomena have some uncertainty and ambiguity in their initial measurements, and
a well-known way for modeling systems with uncertainties is fuzzy set theory.

The fuzzy partial differential equations are examined by Buckley and Feuring (Buckley and Feur-
ing (1999)). They introduced the concepts of fuzzy partial differentiability based on general-
ized Hukurara difference for the fuzzy multivariable functions. In recent years, many methods
have been utilized for finding an analytical or numerical fuzzy solution for fuzzy partial differ-
ential equations (Allahviranloo (2002); Allahviranloo and Taheri (2009); Bertone et al. (2013);
Gouyandeha et al. (2017); Moghaddam and Allahviranloo (2018)) and fuzzy differential equations
(Tapaswini and Chakraverty (2013); Gholami et al. (2019)).

The traveling wave solutions of the partial differential equations can provide physical aspects of
the problems; therefore, they play an essential role in applied science fields (Wazwaz (2002);
Ablowitz and Clarkson (1991); Griffiths and Schiesser (2011)). In this article, we will obtain the
fuzzy traveling wave solution for particular cases of Equation (1): fuzzy Advection equation, fuzzy
linear Diffusion equation, fuzzy Convection-Diffusion-Reaction equation, and fuzzy Klein-Gordon
equation. We will discuss the fuzzy traveling wave solution of these equations by considering the
type of gH−differentiability.

The organization of this paper is as follows. In Section 2, some concepts associated with fuzzy
numbers and generalized Hukuhara differentiability are expressed. The method of obtaining fuzzy
traveling wave solutions for second-order fuzzy linear partial differential equations by considering
the type of generalized Hukuhara partial differentiability is described in Section 3. Next, in Section
4 the fuzzy traveling wave solution for fuzzy Advection equation, fuzzy linear Diffusion equation,
fuzzy Convection-Diffusion-Reaction equation, and fuzzy Klein-Gordon equation are obtained and
the corresponding formulas are shown. Conclusions are drawn in Section 5, and finally, in the
Appendix the fuzzy solution of the eigenvalue problem for the second-order fuzzy differential
equation is obtained.
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2. Mathematical Preliminaries

In this section, the basic definitions and the necessary notation which will be used throughout
the paper are introduced. The set of fuzzy numbers, that is, normal, fuzzy convex, upper semi-
continuous and compactly supported fuzzy sets which defined over the real line is denoted by E.
The α−cut of fuzzy number A for all 0 ≤ α ≤ 1 is defined as follows:

[A]α =
{
x ∈ Rn

∣∣∣A(x) ≥ α
}
, [A]0 = cl

{
x ∈ Rn

∣∣∣A(x) > 0
}
.

Definition 2.1. (Kaufmann and Gupta (1985))

Triangular fuzzy numbers are particular numbers in E such that they define by an ordered triple
a = (a1, a2, a3) with a1 ≤ a2 ≤ a3. Let a = (a1, a2, a3), b = (b1, b2, b3) be two triangular fuzzy
numbers, so

1. The triangular fuzzy number a is said to be non-negative if a1 ≥ 0;
2. [a]α = [(a1, a2, a3)]

α = [a1 + (a2 − a1)α, a3 − (a3 − a2)α] for all α ∈ [0, 1];
3. Two triangle fuzzy number a and b are said equal if and only if a1 = b1, a2 = b2 and a3 = b3;
4. a⊕ b = (a1 + b1, a2 + b2, a3 + b3);
5. For all λ ∈ R

λa =

{
(λa1, λa2, λa3), if λ ≥ 0,
(λa3, λa2, λa1), if λ < 0.

Definition 2.2. (Alikhani and Bahrami)

The generalized Hukuhara difference of two fuzzy number a, b ∈ E is the fuzzy number c (if it
exists), such that

a�gH b = c⇐⇒
{
(i) a = b⊕ c, or
(ii) b = a⊕ (−1)c.

For two fuzzy triangular numbers a = (a1, a2, a3) and b = (b1, b2, b3), the generalized Hukuhara
difference is defined as follows

a�gH b = c⇐⇒
{
(i) c = (a1 − b1, a2 − b2, a3 − b3), or
(ii) c = (a3 − b3, a2 − b2, a1 − b1),

provided that c is a triangular fuzzy number. Bede has shown that if a and b are two triangular
fuzzy number, then a	gH b always exists in E (Bede (2013)).

Corollary 2.3.

Let a = (a1, a2, a3), b = (b1, b2, b3) and c = (c1, c2, c3) be triangular fuzzy numbers. Then, we
easily see that

(i) (−1)a = (−a3,−a2,−a1),
(ii) 0	gH a = (−a3,−a2,−a1) = (−1)a,
(iii) 0	gH (−1)a = (a1, a2, a3) = a,
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(iv) a	gH (−1)b 6= a⊕ b,
(v) a	gH (b	gH c) 6= a	gH b⊕ c,

where 0 is the singleton.

In this paper consider, f : (a, b) ⊆ R → E as a triangular fuzzy function such that f(t) =(
f1(t), f2(t), f3(t)

)
where fi(t), i = 1, 2, 3 are real-valued functions. Moreover, a function u :

R× [0,∞)→ E is a fuzzy-valued function of two independent variables which consider u(x, t) =
(u1(x, t), u2(x, t), u3(x, t)) as a triangular fuzzy function.

