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Abstract

This paper deals with the introduction of a fuzzy over-relaxed proximal point iterative scheme
based on H(·, ·)-cocoercivity framework for solving a generalized variational inclusion problem
with fuzzy mappings. The resolvent operator technique is used to approximate the solution of
generalized variational inclusion problem with fuzzy mappings and convergence of the iterative
sequences generated by the iterative scheme is discussed. Our results can be treated as refinement
of many previously-known results.
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1. Introduction

The fuzzy set theory which was introduced by Zadeh (1965) has emerged as an interesting and
fascinating branch of pure and applied sciences. The applications of the fuzzy set theory can be
found in many branches of regional, physical, mathematical and engineering sciences. Of course,
fuzzy sets are powerful mathematical tools for modeling and controlling uncertain systems in
industry and nature. They are helpful for approximating reasoning in decision making in the
absence of complete and precise information.

Variational inequality theory provides us a unified frame work for dealing with a wide class
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of problems arising in elasticity, structural analysis, physical and engineering sciences, etc.
(see Ahmad et al. (2000), Aubin et al. (1984), Baiocchi et al. (1984), Giannessi et al. (1995),
Harker et al. (1990), Hassouni et al. (1994), and references therein). Variational inclusions are
an important generalization of classical variational inequalities and thus have wide applications
to many fields including mechanics, optimization and control, engineering sciences, and non-
linear programming (see Ahmad et al. (2005), Hassouni et al. (1994), Huang (2001)). Chang et
al. (1989) first introduced the concept of variational inequalities for fuzzy mappings in abstract
spaces. Since then, several classes of variational inequalities and complementarity problems with
fuzzy mappings were studied by several authors (see Chang et al. (1999), Lan et al. (2008),
Lee et al. (1999), Park et al. (1998)). Variational inequalities and related problems with fuzzy
mappings have been useful in the study of equilibria and optimal control problem (see Chang et
al. (2000)).

Recently, Verma (2009) introduced and studied the over-relaxed A-proximal point algorithm based
on A-maximal monotonicity to approximate the solvability of a general variational inclusion
problem. In 2011, Pan et al. introduced the over-relaxed proximal point algorithm based on
(A, η)-accretive mapping for approximation solvability of a general class of variational inclusion
problems. On the other hand, Li (2012) also studied over-relaxed proximal point algorithms for
approximating solvability of some nonlinear operator equation. Quite reasonable work is done
in this direction to solve some classes of variational inclusion problems. For more details of the
related work, we refer to Deepmala (2014), Deepmala et al. (2013), Husain et al. (2013a), Husain
et al. (2013b), Husain et al. (2013c), Mishra (2007), Pathak et al. (2013) and references therein.

Motivated and inspired by recent research works mentioned above, in this manuscript we introduce
the fuzzy over-relaxed proximal point iterative scheme based on H(·, ·)-cocoercive operators (Ah-
mad et al. (2011)), since cocoercive operators are generalized forms of monotone mappings and
accretive mappings. By using this new scheme, we approximate the solvability of a generalized
variational inclusion problem with fuzzy mappings and discuss the convergence of fuzzy over-
relaxed proximal point iterative scheme generated by the suggested iterative algorithms in Hilbert
space.

2. Preliminaries

Let X be a real Hilbert space with a norm ‖ · ‖ and an inner product 〈·, ·〉. Let F(X) be a
collection of all fuzzy sets over X . A mapping F : X −→ F(X) is called a fuzzy mapping.
For each x ∈ X , F (x) (denote it by Fx in the sequel) is a fuzzy set on X and Fx(y) is the
membership function of y in Fx.

A fuzzy mapping F : X −→ F(X) is said to be closed if, for each x ∈ X , the function
y → Fx(y) is upper semicontinuous, i.e., for any given net {yα} ∈ X satisfying yα → y0 ∈ X ,
lim sup

α
Fx(yα) ≤ Fx(y0). For B ∈ F(X) and λ ∈ [0, 1], the set (B)λ = {x ∈ X : B(x) ≥ λ} is

called a λ-cut set of B.

