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Abstract

In this paper we have investigated the growth properties of solutions of the generalized axially
symmetric, reduced wave equation in (n + 1) variables. Results analogus to those for order
and type found in the theory of entire functions of several complex variables, of solutions,
in terms of their expansion coefficients have been obtained. Our study is essential to a detailed
understanding of the scattering of waves by central potentials and may be applied for generalized
(n+ 2)−dimensional problems of potential scattering in quantum mechanics.
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1. Introduction

Functions of the form

ϕ(X) =

(
λr

2

)−(n+s−1)/2 ∞∑
µ=0

∑
|M |=µ

µ!bMJµ+(n+s−1)/2(λr)V
(s)
M (ξ), (1)

where X = (x1, . . . , xn, ρ), r2 = x2
1 + · · · + x2

n + ρ2, ρ = r (1−
∑n

i=1 ξ2
i )

1/2
, λ 6= 0 is real,

s > −1, µ = m1 + m2 + · · · + mn,M ≡ m1, . . . ,mn, V
(s)
M (ξ) ≡ V

(s)
M (ξ1, . . . , ξn) and Jν(x) is a
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Bessel function of first kind and νth order, arise as solutions of the generalized axially symmetric,
reduced wave equation in (n+ 1) variables, namely,

L
(n)
λ,s ≡

∂2ϕ

∂x2
1

+ · · ·+ ∂2ϕ

∂x2
n

+
∂2ϕ

∂ρ2
+
s

ρ

∂ϕ

∂ρ
+ λ2ϕ = 0. (2)

When λ = 0 this equation is known as the equation of generalized axially symmetric potential
theory (GASPT). The special case where n = 1 (λ = 0) has also been investigated by Erdélyi
(1956, 1965), Gilbert (1960, 1962, 1964, 1965), Ranger (1965), Henrici (1953, 1957, 1960), and
Fryant (1979). For n = 1, the reduced wave equation (2) has been studied by Colton (1967),
Henrici (1953, 1957, 1960), Gilbert (1967), Gilbert and Howard (1965), Nautiyal (1983), Kumar
and Rajbir (2013), and for n > 1 it was investigated by Gilbert and Howard (1965). For the
latest related work see Kumar and Arora (2010), Kumar and Harfaoui (2012), Kumar and Basu
(2014), Kumar (2012, 2014). Although Mishra (2007) studied some problems on approximations
of functions in Banach spaces by using different operators, Mishra et al. (2013) have obtained the
inverse results in simultaneous approximation by Baskakov-Durrmeyer-Stancu operators. In her
Ph.D. thesis, Deepmala (2014) also studied some results on fixed point theorems for nonlinear
contractions with applications, but our results are different from these authors.

In this paper we develop, for certain series representations of solutions of Equation (2), results
analogus to those for order and type found in the theory of entire functions of several complex
variables. Our results may be applied for generalized (n+ 2)−dimensional problems of potential
scattering in quantum mechanics. Our study concerning the entire function solutions of Equation
(2) is essential to a detailed understanding of the scattering of waves by central potentials.

The well-known properties involving the functions V (s)
m (ξ) are given in the following lemma

(Gilbert, 1967).

Lemma 1.1.

If the Dirichlet data for the partial differential equation (2) given on the hypersphere r = R0

is integrable, then this boundary value problem has a C(∞) solution for r < R0 which may be
expanded in terms of the functions

ϕn,M(X) = r−(n+s−1)/2Jµ+(n+s−1)/2(λr)V
(s)
M (ξ);

furthermore, each solution C(∞) in a domain containing the origin has a unique representation
in terms of these solutions.

R.P. Gilbert (1967) constructed an integral operator which maps the class of monomials =M onto
the solutions

r−(n+s−1)/2Jµ+(n+s−1)/2(λr)V
(s)
M (ξ).

Let us discuss some more properties regarding the solutions of partial differential equation (2).
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Using Cauchy’s integral formula in terms of formal sum, we get(
1

2πi

)n ∫
ek

(λr
2

)−(n+s−1)/2 ∞∑
µ=0

∑
|M |=µ

µ!=MJµ+(n+s−1)/2(λr)V
(s)
M (ξ)

=−M d=
=

=
λr

2

−(n+s−1)/2

µ!Jµ+(n+s−1)/2(λr)V
(s)
M (ξ),

or

Jµ+(n+s−1)/2(λ(r)V
(s)
M (ξ)

=

(
λ

2

)−(n+s+1)/2
1

µ!