Definition 2.4. (Bede (2013))

Let f : (a, b) → E be a fuzzy valued function such that f(t) =
(
f1(t), f2(t), f3(t)

)
. Consider

limt→∞ fi(t) = Li for i = 1, 2, 3, then we define

lim
t→∞

f(t) = (L1, L2, L3).

Definition 2.5. (Bede (2013))

Let f : (a, b) → E be a fuzzy valued function such that f(t) =
(
f1(t), f2(t), f3(t)

)
,

where f1(t), f2(t) and f3(t) are real-valued differentiable functions on (a, b). Then f is a
[(i)− gH]−differentiable function at t0 ∈ (a, b) if and only if

f ′i.gH(t0) =
(
f ′1(t0), f

′
2(t0), f

′
3(t0)

)
,

defines a triangular fuzzy number. Similarly, f is a [(ii)− gH]−differentiable function at t0 if and
only if

f ′ii.gH(t0) =
(
f ′3(t0), f

′
2(t0), f

′
1(t0)

)
,

is a triangular fuzzy number. In general, if f(t) is a [(i)− gH]− or [(ii)− gH]− differentiable for
all t0 ∈ (a, b), then f is generalized Hukuhara differentiable function on (a, b).

Definition 2.6. (Bede (2013))

Let f : (a, b)→ E is a fuzzy-valued function and f(t) =
(
f1(t), f2(t), f3(t)

)
and t0 ∈ (a, b) then∫ b

a

f(t)dt =
(∫ b

a

f1(t)dt,

∫ b

a

f2(t)dt,

∫ b

a

f3(t)dt
)
.

Theorem 2.7. (Bede and Stefanini (2013))

If f is gH-differentiable with no switching point in the interval [a, b], then we have∫ b

a

f ′gH(t)dt = f(b)	gH f(a).
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Proposition 2.8.

Let α and β be two real constants such that α, β ≥ 0 (or α, β ≤ 0 ). If f(t) is a fuzzy-valued
function, then

α f(t)	gH β f(t) = (α− β)� f(t). (2)

Proof:

First consider α and β as positive constants. Then,

α f(t) =
(
αf1(t), αf2(t), αf3(t)

)
, β f(t) =

(
βf1(t), βf2(t), βf3(t)

)
.

Using Definition 2.2 we observe that

α f(t)	gH β f(t) =
(
min

{
αf1(t)− βf1(t), αf3(t)− βf3(t)

}
, αf2(t)− βf2(t),

max
{
αf1(t)− βf1(t), αf3(t)− βf3(t)

})
.

Now, let (α− β) > 0. In this case,

α f(t)	gH β f(t) =
(
(α− β)f1(t), (α− β)f2(t), (α− β)f3(t)

)
= (α− β)�

(
f1(t), f2(t), f3(t)

)
,

and, if (α− β) < 0, therefore,

α f(t)	gH β f(t) =
(
(α− β)f3(t), (α− β)f2(t), (α− β)f1(t)

)
= (α− β)�

(
f1(t), f2(t), f3(t)

)
.

Hence Equation (2) is obtained. The other case, when α and β are negative constants, can be proved
in a similar manner. �

Definition 2.9. (Allahviranloo et al. (2015))

A triangular fuzzy function u(x, t), without any switching point on D, is called

• [(i)− p]−differentiable with respect to t at (x0, t0) if and only if

uti.gH(x, t) =
(∂u1(x, t)

∂t
,
∂u2(x, t)

∂t
,
∂u3(x, t)

∂t

)∣∣∣
x=x0,t=t0

,

defines a triangular fuzzy number, and
• Its [(ii)− p]−differentiable if and only if

utii.gH(x, t) =
(∂u3(x, t)

∂t
,
∂u2(x, t)

∂t
,
∂u1(x, t)

∂t

)∣∣∣
x=x0,t=t0

,

defines a triangular fuzzy number.

Moreover, if ux(x, t) is [gH − p]−differentiable at (x, t) with respect to x without any switching
point on D and
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• If the type of [gH − p]−differentiability of both u(x, t) and ux(x, t) are the same, then ux(x, t)
is [i− p]-differentiable with respect to x and

uxxi.gH
(x, t) =

(∂2u1(x, t)
∂x2

,
∂2u2(x, t)

∂x2
,
∂2u3(x, t)

∂x2

)∣∣∣
x=x0,t=t0

.

• If the type of [gH − p]−differentiability u(x, t) and ux(x, t) are different, therefore, ux(x, t) is
[ii− p]−differentiable with respect to x and

uxxii.gH
(x, t) =

(∂2u3(x, t)
∂x2

,
∂2u2(x, t)

∂x2
,
∂2u1(x, t)

∂x2

)∣∣∣
x=x0,t=t0

.

Recently, Chalco-Canoa et al. have studied the gH-derivative of the product of a differentiable real-
valued function and a gH-differentiable for interval functions (Chalco-Canoa et al. (2019)). In the
following, we extend the results for triangular fuzzy functions.

Theorem 2.10.