A closed fuzzy mapping F : X −→ F(X) is said to satisfy the condition(∗): if there exists a
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mapping a : X −→ [0, 1] such that for each x ∈ X, then (Fx)a(x) = {y ∈ X : Fx(y) ≥ a(x)} is
a nonempty bounded subset of X . Clearly, F is a closed fuzzy mapping satisfying condition(∗),
then for each x ∈ X , the set (Fx)a(x) ∈ CB(X), where CB(X) denotes the family of all
nonempty bounded closed subsets of X . In fact, let {yα}α∈Λ ∈ (Fx)a(x) be a net and yα → y0 ∈ X .
Then, Fx(yα) ≥ a(x), for each α ∈ Λ. Since F is closed, we have

Fx(y0) ≥ lim sup
α∈Λ

Fx(yα) ≥ a(x),

which implies that y0 ∈ (Fx)a(x) and hence, (Fx)a(x) ∈ CB(X).

The following definitions and results are needed to prove the main result of this paper.

Definition. A mapping g : X −→ X is said to be

(i) Lipschitz continuous if there exists a constant λg > 0 such that

‖g(x)− g(y)‖ ≤ λg‖x− y‖, ∀x, y ∈ X;

(ii) monotone if
〈g(x)− g(y), x− y〉 ≥ 0, ∀x, y ∈ X;

(iii) α-expansive if there exists a constant α > 0 such that

‖g(x)− g(y)‖ ≥ α‖x− y‖, ∀x, y ∈ X;

If α = 1, then it is expansive.

Definition. A multi-valued mapping T : X −→ CB(X) is said to be D-Lipschitz continuous if
there exists a constant δT > 0 such that

D
(
T (x), T (y)

)
≤ δT‖x− y‖, ∀x, y ∈ X,

where D(·, ·) is the Hausdorff metric defined on CB(X).

Definition. A mapping T : X −→ X is said to be cocoercive if there exists a constant % > 0

such that
〈T (x)− T (y), x− y〉 ≥ %‖T (x)− T (y)‖2, ∀x, y ∈ X.

Definition. A multi-valued mapping M : X −→ 2X is said to be cocoercive if there exists a
constant ξ > 0 such that

〈u− v, x− y〉 ≥ ξ‖u− v‖2, ∀x, y ∈ X, u ∈M(x), v ∈M(y).

Definition. Let H : X ×X −→ X and A,B : X −→ X be mappings. Then

(i) H(A, ·) is said to be cocoercive with respect to A if for a fixed u ∈ X , there exists a
constant µ > 0 such that

〈H(A(x), u)−H(A(y), u), x− y〉 ≥ µ‖A(x)− A(y)‖2, ∀x, y ∈ X;
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(ii) H(·, B) is said to be relaxed cocoercive with respect to B if for a fixed u ∈ X there exists
a constant γ > 0 such that

〈H(u,B(x))−H(u,B(y)), x− y〉 ≥ (−γ)‖B(x)−B(y)‖2, ∀x, y ∈ X;

(iii) H(A, ·) is said to be ρ-Lipschitz with respect to A if there exists a constant ρ > 0 such
that

‖H(A(x), ·)−H(A(y), ·)‖ ≤ ρ‖x− y‖, ∀x, y ∈ X;

(iv) H(·, B) is said to be ζ-Lipschitz with respect to B if there exists a constant ζ > 0 such
that

‖H(·, B(x))−H(·, B(y))‖ ≤ ζ‖x− y‖, ∀x, y ∈ X.

Definition. A sequence {xi} is said to converge linearly to x∗ if there exists a constant 0 < c < 1

such that
‖xi+1 − x∗‖ ≤ c‖xi − x∗‖,

for all i > m for some natural number m > 0.

Definition. (Ahmad et al. (2011)) Let A,B : X −→ X and H : X ×X −→ X be three single-
valued mappings and M : X −→ 2X be a multi-valued mapping. The mapping M is said to be
H(·, ·)-cocoercive with respect to A and B if H is µ-cocoercive with respect to A, γ-relaxed
cocoercive with respect to B, M is cocoercive, and [H(A,B) + λM ](X) = X , for every λ > 0.

Theorem 1. (Ahmad et al. (2011))

Let H(·, ·) be µ-cocoercive with respect to A, γ-relaxed cocoercive with respect to B, A be
α-expansive, B be β-Lipschitz continuous, µ > γ, and α ≥ β. Let M be an H(·, ·)-cocoercive
operator with respect to A and B. Then the resolvent operator RH

λ,M : X −→ X , defined by

RH
λ,M(u) = [H(A,B) + λM ]−1(u), ∀u ∈ X,

is single-valued and
1

µα2 − γβ2
-Lipschitz continuous.

