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Abstract 
 
In this paper, the solving of a class of the nonlinear Volterra integral equations (NVIE) of the 
first kind is investigated. Here, we convert NVIE of the first kind to a linear equation of the 
second kind. Then we apply the operational Tau method to the problem and prove convergence 
of the presented method. Finally, some numerical examples are given to show the accuracy of 
the method. 
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1.  Introduction 

Consider NVIE of the first kind of the form:  
 

׬  
௫
௖ ,ݔଵሺܭ ݐሻሻ݀ݐሺݑሺܩሻݐ ൌ ଵ݂ሺݔሻ,				ݔ ∈ ሾܿ, ܾሿ,                                                                       (1.1) 

 
where ଵ݂, ܭଵ and ܩ are given smooth functions, ܩ is invertible and nonlinear in ݑ.  The solution  
is determined and under the assumption that ଵ݂ሺܿሻ ݑ ൌ 0.  
 
Many problems in mathematical physics and engineering are often reduced to integral equations 
of the first kind, which are inherently ill-posed problems, meaning that the solution is generally 
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unstable, and small changes to the problem can make very large changes to the solutions 
obtained [Babolian and Delves (1979);  Kythe and Puri (2002)]. Equations of the form (1.1) have 
been investigated in some papers. For example, in [Biazar et al. (2003)] the NVIE of the first 
kind has been solved using Adomian method. Babolian and Masouri (2008) proposed a simple 
efficient direct method for solving the Volterra integral equations of the first kind. They applied 
block-pulse functions and their operational matrix of integration to reduce the first kind integral 
equation to a linear lower triangular system. Linz (1969) applied rectangular method, trapezoidal 
and midpoint method for solving linear Volterra integral equations (LVIE) of the first kind. 
 
Maleknejad (2007) solved the VIEs of the first kind by wavelet basis. Biazar (2009) applied He's 
homotopy perturbation method to solve systems of VIEs of the first kind. Masouri (2010) 
produced the approximate solution of the VIEs of the first kind via a recurrence relation. 
Maleknejad (2011) introduced and used a modification of block pulse functions to solve VIEs of 
the first kind. 
 
In this paper, we convert the Equation (1.1) to a LVIE of the second kind and apply the 
operational Tau method to the LVIE. Spectral methods have been studied intensively in recent 
years because of their good approximation properties. The Tau method, through which the 
spectral methods can be described as a special case has found extensive applications in numerical 
solution of many operator equations. There has been considerable interest in solving integral 
equations using Tau methods [Hosseini and Shahmorad (2005); Shahmorad (2005); Hosseini and 
Shahmorad (2003); Pour-Mahmoud et al. (2005)]. Also, the Volterra-Hammerstein integral 
equations have been solved by the Tau method [Ghoreishi and Hadizadeh (2009)]. In recent 
years, the Tau method has been developed for solving the two-dimensional integral and integro-
differential equations too ([Rahimi et al. (2010); Tari et al. (2009)]). The rest of this paper is 
organized as follows: 
 
In Section 2, we briefly describe the Tau method. In Section 3, we formulate the problem. In 
Section 4, we investigate the existence and uniqueness of the solution of the problem and prove 
the convergence of the method. Also, in Section 5, we give some examples to show the accuracy 
and efficiency of the presented method. Finally, section 6 consists of a few conclusions.  
 
2.  Tau Method  
 
In this section, we give some preliminary results about the Tau method. Complete information 
about this method can be found in the references [Ottiz and Samara (1981); Hosseini and 
Shahmorad (2002)] and specialy in [Canuto et al. (2006)]. 
 