Assume that f : (a, b) → E is a fuzzy generalized Hukuhara differentiable function on (a, b) and
type of gH−differentiability doesn’t change in this interval and h(t) is a monotonic real-valued
continuous differentiable function. Then, the following cases are established:

1. If f(t) is [i− gH]−differentiable and

1-1. h(t) is a positive and increasing function then h(t)� f(t) is [i− gH]−differentiable and(
h(t)� f(t)

)′
gH

= h′(t)� f(t)⊕ h(t)� f ′i.gH(t).

1-2. h(t) is a positive and decreasing function then h(t)� f(t) is [i− gH]−differentiable and(
h(t)� f(t)

)′
gH

= h(t)� f ′gH(t)	gH (−h′(t))� f(t).

1-3. h(t) is a negative and increasing function then h(t)� f(t) is [ii− gH]−differentiable and(
h(t)� f(t)

)′
gH

= h(t)� f ′gH(t)	gH (−h′(t))� f(t).

1-4. h(t) is a negative and decreasing function then h(t)� f(t) is [ii− gH]−differentiable and(
h(t)� f(t)

)′
gH

= h′(t)� f(t)⊕ h(t)� f ′gH(t).

2. If f(t) is [ii− gH]−differentiable and

2-1. h(t) is a positive and increasing function then h(t)� f(t) is [ii− gH]−differentiable and(
h(t)� f(t)

)′
gH

= h(t)� f ′gH(t)	gH (−1)h′(t)� f(t).

2-2. h(t) is a positive and decreasing function then h(t)� f(t) is [ii− gH]−differentiable and(
h(t)� f(t)

)′
gH

= h′(t)� f(t)⊕ h(t)� f ′gH(t).
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2-3. h(t) is a negative and increasing function then h(t)� f(t) is [i− gH]−differentiable and(
h(t)� f(t)

)′
gH

= h′(t)� f(t)⊕ h(t)� f ′gH(t).

2-4. h(t) is a negative and decreasing function then h(t)� f(t) is [i− gH]−differentiable and(
h(t)� f(t)

)′
gH

= h(t)� f ′gH(t)	gH (−1)h′(t)� f(t).

Proof:

Let f(t) = (f1(t), f2(t), f3(t)), the product of f(t) and h(t) is equal to

(
h(t)� f(t)

)
=


(
h(t)f1(t), h(t)f2(t), h(t)f3(t)

)
, if h(t) > 0,

(
h(t)f3(t), h(t)f2(t), h(t)f1(t)

)
, if h(t) < 0.

Then
(
h(t)� f(t)

)′
gH

=
(
H1(t),H2(t),H3(t)

)
where

H1(t) = min

{
h′(t)f1(t) + h(t)f ′1(t), h

′(t)f3(t) + h(t)f ′3(t)

}
,

H2(t) = h′(t)f2(t) + h(t)f ′2(t),

H3(t) = max

{
h′(t)f1(t) + h(t)f ′1(t), h

′(t)f3(t) + h(t)f ′3(t)

}
.

IfH1(t) = h′(t)f1(t)+h(t)f
′
1(t) andH3(t) = h′(t)f3(t)+h(t)f

′
3(t), then we say that

(
h(t)�f(t)

)
is a [(i)− gH]−differentiable function. Otherwise, it is [(ii)− gH]−differentiable.

Now consider the Case 1-4. According to the assumptions, f(t) is a [(i) − gH]−differentiable
function and h(t) is a negative and decreasing function. Then h(t) < 0 and h′(t) < 0,

h(t)f ′i.gH(t)⊕ h′(t)f(t) = h(t)
(
f ′1(t), f

′
2(t), f

′
3(t)
)
⊕ h′(t)

(
f1(t), f2(t), f3(t)

)
=
(
h(t)f ′3(t), h(t)f

′
2(t), h(t)f

′
1(t)
)
⊕
(
h′(t)f3(t), h

′(t)f2(t), h
′(t)f1(t)

)
=
(
h(t)f ′3(t) + h′(t)f3(t), h(t)f

′
2(t) + h′(t)f2(t), h(t)f

′
1(t) + h′(t)f1(t)

)
=
(
h(t)� f(t)

)′
ii.gH

.

So h(t)� f(t) is [ii− gH]−differentiable. Similarly, the rest of the cases can be proved. �

Corollary 2.11.

In the particular case of Theorem 2.10, suppose that h′(t) = 0. It can be easily shown that

1. If f(t) is [(i)− gH]−differentiable, then h(t)� f(t) is [(i)− gH]−differentiable,
2. If f(t) is [(ii)− gH]−differentiable, then h(t)� f(t) is [(ii)− gH]−differentiable,
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and (
h(t)� f(t)

)′
gH

= h(t)� f ′gH(t).

Theorem 2.12. (Moghaddam and Allahviranloo (2018))

Let Z := F (ξ(t), η(t)) is a fuzzy valued function, where ξ(t) and η(t) are differentiable real valued
functions of t. Then, F is gH-differentiable function of t and we have:

ZtgH =
dgHF

dξ
� ∂ξ

∂t
⊕ dgHF

dη
� ∂η

∂t
.

Corollary 2.13.