Let T, F : X −→ F(X) be closed fuzzy mappings satisfying condition(∗). Then, there exists
mappings a, b : X −→ [0, 1] such that for each x ∈ X , we have (Tx)a(x), (Fx)b(x) ∈ CB(X).
Therefore, we can define the multi-valued mappings T̃ , F̃ : X −→ CB(X) by

T̃ (x) = (Tx)a(x), F̃ (x) = (Fx)b(x), ∀x ∈ X.

In the sequel, T̃ and F̃ are called multi-valued mappings induced by the fuzzy mappings T and
F , respectively.

Let S,H : X ×X −→ X , let A,B, g : X −→ X be single-valued mappings, and T, F : X −→
F(X) be fuzzy mappings. Let the multi-valued mapping M : X −→ 2X be H(·, ·)-cocoercive
with respect to A and B such that g(x) ∩ dom(M) 6= ∅. We consider the following generalized
variational inclusion problem with fuzzy mappings:

Find x ∈ X , u ∈ (Tx)a(x) and v ∈ (Fx)b(x) such that

0 ∈ S(u, v) +M(g(x)). (1)
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If T, F : X −→ CB(X) are the classical multi-valued mappings, we can define the fuzzy
mappings T, F by

x 7→ χT (x), x 7→ χF (x),

where χT (x), χF (x) are the characteristic functions of T (x) and F (x), respectively. Taking a(x) =

b(x) = 1, g = I , for all x ∈ X , then Problem (1) is equivalent to the following problem:

Find x ∈ X , u ∈ T (x) and v ∈ F (x) such that

0 ∈ S(u, v) +M(x). (2)

Problem (2) was considered by Verma (2008) and many other authors in different settings.

It is clear that for suitable choices of operators involved in the formulation of Problem (1), one
can obtain many variational inclusions studied in recent past.

In support of Problem (1), we provide the following example.

Example 1.

Let X = [0, 1], and suppose that

(i) the closed fuzzy mappings T, F : X −→ F(X) are defined by

Tx(u) =

{
x+u

2
, if x ∈ [0, 1

2
), u ∈ [0, 1];

(1− x)u , if x ∈ [1
2
, 1], u ∈ [0, 1],

and

Fx(v) =

{
2xv , if x ∈ [0, 1

2
), v ∈ [0, 1];

(1− x) + v
2

, if x ∈ [1
2
, 1], v ∈ [0, 1].

(ii) the mappings a, b : X −→ [0, 1] are defined by

a(x) =

{
x
2

, if x ∈ [0, 1
2
);

0 , if x ∈ [1
2
, 1],

and

b(x) =

{
0 , if x ∈ [0, 1

2
);

(1− x)x , if x ∈ [1
2
, 1].

Clearly, Tx(u) ≥ a(x) and Fx(v) ≥ b(x), for all x, u, v ∈ X . Also,

(iii) the mappings S : X ×X −→ X and g : X −→ X are defined by

S(u, v) =


u− v , if u > v;

v − u , if u < v;

0 , if u = v,

and
g(x) =

x

2− x
, ∀x ∈ [0, 1].
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(iv) the mappings A,B : X −→ X are defined by

A(x) =
x

2
, B(x) = −x, ∀x ∈ [0, 1].

Suppose that H(A,B) : X ×X −→ X is defined by

H(A(x), B(y)) = A(x) +B(y), ∀x, y ∈ [0, 1].

Now,

〈H(A(x), u)−H(A(y), u), x− y〉 = 〈A(x)− A(y), x− y〉

=

〈
x− y

2
, x− y

〉
=

(x− y)2

2
.

Also,

‖A(x)− A(y)‖2 = 〈A(x)− A(y), A(x)− A(y)〉

=

〈
x− y

2
,
x− y

2

〉
=

(x− y)2

4
,

which implies that

〈H(A(x), u)−H(A(y), u), x− y〉 = 2‖A(x)− A(y)‖2,

i.e., H(A,B) is 2-cocoercive with respect to A.
Further,

〈H(u,B(x))−H(u,B(y)), x− y〉 = 〈B(x)−B(y), x− y〉
= 〈−(x− y), x− y〉
= −(x− y)2.