The operational approach to the Tau method proposed by Ortiz and Samara (1981) is based on 
the use of three simple matrices 
 

    ૄ ൌ ൮

0 1 0 0 …
0 0 1 0 …
0 0 0 1 …
⋮ ⋮ ⋮ ⋮ ⋱

൲ ,				િ ൌ

ۉ

ۈ
ۇ

0 0 0 0 …
1 0 0 0 …
0 2 0 0 …
0 0 3 0 …
⋮ ⋮ ⋮ ⋮ ی⋰

ۋ
ۊ
,  ુ ൌ

ۉ

ۈ
ۇ

0 1 0 0 …
0 0 ଵ
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0 …

0 0 0 ଵ

ଷ
…

⋮ ⋮ ⋮ ⋮ ی⋰

ۋ
ۊ
, 
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with the following properties: if ݕሺݔሻ ൌ ܽ௧ܺ , where ܽ௧ ൌ ሺܽ଴, ܽଵ, … , ܽ௡, 0, … ,0ሻ , ܺ௧ ൌ
ሺ1, ,ݔ ,ଶݔ … ሻ, then 
 

	 ௗ
ௗ௫
ሻݔሺݕ ൌ ܽ௧(2.1)                                                                                                                 ,ܺߟ 

 
ሻݔሺݕݔ										 ൌ ܽ௧(2.2)                                                                                                                  ,ܺߤ 
 
and  
 

׬ ݔሻ݀ݔሺݕ  ൌ ܽ௧(2.3)                                                                                                               .ܺߡ 
 
In the rest of paper, we assume that ߤே, ߟே and ߡே denote the matrices including the first ܰ ൅ 1 
rows and columns of the matrices ߟ ,ߤ and ߡ, respectively. 
 
Lemma 2.1.  
 
Under above assumptions, we have  
 

න  
௫

௖
ݐሻ݀ݐሺݕ௝ݐ௜ݔ ൌ ܽ௧൫ߤ௝ߡ	ߤ௜ െ ௜ାଵ݁ߦ

௧ ൯ܺ, 

 
where ݁௜ାଵ is the ሺ݅ ൅ 1ሻ௧௛ coordinate unit vector and ߦ ൌ   .௫ୀ௖|ܺߡ௝ߤ
  
Proof:  
 
See [Hosseini and Shahmorad (2002)].  
 
Theorem 2.2.  
 
Assume that Kሺx, tሻ ൌ ∑  ୒

୧ୀ଴ ∑  ୒
୨ୀ଴ d୧୨x

୧t୨, then we have  
 

׬   
௫
௖ ,ݔሺܭ ݐሻ݀ݐሺݕሻݐ ൌ ܽே

௧ Πܺே,                                                                                              (2.4) 
 

whereΠ ൌ ∑  ே
௜ୀ଴ ∑  ே

௝ୀ଴ ݀௜௝ሺߤே
௝ ேߤேߡ

௜ െ ேߦ
ሺ௜௝ሻሺܿሻ݁௜ାଵ

௧ , 	ܽே
௧ ൌ ሺܽ଴, ܽଵ, … , ܽேሻ , 	ܺே ൌ ሺ1, ,ݔ … , ேሻݔ  and 

ேߦ
ሺ௜௝ሻis to denote ߦே ൌ ேߤ

௝   .௝ in the kernelݐ௜ݔ ேܺே|௫ୀ௖ corresponding to the termߡ
  
Proof:  
 
See [Hosseini and Shahmorad (2002)]. 
  
Remark 2.3.  
 
In the Tau method, f(x) and K(x,t) are polynomials  whenever f(x) and K(x,t) are not polynomials, 
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they should be approximated by suitable polynomials.  
Note that in the Equation (1.1), the functions f(x) and K(x,t) are not required to be polynomials.  
 
3.  Formulation of the Problem 
  
 In this section, we convert the Equation (1.1) to a linear equation of the second kind, then we 
apply the operational Tau method to the latter equation to get an equivalent linear system of 
equations. Without loosing generality, we assume that c = 0.  
 