Let Z(x, t) = F (ξ) is a fuzzy valued function, where ξ(x, t) is differentiable real valued function
of x and t. Then, by Theorem 2.12,

ZtgH(x, t) =
dgHF

dξ
� ∂ξ

∂t
,

ZxgH
(x, t) =

dgHF

dξ
� ∂ξ

∂x
.

Theorem 2.14.

Let Z(x, t) = F (ξ) be a triangular fuzzy function such that F (ξ) =
(
F1(ξ), F2(ξ), F3(ξ)

)
, where

ξ(x, t) is differentiable real-valued function of x and t. Then, F is gH-differentiable function of ξ.
Then,

1. If F (ξ) is [(i) − gH]−differentiable and ∂ξ
∂t
> 0, then Z(x, t) is [(i) − p]−differentiable with

respect to t;
2. If F (ξ) is [(i) − gH]−differentiable and ∂ξ

∂t
< 0, then Z(x, t) is [(ii) − p]−differentiable with

respect to t;
3. If F (ξ) is [(ii)− gH]−differentiable and ∂ξ

∂t
> 0, then Z(x, t) is [(ii)− p]−differentiable with

respect to t;
4. If F (ξ) is [(ii) − gH]−differentiable and ∂ξ

∂t
< 0, then Z(x, t) is [(i) − p]−differentiable with

respect to t.

Proof:

Consider F (ξ) =
(
F1(ξ), F2(ξ), F3(ξ)

)
is [(i) − gH]-differentiable for every t ∈ J and ∂ξ

∂t
> 0.

Using Corollary 2.13,

ZtgH(x, t) =
dgHF

dξ
� ∂ξ

∂t
.
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Now, F (ξ) is [(i)− gH]-differentiable, then

di.gHF

dξ
� ∂ξ

∂t
=
(dF1

dξ
,
dF2

dξ
,
dF3

dξ

)
� ∂ξ

∂t

=
(dF1

dξ

∂ξ

∂t
,
dF2

dξ

∂ξ

∂t
,
dF3

dξ

∂ξ

∂t

)
= Zti.gH(x, t).

Now, if ∂ξ
∂t
< 0 we obtain

di.gHF

dξ
� ∂ξ

∂t
=
(dF1

dξ
,
dF2

dξ
,
dF3

dξ

)
� ∂ξ

∂t

=
(dF3

dξ

∂ξ

∂t
,
dF2

dξ

∂ξ

∂t
,
dF1

dξ

∂ξ

∂t

)
= Ztii.gH(x, t).

This concludes the proof for [(i)− gH]-differentiability.

Now, consider F (ξ) is [(ii)− gH]-differentiable and ∂ξ
∂t
> 0

dii.gHF

dξ
� ∂ξ

∂t
=
(dF3

dξ
,
dF2

dξ
,
dF1

dξ

)
� ∂ξ

∂t

=
(dF3

dξ

∂ξ

∂t
,
dF2

dξ

∂ξ

∂t
,
dF1

dξ

∂ξ

∂t

)
= Ztii.gH(x, t).

Now, if ∂ξ
∂t
< 0, then

dii.gHF

dξ
� ∂ξ

∂t
=
(dF3

dξ
,
dF2

dξ
,
dF1

dξ

)
� ∂ξ

∂t

=
(dF1

dξ

∂ξ

∂t
,
dF2

dξ

∂ξ

∂t
,
dF3

dξ

∂ξ

∂t

)
= Zti.gH (x, t). �

3. The Traveling Wave Fuzzy Solution

Consider the following generic form of second-order fuzzy linear partial differential equation in
two independent variables,

utgH = F
(
u, uxgH

, uxxgH
, uttgH

)
. (3)

We are interested in a particular class of solutions to the fuzzy linear partial differential equations,
the traveling waves. For a fuzzy traveling wave solution with profile U and velocity c ∈ R, we
want to find a solution u : R× [0,∞)→ E of the form

u(x, t) = U(x− ct), ξ(x, t) = x− ct, (4)



AAM: Intern. J., Vol. 15, Issue 1 (June 2020) 417

where profile U is a continuous function and gH−differentiable in ξ and c is arbitrary constant
generally termed the wave velocity. This solution corresponds to a linear translation along the x
axis with respect to t. If c > 0, profile U(x − ct) at a later time t is moving to the positive x
direction by a amount ct with speed c. Similarly, u(x, t) = U(x− ct) with c < 0 shows a moving
to the left of x axis with speed |c|. In this paper we consider c > 0, it means we are just interested
such solutions which are moving to the positive x direction.

To find a traveling wave solution for Equation (3), consider u(x, t) = U(ξ) where ξ = x− ct. The
partial derivatives of ξ(x, t) = x− ct are as follows

∂ξ

∂t
= −c, ∂ξ

∂x
= 1,

∂2ξ

∂x2
=
∂2ξ

∂t2
= 0. (5)

By using the Theorems 2.14, 2.10, Corollary 2.11 and Equation (5), and by considering the type
of gH−differentiability for U , we have different cases as follows.

Case 1. If U(ξ) is a [(i)− gH]−differentiable fuzzy function, then

1-1. u(x, t) is [(ii)− p]−differentiable with respect to t and

utii.gH =
di.gHU

dξ
� ∂ξ

∂t
= (−1)c� di.gHU

dξ
.