Moreover,

‖B(x)−B(y)‖2 = 〈B(x)−B(y), B(x)−B(y)〉
= 〈−(x− y),−(x− y)〉
= (x− y)2,

which implies that

〈H(u,B(x))−H(u,B(y)), x− y〉 = (−1)‖B(x)−B(y)‖2,

i.e., H(A,B) is 1-relaxed cocoercive with respect to B.

Let M : X −→ 2X be defined by M(g(x)) = {g(x)}, for all x ∈ [0, 1] such that
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g(x) ∩ dom(M) 6= ∅. Then, M is cocoercive and for any λ > 0, one can easily check that
[H(A,B) +λM ](X) = X . Therefore, M is H(·, ·)-cocoercive with respect to A and B. In view
of assumptions (i)−(iv), it is easy to perceive that all the conditions of Problem (1) are satisfied.

3. The Fuzzy Over-Relaxed Proximal Point Scheme and Existence Results

First of all, we show that the generalized variational inclusion problem (1) is equivalent to the
following fixed point equation.

Lemma 1.

The triplet (x, u, v), where x ∈ X , u ∈ (Tx)a(x) and v ∈ (Fx)b(x), is the solution of generalized
variational inclusion problem (1) if and only if it satisfies the equation

g(x) = RH
λ,M [H(A(g(x)), B(g(x)))− λS(u, v)], (3)

where RH
λ,M(x) = [H(A,B) + λM ]−1(x) and λ > 0 is a constant.

Proof:

The proof is a direct consequence of the application of definition of the resolvent operator RH
λ,M(·).

�

The fuzzy over-relaxed scheme 1: Step 1. Choose the arbitrary initial points x0 ∈ X , u0 ∈
(Tx0)a(x0) and v0 ∈ (Fx0)b(x0).

Step 2. Compute the sequences {xn}, {un} and {vn} by the following iterative scheme:

g(xn+1) = (1− αn)g(xn) + αnyn, n ≥ 0, (4)

and yn satisfies

‖yn −RH
λ,M [H(A(g(xn)), B(g(xn)))− λS(un, vn)]‖ ≤ σn‖yn − g(xn)‖, (5)

where xn ∈ X , un ∈ (Txn)a(xn) and vn ∈ (Fxn)b(xn), and {αn} ⊆ [0,∞) is a sequence of

over-relaxed factors, {σn} is a scalar sequence, n ≥ 0, λ > 0,
∞∑
n=0

σn < ∞, σn → 0 and

α = lim
n→∞

supαn < 1.

Step 3. Obtain the estimates

‖un − u‖ ≤ D
(
(Txn)a(xn), (Tx)a(x)

)
,

‖vn − v‖ ≤ D
(
(Fxn)b(xn), (Fx)b(x)

)
,

(6)

where un ∈ (Txn)a(xn), u ∈ (Tx)a(x), vn ∈ (Fxn)b(xn) and v ∈ (Fx)b(x).

Step 4. If {xn}, {yn}, {un} and {vn} satisfy (4), (5) and (6), respectively, to an amount of
accuracy, stop. Otherwise, set n = n+ 1 and repeat Steps 2 and 3.

Remark 1: For suitable choices of operators involved in scheme 1, one can obtain over-relaxed
proximal point algorithm studied by Verma (2009).
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Theorem 2.

Let X be a real Hilbert space. Let A,B, g : X −→ X and S,H : X × X −→ X be single-
valued mappings such that H(A,B) is µ-cocoercive with respect to A and γ-relaxed cocoercive
with respect to B, A is α-expansive, B is β-Lipschitz continuous, µ > γ, and α ≥ β. Also,
let H be r1-Lipschitz continuous with respect to A, r2-Lipschitz continuous with respect to
B, and g be λg-Lipschitz continuous and ξ-strongly monotone mapping. Let the multi-valued
mapping M : X −→ 2X be H(·, ·)-cocoercive. Let T, F : X −→ F(X) be closed fuzzy
mappings satisfying condition(∗) and T̃ , F̃ : X −→ CB(X) be multi-valued mappings induced
by the fuzzy mappings T and F , respectively. Suppose that T̃ and F̃ are D-Lipschitz continuous
mappings with constants δT and δF , respectively. If for some λ > 0, the following condition
holds:

(1− α)λg + αθλg(r1 + r2) + αθλ{λS2δF + λS1δT} < 1,

for θ =
1

µα2 − γβ2
, {αn} ⊆ [0,∞) is a sequence of over-relaxed factors, {σn} is a scalar

sequence such that
∞∑
n=0

σn < ∞, σn → 0, and α = lim
n→∞

supαn < 1. Then, the generalized

variational inclusion problem (1) is solvable and (x∗, u∗, v∗), where x∗ ∈ X , u∗ ∈ (Tx∗)a(x∗),
v∗ ∈ (Fx∗)b(x∗), is the solution of Problem (1), and the sequences {xn}, {un} and {vn} defined
in fuzzy over-relaxed scheme (1) converge linearly to x, u and v, respectively.