We set y(t) = G(u(t)), so the integral Equation (1.1) can be written as  
 

׬  
௫
଴ ,ݔଵሺܭ ݐሻ݀ݐሺݕሻݐ ൌ ଵ݂ሺݔሻ.                                                                                                (3.1) 

 
Taking the derivative with respect to ݔ in both sides of the above equation, leads to  
 

,ݔଵሺܭ  ሻyሺxሻݔ ൅ ׬  
௫
଴

ப௄భሺ௫,௧ሻ

ப௫
ݐሻ݀ݐሺݕ ൌ ଵ݂

′ሺݔሻ.                                                                       (3.2) 

 
With assumption ܭଵሺݔ, ሻݔ ് 0, Equation (3.2) is converted to 
 

ሻݔሺݕ ൅ ׬  
௫
଴ ቂቀப௄భሺ௫,௧ሻ

ப௫
ቁ ,ݔଵሺܭ/ ሻቃݔ ݐሻ݀ݐሺݕ ൌ ଵ݂

′ሺݔሻ/ܭଵሺݔ,  ሻ.                                              (3.3)ݔ

 

By setting ܭሺݔ, ሻݐ ൌ െቀப௄భሺ௫,௧ሻ
ப௫

ቁ ,ݔଵሺܭ/ ሻݔሻ and ݂ሺݔ ൌ ଵ݂
′ሺݔሻ/ܭଵሺݔ, ሻݔ , Equation (3.3) can be 

written in the following form 
 

ሻݔሺݕ െ ׬  
௫
଴ ,ݔሺܭ ݐሻ݀ݐሺݕሻݐ ൌ ݂ሺݔሻ,                                                                                      (3.4) 

 
which is a LVIE of the second kind in the unknown y(x). 
 
Now we assume the computed solution of (3.4) has the following form  
 

ሻݔேሺݕ ൌ ∑  ே
௜ୀ଴ ܽ௜ݔ

௜ ൌ ܽே
௧ 	ܺே,                                                                                             (3.5) 

 
which is a truncated Taylor series solution of the exact solution y(x) for Equation (3.4), where 
ܺே
௧ ൌ ሺ1, ,ݔ ,ଶݔ … ,  .ேሻ is the standard basis of polynomials of degree Nݔ

 
One can write the right hand side of the Equation (3.4) in the form  
 

݂ሺݔሻ ≃ ∑  ே
௜ୀ଴ ௜݂ݔ௜ ൌ ݂௧ܺே,                                                                                                 (3.6) 

 
where, ݂௧ ൌ ሺ ଴݂, ଵ݂, … , ே݂ሻ. 
 
Now, by substituting (2.4), (3.5) and (3.6) into (3.4), we obtain  
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ܽே
௧ 	ܺே െ ܽே

௧ Πܺே ൌ ݂௧ܺே, 
or  
 
						ሺܽே

௧ െ ܽே
௧ Π െ ݂௧ሻܺே ൌ 0, 

 
and since X is a standard basis of polynomials of degree N,  
 
					ܽே

௧ െ ܽே
௧ Π ൌ ݂௧, 

 
or  
 

ܽே
௧ ሺܫ െ Πሻ ൌ ݂௧,                                                                                                                  (3.7) 

 
where I is the identity matrix. 
 
By solving the linear system of Equation (3.7), the vector of unknown coefficients and hence 
yN(x) can be found, so that  ݑேሺݔሻ ൌ  ሻሻ is obtained, which is an approximate solutionݔேሺݕଵሺିܩ
of the Equation (1.1). 
 
4.  Existence, Uniqueness and Convergence Analysis  
 
In this section, we state some results about the existence and uniqueness of the solution of the 
Equation (3.4) and we prove the convergence of the method. 
 
Theorem 4.1. [(Kress (1999, p.36)]. 
 
For each right-hand side f ∈ Cሾ0, bሿ the LVIE of the second kind (3.4) with continuous kernel K, 
has a unique solution y ∈ Cሾ0, bሿ.  
  
Theorem 4.2. [(Linz (1985, p. 67)]. 
 