1-2. u(x, t) is [(i)− p]−differentiable with respect to x and

uxi.gH
=
di.gHU

dξ
� ∂ξ

∂x
=
di.gHU

dξ
.

1-3. utgH (x, t) is [(i)− p]−differentiable with respect to t and

utti.gH =
d2i.gHU

dξ2
�
(∂ξ
∂t

)2
= c2 �

d2i.gHU

dξ2
.

1-4. uxgH
(x, t) is [(i)− p]−differentiable with respect to x and

uxxi.gH
=
d2i.gHU

dξ2
�
(∂ξ
∂x

)2
=
d2i.gHU

dξ2
.

Case 2. Consider U(ξ) is a [(ii)− gH]−differentiable fuzzy function. Hence, we have

2-1. u(x, t) is [(i)− p]−differentiable with respect to t and

uti.gH =
dii.gHU

dξ
� ∂ξ

∂t
= (−1)c� dii.gHU

dξ
.

2-2. u(x, t) is [(ii)− p]−differentiable with respect to x and

uxii.gH
=
dii.gHU

dξ
� ∂ξ

∂x
=
dii.gHU

dξ
.

2-3. utgH (x, t) is [(ii)− p]−differentiable with respect to t and

uttii.gH =
d2ii.gHU

dξ2
�
(∂ξ
∂t

)2
= c2 �

d2ii.gHU

dξ2
.
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2-4. uxgH
(x, t) is [(ii)− p]−differentiable with respect to x and

uxxii.gH
=
d2ii.gHU

dξ2
�
(∂ξ
∂x

)2
=
d2ii.gHU

dξ2
.

So Equation (3) reduces to

(−1)c� di.gHU

dξ
= F

(
U,
di.gHU

dξ
,
d2i.gHU

dξ2
, c2

d2i.gHU

dξ2

)
, (6)

and

(−1)c� dii.gHU

dξ
= F

(
U,
dii.gHU

dξ
,
d2ii.gHU

dξ2
, c2

d2ii.gHU

dξ2

)
. (7)

Equations (6) and (7) are fuzzy ordinary differential equations in ξ. Solutions of such equations
usually depend upon some arbitrary constants that we can find them by initial conditions and some
auxiliary conditions are often used to obtain a fuzzy solution for this equation. Generally, the
boundary conditions

lim
ξ→−∞

U(ξ) = ul, lim
ξ→+∞

U(ξ) = ur, (8)

are usually imposed. Then, U is called wave front if ul 6= ur. However, if ul = ur, the correspond-
ing wave is known as a pulse wave.

In this paper we consider the following auxiliary boundary conditions

lim
ξ→±∞

U(ξ) = 0, lim
ξ→±∞

dU

dξ
= 0, lim

ξ→±∞

d2U

dξ2
= 0. (9)

Moreover, the traveling wave solution must be valid in the initial condition u(x, 0) = f(x). Then,
by using auxiliary conditions (9), the fuzzy initial condition f(x) has to satisfies in the following
conditions:

lim
x→±∞

f(x) = 0, lim
x→±∞

f ′gH(x) = 0, lim
x→±∞

f ′′gH(x) = 0. (10)

For this reason, in the following sections, the initial value is selected in such a way that conditions
(10) are applied.

4. The Traveling Wave Solution for Fuzzy Linear Partial Differential
Equations

In the following, in order to illustrate the efficiency of the proposed method, several important
equations of linear fuzzy partial differential equations are investigated and their traveling wave
solutions are presented.
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4.1. Fuzzy Linear Advection Equation

One of the simplest fuzzy partial differential equations is the fuzzy linear advection equation (or
fuzzy linear transport equation). Consider u is a quantity to be transported and the positive constant
a is the velocity. Consider the fuzzy advection

utgH = (−1)auxgH
, (11)

with fuzzy initial condition

u(x, 0) = f(x). (12)

To obtain a traveling fuzzy solution for Equation (11), consider

u(x, t) = U(ξ), ξ = x− ct.

First, we consider U(ξ) is [(i)− gH]−differentiable. Then,

(−1)cdi.gHU
dξ

= (−1)adi.gHU
dξ

, ⇒ c
di.gHU

dξ
	gH a

di.gHU

dξ
= 0.

Two constants a and c are positive. Therefore, Proposition 2.8 implies

(c− a)di.gHU
dξ

= 0.

For non-constant U , we have di.gHU
dξ
6= 0 which implies that c = a. So any function U(x− at) with

sufficiently smooth U which satisfies in the initial fuzzy value (12), limξ→∞ U(ξ) = 0 and [(i) −
gH]-differentiable, is a traveling wave solution. In fact, the traveling fuzzy solution of Equation
(11) is u(x, t) = f(x − at), such that u(x, t) is [(ii) − p]−differentiable with respect to t and
[(i)− p]−differentiable with respect to x.