Proof:

Let x∗ be a solution of generalized variational inclusion problem (1). Then by Lemma , it follows
that

g(x∗) = (1− αn)g(x∗) + αnR
H
λ,M [H(A(g(x∗)), B(g(x∗)))− λS(u∗, v∗)], (7)

where x∗ ∈ X , u∗ ∈ (Tx∗)a(x∗), v∗ ∈ (Fx∗)b(x∗), and λ > 0 is a constant.

Let

g(zn+1) = (1− αn)g(xn) + αnR
H
λ,M [H(A(g(xn)), B(g(xn)))− λS(un, vn)], (8)

for all n ≥ 0, xn ∈ X , un ∈ (Txn)a(xn) and vn ∈ (Fxn)b(xn).

Using Cauchy-Schwartz inequality and ξ-strongly monotonicity of g, we have

‖g(zn+1)− g(x∗)‖‖zn+1 − x∗‖ ≥ 〈g(zn+1)− g(x∗), zn+1 − x∗〉
≥ ξ‖zn+1 − x∗‖2. (9)

It follows from (9) that

‖zn+1 − x∗‖ ≤
1

ξ
‖g(zn+1)− g(x∗)‖. (10)

Using the Lipschitz continuity of the resolvent operator RH
λ,M , Lipschitz continuity of H in

both the arguments with respect to A and B, respectively, Lipschitz continuity of S in both the
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arguments, D-Lipschitz continuity of T̃ and F̃ , Lipschitz continuity and strongly monotonicity
of g, we obtain

‖g(zn+1)− g(x∗)‖
=

∥∥(1− αn)(g(xn)− g(x∗)) + αnR
H
λ,M [H(A(g(xn)), B(g(xn)))− λS(un, vn)]

−αnRH
λ,M [H(A(g(x∗)), B(g(x∗)))− λS(u∗, v∗)]

∥∥
≤ (1− αn)‖g(xn)− g(x∗)‖+ αnθλ‖S(un, vn)− S(u∗, v∗)‖

+αnθ‖H(A(g(xn)), B(g(xn)))−H(A(g(x∗)), B(g(x∗)))‖
= (1− αn)‖g(xn)− g(x∗)‖+ αnθλ‖S(un, vn)− S(un, v

∗) + S(un, v
∗)

−S(u∗, v∗)‖+ αnθ‖H(A(g(xn)), B(g(xn)))−H(A(g(xn)), B(g(x∗)))

+H(A(g(xn)), B(g(x∗)))−H(A(g(x∗)), B(g(x∗)))‖
≤ (1− αn)‖g(xn)− g(x∗)‖+ αnθλ‖S(un, vn)− S(un, v

∗)‖+ αnθλ‖S(un, v
∗)

−S(u∗, v∗)‖+ αnθ‖H(A(g(xn)), B(g(xn)))−H(A(g(xn)), B(g(x∗)))‖
+αnθ‖H(A(g(xn)), B(g(x∗)))−H(A(g(x∗)), B(g(x∗)))‖

≤ (1− αn)‖g(xn)− g(x∗)‖+ αnθλλS2‖vn − v∗‖+ αnθλλS1‖un − u∗‖
+αnθr2‖g(xn)− g(x∗)‖+ αnθr1‖g(xn)− g(x∗)‖

≤ (1− αn)λg‖xn − x∗‖+ αnθλλS2D
(
(Fxn)b(xn), (Fx∗)b(x∗)

)
+αnθλλS1D

(
(Txn)a(xn), (Tx∗)a(x∗)

)
+ αnθ(r1 + r2)λg‖xn − x∗‖

≤ (1− αn)λg‖xn − x∗‖+ αnθλλS2δF‖xn − x∗‖+ αnθλλS1δT‖xn − x∗‖
+αnθ(r1 + r2)λg‖xn − x∗‖. (11)

It follows from (11) that

‖g(zn+1)− g(x∗)‖ ≤ P (θn)‖xn − x∗‖, (12)

where
P (θn) = [(1− αn)λg + αnθ(r1 + r2)λg + αnθλ{λS1δT + λS2δF}] , (13)

and θ =
1

µα2 − γβ2
, for µ > γ and α ≥ β.