Assume that 
  

(i)  ܭଵሺݔ, ,ݔଵሺܭ∂ ሻ andݐ /ሻݐ are continuous in 0 ݔ∂ ൑ ,ݐ ݔ ൑ ܾ,  
(ii)  ܭଵሺݔ, ሻ does not vanish anywhere in 0ݔ ൑ ݔ ൑ ܾ, 
(iii)  ଵ݂ሺ0ሻ ൌ 0, 
(iv)  ଵ݂ሺݔሻ and ଵ݂

′ሺݔሻ are continuous in 0 ൑ ݔ ൑ ܾ. 
 
Then, LVIE of the first kind (3.1) has a unique continuous solution. This solution is identical to 
the continuous solution of the LVIE of the second kind (3.4).  
 
To investigate the convergence, we define the error function as: 
 

݁ேሺݔሻ ൌ ሻݔሺݕ െ  ሻ,                                                                                                      (4.1)ݔேሺݕ
 
where, y(x) and yN(x) are the exact and the computed solution of the Equation (3.4), respectively. 
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Substituting  yN(x) into Equation (3.4) leads to: 
 

ሻݔேሺݕ െ ׬  
௫
଴ ,ݔሺܭ ݐሻ݀ݐேሺݕሻݐ ൌ ݂ሺݔሻ ൅  ሻ,                                        (4.2)ݔேሺ݌

 
where, pN(x) is the perturbation term that can be obtained by substituting the computed solution  
yN(x) into Equation (3.4), i.e.,  
 

ሻݔேሺ݌ ൌ ሻݔேሺݕ െ ׬  
௫
଴ ,ݔሺܭ ݐሻ݀ݐேሺݕሻݐ െ ݂ሺݔሻ.                                        (4.3) 

 
Now, by subtracting (4.2) from (3.4) and using (4.1), the error function  eN(x) satisfies:  
 

݁ேሺݔሻ െ ׬  
௫
଴ ,ݔሺܭ ݐሻ݀ݐሻ݁ேሺݐ ൌ െ݌ேሺݔሻ,                                                                             (4.4) 

 
which is similar to Equation (3.4) with a new right hand side. 
 
Theorem 4.3.  
 
Let assumptions of theorem 4.1 hold, i.e., f and K be continuous functions on their domains. 
Suppose that for some positive M, we have  
 

|ሻݔሺேାଵሻሺݕ| ൑ ݔ∀				,	ܯ ∈ ሾ0, ܾሿ.                                                                                         (4.5) 
 
Then, 					 lim

ே→∞
ே݌ ൌ 0. 

 
Proof: 
 
Suppose that the solution y(x) and the computed solution yN(x) of (3.4) are approximated by their 
Taylor expansions about zero . Then we may write 
 

݁ேሺݔሻ ൌ ∑  ∞
௡ୀேାଵ

௫೙

௡!
 ሺ௡ሻሺ0ሻ,                                                                                              (4.6)ݕ

 
which can be represented as   
 

݁ேሺݔሻ ൌ
௫ಿశభ

ሺேାଵሻ!
ߦ				,ሻߦሺேାଵሻሺݕ ∈ ሺ0,  ሻ,                                                                              (4.7)ݔ

 
for some ߦ ∈ ሺ0,  .ሻ by Taylor's theoremݔ
 
Replacing  eN(x) by (4.7) into (4.4) gives  
 

െ݌ேሺݔሻ ൌ
௫ಿశభ

ሺேାଵሻ!
ሻߦሺேାଵሻሺݕ െ ׬  

௫
଴ ,ݔሺܭ ሻݐ ௧ಿశభ

ሺேାଵሻ!
 (4.8)                                          .ݐሻ݀ߦሺேାଵሻሺݕ

 
Therefore, we have  
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|ሻݔேሺ݌| ൑ |ሻߦሺேାଵሻሺݕ|
ேାଵݔ