Similarly, consider U(ξ) is [(ii) − gH]−differentiable. Then, in this case, the initial fuzzy value
f(x) has to be [(ii)− gH]−differentiable at ξ = x− ct and we obtain the traveling wave solution
u(x, t) = f(x−at) which is [(i)−p]−differentiable with respect to t and [(ii)−p]−differentiable
with respect to x. For instant, let a = 1 in Equation (11) and initial fuzzy function (12) is equal
f(x) = (3.8, 7.7, 9.3)(0.2)x. This initial value satisfies the conditions in (10). Hence, the traveling
wave fuzzy solution is u(x, t) = (3.8, 7.7, 9.3)(0.2)x−t. We plot these functions in Figure 1, and as
you can see this solution is [(ii)− p]−differentiable with respect to t and [(i)− p]−differentiable
with respect to x.

4.2. Fuzzy Linear Diffusion Equation

Consider the following fuzzy linear diffusion equation

utgH = DuxxgH
, (13)

with the initial condition

u(x, 0) = f(x), (14)
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(a) Graph of u(x, t). (b) Graph of utgH (x, t).

(c) Graph of uxgH (x, t).

Figure 1. Graph of u(x, t) = (3.8, 7.7, 9.3)(0.2)x−t and its partial derivatives for α = 1
3 and 0 ≤ x, t ≤ 1.

where f(x) ∈ E. For a traveling wave fuzzy solution, we consider

u(x, t) = U(ξ), with ξ = x−Dt. (15)

We want to find a fuzzy solution for Equation (13) such that u(x, t) will be [(i)−p]−differentiable
with respect to t and [(ii) − p]−differentiable with respect to x. For these reasons, by Case 2 in
Section 3, U(ξ) has to be [(ii)− gH]−differentiable, and therefore,

(−1)Ddii.gHU
dξ

= D �
d2ii.gHU

dξ2
. (16)

After cancellation of D and rearrange this equation and using Corollary 2.3, we have the following
second order differential equation

d2ii.gHU

dξ2
⊕ dii.gHU

dξ
= 0. (17)

By integrating Equation (17) once, we obtain

dii.gHU

dξ
⊕ U = C1, (18)
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where C1 is the integration constant. By using auxiliary conditions (9) when ξ → ±∞, we have

U(ξ) =
dii.gHU

dξ
= 0.

So the integration constant C1 is equal to zero and we have the following first order fuzzy differ-
ential equation

dii.gHU

dξ
⊕ U = 0,

that has the following fuzzy solution (Armand and Gouyandeh (2017))

U(ξ) = Ce−ξ,

which satisfies the condition U(ξ) = 0 when ξ →∞. Therefore

u(x, t) = Ce−(x−Dt).

Using initial condition (14), we can write

C = f(x)ex,

so, we obtain the following fuzzy solution for the fuzzy linear diffusion equation

u(x, t) = f(x)eDt. (19)

For example, for the fuzzy linear diffusion equation (13), consider D = 3 and the fuzzy initial
condition f(x) = (2.1, 5.7, 8.3)e−x

2 . Then by Equation (19), we have the following traveling wave
fuzzy solution

u(x, t) = (2.1, 5.7, 8.3)e−x
2+3t. (20)

This function and its first partial derivative with respect to t and x are shown in Figure 2. These
figures show that u(x, t) is [(i) − p]−differentiable with respect to t and [(ii) − p]−differentiable
with respect to x.

4.3. The fuzzy linear Convection-Diffusion-Reaction Equation

Consider the following fuzzy linear convection-diffusion-reaction equation
utgH = (−1)a� uxgH

⊕D � uxxgH
	gH r � u, (x, t) ∈ R× (0,∞),

u(x, 0) = f(x),
(21)

where a,D and r are real positive constants. For a traveling wave solution to (21), we consider

u(x, t) = U(ξ), ξ = (x− at), (22)

(−1)a� dii.gHU

dξ
= (−1)a� dii.gHU

dξ
⊕D �

d2ii.gHU

dξ2
	gH r � U. (23)

Then we have the following second order fuzzy differential equation

D �
d2ii.gHU

dξ2
	 r � U = 0. (24)
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(a) Graph of u(x, t). (b) Graph of utgH (x, t).

(c) Graph of uxgH (x, t).

Figure 2. Graph of u(x, t) = (2.1, 5.7, 8.3)e−x2+3t and its partial derivative for t = 1 and 0 ≤ α ≤ 1 and 0 ≤ x ≤ 1.

By the method that described in Appendix 6 (B), Equation (24) has the following fuzzy solution

U(ξ) = C1 � e−
√

r

D
ξ ⊕ C2 � e

√
r

D
ξ, (25)

where C1 and C2 are constants to be determined.

The auxiliary condition limξ→∞ U(ξ) = 0 implies that C2 = 0. So, we have

U(ξ) = C1e
−
√

r

D
ξ, ⇒ u(x, t) = C1e

−
√

r

D
(x−at). (26)

Moreover, by initial condition u(x, 0) = f(x) we can write

C1e
−
√

r

D
(x) = f(x), ⇒ C1 = f(x)e

√
r

D
(x).