(
1

2πi

)n ∫
ek

=−M
 ∞∑
µ=0

∑
|M |=µ

µ!=MJµ+(n+s−1)/2(λr)V
(s)
M (ξ)

 d=
=
,

(3)

where =−k ≡ =−k11 , . . . ,=−knn , d== = d=1

=1
. . . d=n=n and ek, k = 1, 2, . . . , n, are suitably chosen

contours (homologous to zero) such that {
∏n

k=1 ek} is outside a sufficiently large poly-cylinder.
If we consider for each fixed r, ξ the series [*] in the right hand side of (3) is a power series in
=M where the coefficients are given by

aM ≡
λr−(n+s−1)/2

2
µ!Jµ+(n+s−1)/2(λr)V

(s)
M (ξ),

its domain of convergence for = ∈ C(n) can be studied by considering the associated radii of
convergence, r1, . . . , rn, which satisfy Fuks (1963)

lim
µ→∞

(|aM |rM)1/µ →∞, rM = rM1
1 , . . . , rMn

n .

It is given (Gilbert (1968), p. 36) that if f(=) =
∑∞

µ=0

∑
|M |=µ bM=−M , then the solution ϕ(X)

corresponding to it is

ϕ(X) =

(
λr

2

)−(n+s−1)/2 ∞∑
µ=0

∑
|M |=µ

µ!bMJµ+(n+s−1)/2(λr)V
(s)
M (ξ).

2. Auxiliary Results

First we compute the radius of convergence of the series (1) in terms of the coefficients bM .

Theorem 2.1.

The series (
λr

2

)−(n+s−1)/2 ∞∑
µ=0

∑
|M |=µ

µ!bMJµ+(n+s−1)/2(λr)V
(s)
M (ξ) (4)
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converges absolutely and uniformly on compact subsets of the open disk centered at the origin
of radius R given by

1

R
= lim sup

µ→∞
|bM |1/µ.

Further, such convergence is not obtained on any larger disk.

Proof:

Let ρ∗ denote the radius of the largest disk centered at the origin in which the series (4)
will converge uniformly on compact subsets. Let ϕ denote the limit function. Then by using
biorthogonal relation∫

1≥‖ξ‖≥0

(1− ‖ξ‖2)(s−1)/2V
(s)
M (ξ)U

(s)
L (ξ)dnξ = δm1

l1
. . . δmnln

×
2πn/2Γ( s

2
+ 1)Γ(s+m)

(2m+ n+ s− 1)Γ(n+s−1
2

)Γ(s)M !

(5)

or ∫
1≥‖ξ‖≥0

(1− ‖ξ‖2)(s−1)/2[V
(s)
M (ξ)]2dnξ =

2πn/2Γ( s
2

+ 1)Γ(s+m)

(2m+ n+ s− 1)Γ(n+s−1
2

)Γ(s)M !

and termwise integration gives∫
1≥‖ξ‖≥0

(1− ‖ξ‖2)(s−1)/2ϕ(r, ξ)V
(s)
M (ξ)dnξ

=
2πn/2Γ( s

2
+ 1)Γ(s+m)µ!bMJµ+(n+s−1)/2(λr)(λr)

(n+s−1)
2

(2m+ n+ s− 1)Γ(n+s−1
2

)Γ(s)M !
.

(6)

Since Jµ+(n+s−1)/2(λr) ≥ 1
2Γµ+(n+s+1

2
)
(λr

2
)µ+(n+s−1)/2, now (6) gives

πn/2Γ( s
2

+ 1)Γ(s+m)µ!bM

(2m+ n+ s− 1)Γ(n+s−1
2

)Γ(s)M !Γµ+ (n+s+1
2

)
(
λr

2
)µ

≤
∫

1≥‖ξ‖≥0

(1− ‖ξ‖2)(s−1)/2ϕ(r, ξ)V
(s)
M (ξ)dnξ.

Using Cauchy-Schwartz inequality, we get

|bM |
(
λr

2

)µ
≤ C∗

[
Γ(µ+ (n+s+1

2
))(2m+ n+ s− 1)Γ(n+s−1

2
)Γ(s)C1M !

πn/2Γ( s
2

+ 1)Γ(s+m)µ!

]
×M [ϕ,DR],

(7)

where

C1 =

∫
1≥‖ξ‖≥0

∣∣(1− ‖ξ‖2)(s−1)/2
∣∣2 dnξ, C∗ = max

1≥‖ξ‖≥0

∣∣∣V (s)
M (ξ)

∣∣∣ ,
M [ϕ,Dr] = sup‖X‖e=αR |ϕ(X)|, ‖X‖2

e = x2
1+x2

2+· · ·+x2
n+ρ2, DR ≡

{
(z) :

(
z
R

)
∈ D ⊂ C(n)

}
, D

is an arbitrary, n−circular domain and α is a constant.
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Noting that from Gilbert (1967),

lim
µ→∞

[
(2µ+ n+ s− 1)M !