Using (12), (10) becomes

‖zn+1 − x∗‖ ≤
1

ξ
P (θn)‖xn − x∗‖, (14)

where P (θn) is defined by (13).

From (4), we have g(xn+1) = (1− αn)g(xn) + αnyn, which implies that

g(xn+1)− g(xn) = αn(yn − g(xn)). (15)

Using the same arguments as for (10), we obtain

‖xn+1 − zn+1‖ ≤
1

ξ
‖g(xn+1)− g(zn+1)‖. (16)
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By applying (5), it follows that

‖g(xn+1)− g(zn+1)‖ =
∥∥(1− αn)g(xn) + αnyn −

{
(1− αn)g(xn)

+αnR
H
λ,M [H(A(g(xn)), B(g(xn)))− λS(un, vn)]

}∥∥
=

∥∥αn{yn −RH
λ,M [H(A(g(xn)), B(g(xn)))− λS(un, vn)]

}∥∥
≤ αnσn‖yn − g(xn)‖. (17)

Making use of (15), (17) and Lipschitz continuity of g, (16) becomes

‖xn+1 − zn+1‖ ≤
1

ξ
αnσn‖yn − g(xn)‖

=
1

ξ
σn‖αn(yn − g(xn))‖

=
1

ξ
σn‖g(xn+1)− g(xn)‖

≤ 1

ξ
σnλg‖xn+1 − xn‖. (18)

Using the above-discussed arguments, we estimate

‖xn+1 − x∗‖ = ‖xn+1 − zn+1 + zn+1 − x∗‖
≤ ‖xn+1 − zn+1‖+ ‖zn+1 − x∗‖

≤ 1

ξ
σnλg‖xn+1 − xn‖+

1

ξ
P (θn)‖xn − x∗‖

≤ 1

ξ
σnλg‖xn+1 − x∗‖+

1

ξ
σnλg‖xn − x∗‖+

1

ξ
P (θn)‖xn − x∗‖,

which implies that

‖xn+1 − x∗‖ ≤
σnλg + P (θn)

ξ − σnλg
‖xn − x∗‖. (19)

Inequality (19) implies that the sequence {xn} converges linearly to x∗, for

P (θn) = [(1− αn)λg + αnθ(r1 + r2)λg + αnθλ{λS1δT + λS2δF}] ,

and θ =
1

µα2 − γβ2
for µ > γ and α ≥ β.

It follows from (6) and the D-Lipschitz continuity for (Tx)a(x) and (Fx)b(x) that the sequences
{un} and {vn} converge linearly to u and v, respectively, as {xn} converges to x∗ linearly. Thus,
we have

lim sup
n

σnλg + P (θn)

ξ − σnλg
= lim sup

n
P (θn)

= lim sup
n

[(1− αn)λg + αnθ(r1 + r2)λg + αnθλ{λS1δT + λS2δF}]

= (1− α)λg + αθ(r1 + r2)λg + αθλ{λS1δT + αθλλS2δF},

where
∞∑
n=0

σn <∞ and α = lim
n→∞

supαn. This completes the proof. �
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4. Conclusion

Fuzzy sets and fuzzy logic are powerful mathematical tools for modeling and controlling uncertain
systems in industry, humanity, and nature; they are expeditious for approximating reasoning in
decision making in the absence of complete and precise information. Their role is significant
when applied to complex phenomena, not easily described by traditional mathematics. On the
other hand, it is well recognized that variational inclusions provide us fundamental tools to solve
many problems in applied sciences.

In this paper, we generalized the concept of over-relaxed proximal point scheme with fuzzy
mappings and apply it to solve a generalized variational inclusion problem with fuzzy mappings
by using the concept of H(·, ·)-cocoercive mappings which are more general than monotone
mappings. We also discuss the convergence of the sequences generated by over-relaxed proximal
point scheme with fuzzy mappings by using the concept of linear convergence.
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