The traveling wave fuzzy solution for Equation (21) is

u(x, t) = f(x)e
√

r

D
(x)e−
√

r

D
(x−at). (27)

Now, consider the following fuzzy linear convection-diffusion-reaction partial differential equation
utgH = (−1)2� uxgH

⊕ 4� uxxgH
	gH 3� u, (x, t) ∈ R× (0,∞),

u(x, 0) = f(x) = (1.3, 5.2, 9.6) 1
1+x2 .
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Figure 3. Graph of u(x, t) = (1.3, 5.2, 9.6) 1
1+x2 e

2
√

3
4 t for t = 1 and 0 ≤ α ≤ 1 and 0 ≤ x ≤ 5.

Then, we have the following traveling wave solution

u(x, t) = (1.3, 5.2, 9.6)
1

1 + x2
e2
√

3

4
t. (28)

4.4. The Fuzzy Linear Klein-Gordon Equation

A simple modification of the fuzzy Klein-Gordon equation is the following equation
uttgH 	gH uxxgH

⊕ u = 0, (x, t) ∈ R× (0,∞),

u(x, 0) = f(x) ∈ E.
(29)

To obtain the traveling wave solution for Equation (29), consider

u(x, t) = U(ξ), with ξ = x− ct,

where U(ξ) is [(ii)− gH]−differentiable. According to the process described Section 3 and using
Proposition 2.8,

c2
d2ii.gHU

dξ2
	gH

d2ii.gHU

dξ2
⊕ U = 0.

Therefore,

(c2 − 1)
d2ii.gHU

dξ2
⊕ U = 0. (30)

Now, we determine a fuzzy solution for Equation (30) using method described in Appendix 6 (B)
as follows:
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• Consider c2 < 1. Therefore, the fuzzy solution of Equation (30) is

U(ξ) = C1e
−kξ ⊕ C2e

kξ,

where C1 and C2 are integration constants and k = 1√
c2−1 . The auxiliary condition

limξ→∞ U(ξ) = 0 implies that C2 = 0, hence,

u(x, t) = C1e
−k(x−ct).

Using the initial condition u(x, 0) = f(x), we obtain the traveling wave solution of Equation
(29)

u(x, t) = f(x)e
x√
c2−1 e

−( x−ct√
c2−1

)
.

• Now consider c2 > 1. By applying the method which is discussed in detail in the previous part,

U(ξ) = C1 cos(kξ)⊕
C2

k
sin(kξ),

which by auxiliary condition limξ→∞ U(ξ) = 0 we have C1 = C2 = 0. So when c2 > 1, the
fuzzy Klein-Gordon equation does not have any traveling wave solution.

5. Conclusion

In this paper, we obtain the fuzzy traveling wave solution of the partial differential equation by
considering the type of gH-differentiability. To demonstrate the efficiency of the method, the fuzzy
traveling wave solutions of the fuzzy Advection equation, fuzzy linear Diffusion equation, fuzzy
Convection-Diffusion-Reaction equation, and fuzzy Klein-Gordon equation are obtained. All re-
sults show that this method is a very powerful and efficient method for obtaining an analytical
solution for fuzzy partial differential equation.

6. Appendix

A. Linear Systems of Fuzzy Differential Equations

A system of equations of the form

y′1gH
(t) = a11y1(t)⊕ ...⊕ a1nyn(t)⊕ f1(t),

y′2gH
(t) = a21y1(t)⊕ ...⊕ a2nyn(t)⊕ f2(t),

...
y′ngH

(t) = an1y1(t)⊕ ...⊕ annyn(t)⊕ fn(t), (31)

where aij are real numbers and fi(t) are fuzzy functions, is called a first order linear system of
fuzzy ordinary differential equations with constant coefficient. Moreover, if the following fuzzy
initial conditions are satisfied in system (31),

y1(t0) = A1, y2(t0) = A2, ..., yn(t0) = An,
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then it is called the fuzzy initial-valued linear system, where Ai are prescribed fuzzy constant
values.

Let us consider

y(t) =

y1(t)...
yn(t)

 , A =

a11 · · · a1n... . . . ...
an1 · · · ann

 , f(t) =

f1(t)...
fn(t)

 .
Then system (31) can be written in matrix form as

y′gH(t) = Ay(t) + f(t). (32)

If f(t) = 0, the fuzzy linear differential system (32) is homogeneous, otherwise it is nonhomoge-
neous. In the following, we express the fundamental theorem for solving homogeneous system of
fuzzy differential equations .

Definition 6.1. (Perko (2013))

Let A be an n× n matrix of real scalars. The matrix exponential, eAt, is defined by

eAt = I + At+
A2t2

2!
+
A3t3

3!
+ · · ·

The following statements hold

1. eAt|t=0 = I;
2. d

dt
eAt = AeAt = eAtA for all t ∈ R;

3. eAt is an invertible matrix with inverse (eAt)−1 = e−At for all t ∈ R.

Theorem 6.2. (Adkins and Davidson (2012))

Let A be an n× n matrix of real constants. Then, eAt is a well-defined matrix-valued function and
we have the following Laplace transform of eAt

L[eAt] = (sI − A)−1.

The Laplace inversion formula is given by

eAt = L−1[(sI − A)−1].