Γ(s+ µ)

] 1
µ

→ 1,

and taking |Zo
ν | to be fixed, from [11] we have

1

R
<
|Zo

ν |
λr

=
α

R
,

and this yields from (7) that

lim sup
µ→∞

|bM |1/µ ≤
2

|Zo
ν

(α
R

)
,

and since the choice of
(
|Zoν |R

2α

)
< ρ∗ was arbitrary,

lim sup
µ→∞

|bM |1/µ ≤
1

ρ∗
.

On the other hand, suppose

lim sup
µ→∞

|bM |1/µ =
1

R
. (8)

Using Jµ+(n+s−1)/2(λr) ≤ (λr/2)µ+(n+s−1)/2

Γ(µ+(n+s+1)/2)
, we find the series (4) is dominated by

∞∑
µ=0

∑
|M |=µ

µ!|bM |
(
|Z0

ν |R
2α

)µ
C∗

Γ
(
µ+

(
n+s+1

2

)) .
Thus (8) implies that the series (4) converges absolutely and uniformly on compact subsets of
the disk centered at the origin of radius R, from which the proof of the theorem is complete. �

In particular, ϕ(X) is entire if and only if

lim sup
µ→∞

|bM |1/µ = 0.

Now we introduce the growth parameters order τϕ(D) and type σϕ(D) of an entire function
solution ϕ(X) of Equation (2) following the usual function theoretic definitions of several
complex variables (Fuks (1963)),

τϕ(D) = lim sup
R→∞

log logM [ϕ,DR]

logR
(9)

σϕ(D) = lim sup
R→∞

logM [ϕ,DR]

Rτϕ(D)
. (10)

We have the following theorem analogus of the Goldberg result and Gilbert (1968, Thm. 5.2).
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Theorem A.

Let f(=) =
∑∞

µ=0

∑
|M |=µ bM=−M be an entire function of (1/=) ∈ C(n) about (1/=) = (0).

Furthermore, let us define the quantities

τf (D) = lim sup
R→∞

log logM [f,DR]

logR
, (11)

σf (D) = lim sup
R→∞

logM [f,DR]

Rτf (D)
, (12)

τf (D) = lim sup
|k|→∞

log k

log[|ak|dk]−1/|k| , (13)

and

(eτf (D)σf (D))1/τf (D) = lim sup
|k|→∞

{
|k|1/τf (D)[|ak|dk]1/|k|

}
, (14)

where

|k| = k1 + · · ·+ kn, dk = sup
(z)∈D

|zk| and M [f,DR] = sup
z∈DR

|f(z)|.

3. Main Results

In this section we shall characterize the order and type of ϕ(X) in terms of coefficients occurring
in series development (1).

Theorem 3.1.

Let ϕ(X) be a solution of (2) with a series development (1). Furthermore, let ϕ(X) be an entire
function solution of order τϕ(D). Then

τϕ(D) = lim sup
µ→∞

log µ

log |bM |−1/µ
,

where {bM} are the coefficients of ϕ(X) in its expansion (1).

Proof:

In view of (7) and definition (9) of order, we have for R sufficiently large,

|bM | ≤

C∗
[

Γ(µ+ (n+ s− 1)/2)(2m+ n+ s− 1)Γ((n+ s− 1)/2)Γ(s)C1M !

πn/2Γ( s
2

+ 1)Γ(s+m)µ!

]1/2

×
(

2α

|Zo
ν |R

)µ
exp(R(τϕ(D)+ε)).
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The minimum value of
(

2α
|Zoν |R

)µ
exp(R(τϕ(D)+ε)) is attained at

R|Zo
ν |

2α
=

(
µ

τµ(D) + ε

)1/(τϕ(D)+ε)

.

Thus for µ sufficiently large,

|bM | ≤

C∗
[

Γ(µ+ (n+ s− 1)/2)(2m+ n+ s− 1)Γ((n+ s− 1)/2)Γ(s)C1M !

πn/2Γ( s
2

+ 1)Γ(s+m)µ!

]1/2

× exp

((
2α

|Zo
ν |

)(τϕ(D)+ε)
µ

τϕ(D) + ε

)
(
τϕ(D) + ε

µ
)

µ
(τϕ(D)+ε)

= C∗
[

Γ(µ+ (n+ s− 1)/2)(2m+ n+ s− 1)Γ((n+ s− 1)/2)Γ(s)C1M !

πn/2Γ( s
2

+ 1)Γ(s+m)µ!