Theorem 6.3. (The Fundamental Theorem for Linear Systems)

Let A be an n× n matrix of real constants. Then for a given y0 ∈ En, the initial value problem

y′ = Ay, y(0) = y0, (33)

has a unique solution given by

y(t) = eAty0.
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Proof:

We will show that y(t) = eAty0 is a solution for initial value problem (33). For this reason, first,
by the properties of the matrix exponential that define in Definition 6.1, if y(t) = eAty0 we obtain

y′gH(t) =
d

dt

(
eAty0

)
= AeAty0 = Ay(t),

for all t ∈ R. Moreover,

y(0) = Iy0 = y0.

Thus, y(t) = eAty0 is a fuzzy solution of the initial value problem. Now we want to show that this
is the only solution. Let x(t) be any solution of the initial value problem (33) and

x(t) = eAty0. (34)

Now, define

z(t) = e−Atx(t).

Using this fact that x(t) is a fuzzy solution of (33), and Definition 6.1, we have the following
situations:

1. If x(t) is [(i)− gH]−differentiable, using Case 1-2 of Theorem 2.10 and Proposition 2.8,

z′i.gH(t) = e−Atx′i.gH(t)	gH Ae−Atx(t)
= e−AtAx(t)	gH Ae−Atx(t)

=
(
Ae−At − Ae−At

)
x(t) = 0.

2. If x(t) is [(ii) − gH]−differentiable, using Case 2-2 of Theorem 2.10 and Proposition 2.8 and
Corollary 2.3,

z′ii.gH(t) = (−1)e−Atx′ii.gH(t)⊕ Ae−Atx(t)
= 	gHAe−Atx(t)⊕ Ae−Atx(t)

=
(
− Ae−At + Ae−At

)
x(t) = 0.

So z(t) is a constant. On the other hand,

z(0) = x(0) = y0.

Therefore, z(t) = y0 and

z(t) = e−Atx(t) ⇒ x(t) = eAty0.

So any solution of the initial value problem (33) is given by x(t) = y(t) = eAty0. This completes
the proof of the theorem. �
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B. Eigenvalue Problem for the Second Order Fuzzy Differential Equation

Consider the following fuzzy differential equation
u′′gH(t)⊕ λu(t) = 0,

u(t0) = u0, u′gH(t0) = u1,
(35)

where λ is a real number and where u1 and u2 are two fuzzy numbers. We want to find a fuzzy
solution for Equation (35) for different value of λ.

• If λ = K2 > 0, then the differential equation u′′gH(t)⊕K2u(t) = 0 can be rewritten as a system
of 2 first order linear equations by defining

y1(t) := u(t), y2(t) := u′gH(t).

Therefore, we can write

y′1gH
(t) = u′gH(t),

y′2gH
(t) = u′′gH(t) = 	gHK2u(t),

and we obtain the following system of fuzzy first-order equations

y′1gH
(t) = y2(t), y1(t0) = u0,

y′2gH
(t) = 	gHK2y1(t), y2(t0) = u1.

In this case

A =

[
0 1
−K2 0

]
⇒ eAt =

[
cos(Kt) 1

K
sin(Kt)

−K sin(Kt) cos(Kt)

]
.

Using Theorem 6.3, we have[
y1(t)
y2(t)

]
=

[
cos(Kt) 1

K
sin(Kt)

−K sin(Kt) cos(Kt)

] [
u0
u1

]
.

Then we obtain the following fuzzy solution for Equation (35) when λ = K2 > 0

u(t) = u0 cos(Kt)⊕
u1
K

sin(Kt).

• λ = −K2 < 0, we have the fuzzy differential equation u′′gH(t) 	gH K2u = 0. Using the same
method, we have the following system of fuzzy differential equation

y′1gH
(t) = y2(t), y1(t0) = u0,

y′2gH
(t) = K2y1(t), y2(t0) = u1.
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In this case

A =

[
0 1
K2 0

]
⇒ eAt =

[
cosh(Kt) 1

K
sinh(Kt)

K sinh(Kt) cosh(Kt)

]
.

Therefore, the fuzzy solution of Equation (35) when λ = −K2 < 0 is obtained as follows

u(t) = u0 cosh(Kt)⊕
u1
K

sinh(Kt).

Moreover, cosh(Kt) = eKt+e−Kt

2
and sinh(Kt) = eKt−e−Kt

2
, hence we have

u(t) = u0

(eKt + e−Kt

2

)
⊕ u1(

eKt − e−Kt

2K
)

=
(u0
2
	gH

u1
2K

)
e−Kt ⊕

(u0
2
⊕ u1

2K

)
eKt.

Consider c1 =
(
u0

2
	gH u1

2K

)
and c2 =

(
u0

2
⊕ u1

2K

)
. Therefore,

u(t) = c1e
−Kt ⊕ c2eKt.

• If λ = 0, then we have the second order fuzzy differential equation u′′gH = 0. For solving this
equation we use Theorem 2.7,

u′gH(t)	gH 1u1 = 0 ⇒ u′gH(t) = u1,

where c0 is integration constant. Using this Theorem again gets

u(t)	gH u0 = u1t,

so if u(t) is a [(i)− gH]−differentiable function, we have

u(t) = u1t⊕ u0.

And if u(t) is a [(ii)− gH]−differentiable function, we obtain

u(t) = u1t	 (−1)u0.
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