]1/2

× exp

((
2α

|Zo
ν |

)(τϕ(D)+ε) [
(τϕ(D) + ε)e

µ

] µ
(τϕ(D)+ε)

)
,

and now we can easily get

lim sup
µ→∞

log µ

log |bM |−1/µ
≤ τϕ(D). (15)

In order to prove reverse inequality, let us choose our D as the unit hypersphere in the maximum
norm, i.e., 4 ≡ {(z) : ‖z‖m < 1}, where ‖z‖m = max1≤k≤n |zk|. Since the function f(=) is
expanded in the negative power monomials =−M , hence, if 1/(=) ∈ 4R, then |1/=k| < R or
(=) /∈ 41/R. Now we define

M̃ [f,4o
R] ≡

(
sup

(=)/∈41/R

|f(=)|

)
R(n+s−1)/2 (16)

and fix R large. Since ‖=‖m ≥ 1/R, taking the domain of integration the set
∏n

k=1{=k = eiθk/R},
we have, for |=ν | = 1

R
< |Zo

ν |/(λr) = α
R

, that (see Gilbert (1968))

ϕ(X) ≤ A3

ρ(n+s−1)/2
M̃ [f,4o

R] for ‖X|e < αR, (17)

where R sufficiently large, ρ > 0, A3 and α are the suitably chosen constants.

Using (16) in (17) with the definitions of order (9) and (11), we get

τϕ(D) ≤ τf (D).

The formula expressing the order of an entire function of several complex variables in terms of
its Taylor coefficients by Equation (13) then yields

τϕ(D) ≤ lim sup
µ→∞

log µ

log |bM |−1/µ
. (18)

Inequalities (15) and (18) together completes the proof. �
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Theorem 3.2.

Let ϕ(X) be a solution of (2) with a series development (1). Furthermore, let ϕ(X) be an entire
function solution of order τϕ(D) and type σϕ(D). Then

(eτϕ(D)σϕ(D))1/τϕ(D) = lim sup
µ→∞

{µ1/τϕ(D)|bM |1/µ}.

Proof:

In view of the result of Theorem 3.1 and expression of the order (13) of an entire function of
several complex variables in terms of its Taylor coefficients, it follows that the order of ϕ(X)

equals the order of f(=). Thus for the inequality expression given for the type of an entire
function of several complex variables, we have

σϕ(D) ≤ σf (D) =
1

eτf (D)
lim sup
µ→∞

{µ|bM |τf (D)/µ}. (19)

Using (7) and the definition (10) of type, we have for sufficiently large R,

|bM | ≤ C∗
[

Γ(µ+ (n+ s− 1)/2)(2m+ s+ s− 1)Γ((n+ s− 1)/2)Γ(s)C1M !

πn/2Γ( s
2

+ 1)Γ(s+m)µ!

]1/2

×
exp

[
(σϕ(D) + ε)Rτϕ(D)

]
Rµ

.

The minimum value of R−µ exp
[
(σϕ(D) + ε)Rτϕ(D)

]
is attained at

R =

[
µ

(σϕ(D) + ε)τϕ(D)

] 1
τϕ(D)

.

For sufficiently large µ, we have

|bM | ≤ C∗

[
Γ(µ+ (n+ s− 1)/2)(2m+ s+ s− 1)Γ((n+ s− 1)/2)Γ(s)C1M !

πn/2Γ
(
s
2

+ 1
)

Γ(s+m)µ!

]1/2

×
[

(σϕ(D) + ε)eτϕ(D)

µ

] µ
τϕ(D)

,

which gives
1

eτϕ(D)
lim sup
µ→∞

µ|bM |
τϕ(D)

µ ≤ σϕ(D). (20)

(19) and (20) together completes the proof. �

4. Conclusion

The potential play an important role in many aspects of mathematical physics, in particular to an
understanding of compressible flow in the transonic region. Although axially symmetric potential
theory is a well developed subject with many applications to the physical sciences, it is, perhaps,
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not fully appreciated that certain biological problems suggest the use of this theory. The problem
of steady-state differential flow through a cylindrical structure arises frequently. Not surprisingly,
the physiological situation may provide motivation for solving problems and seeking techniques
that are different from those arising from purely mathematical or physical considerations.

The solutions of the form (1.1) of the generalized axially symmetric reduced wave equation
(1.2) in (n + 1) variables for λ = 0 are called the generalized axially symmetric potentials.
The Euler-Poisson-Darboux equation, arising in gas dynamics, is viewed in terms of Equation
(1.2) for λ = 0 after a transformation and have a variety of physical interpretations. Our results
concerning the growth of entire function solutions of the equation (1.2) is applied for the detailed
study of generalized (n+ 2)-dimensional problem of potential scattering in quantum mechanics.
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