ሺܰ ൅ 1ሻ!
൅ න  

௫

଴
,ݔሺܭ| |ሻߦሺேାଵሻሺݕ||ሻݐ

ேାଵݐ

ሺܰ ൅ 1ሻ!
 .ݐ݀

 
Since K(x,t) is continuous on [0, b], then there exists some positive real number R such that 
,ݔሺܭ| |ሻݐ ൑ ܴ for all ݔ, ݐ ∈ ሾ0, ܾሿ. Therefore, we have  
 

|ሻݔேሺ݌|				 ൑ ܯ
ܾேାଵ

ሺܰ ൅ 1ሻ!
൅ නܯܴ  

௫

଴

ேାଵݐ

ሺܰ ൅ 1ሻ!
 ݐ݀

 

																			൑ ܯ
ܾேାଵ

ሺܰ ൅ 1ሻ!
൅ ܯܴ

ܾேାଶ

ሺܰ ൅ 2ሻ!
ൌ

1
ሺܰ ൅ 1ሻ!

൬1 ൅
ܴܾ

ܰ ൅ 2
൰ܾܯேାଵ				 

 
thus, the proof is complete.  
  
Theorem 4.4.  
 
Under the assumptions of Theorem 4.3, we have lim

ே→∞
݁ே ൌ 0. 

 
Proof: 
 
Let the integral operator T is given by  
 
  				ሺܶݕሻሺݔሻ ൌ ׬  

௫
଴ ,ݔሺܭ  ,ݐሻ݀ݐሺݕሻݐ

 
then the Equation (4.4) can be rewritten as  
 
   				ሺܫ െ ܶሻ݁ே ൌ െ݌ே. 
 
Under the assumption, limே→∞݌ேሺݔሻ ൌ 0  and according to theorem 4.1, (I-T) is invertible. 
Hence, lim

ே→∞
݁ே ൌ 0. 

  
We conclude this section by following Remark [Hosseini and Shahmorad (2002)].  
 
Remark 4.5.  
 
If the solution y(x) of the Equation (3.4) is a polynomial of degree m, then any Tau method 
approximate solution of degree ൒ m will detect it exactly. In this case we say that the Tau 
method is exact of degree m.  
 
 5.  Numerical Examples  
 
Here we give some examples to show the simplicity and accuracy of the presented method. In 
the following examples, we approximate nonpolynomial parts of functions f(x) and K(x,t) by 
Taylor polynomials. 
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We made use of the Maple 13 package to perform all computations.   
 
Example 5.1. Consider the following Volterra equation of the first kind [Babolian and Masouri 
(2008)]  
 

׬  
௫
଴ ݔሺݏ݋ܿ െ ݐሻ݀ݐሺ′′ݑሻݐ ൌ ݔ				,ݔ݊݅ݏ2 ∈ ሾ0,1ሿ                                                                      (5.1) 

 
with initial conditions u(0) = 0 and u’(0) = 0, whose exact solution is u(x) = x2.  
 
To solve this example, as mentioned before, first we convert Equation (5.1) to LVIE of the 
second kind. To do this, we set ݕሺݐሻ ൌ   ሻ so the integral Equation (5.1) can be written asݐሺ′′ݑ
 

׬  
௫
଴ ݔሺݏ݋ܿ െ ݐሻ݀ݐሺݕሻݐ ൌ ݔ				,ݔ݊݅ݏ2 ∈ ሾ0,1ሿ.                                                                       (5.2) 

 
Taking the derivative with respect to x on both sides of the above equation, leads to  
 

ሻݔሺݕ െ ׬  
௫
଴ ݔሺ݊݅ݏ െ ݐሻ݀ݐሺݕሻݐ ൌ ݔ				,ሻݔሺݏ݋2ܿ ∈ ሾ0,1ሿ,                                                       (5.3) 

 
which is a LVIE of the second kind in the unknown y(x).  
 
To solve Equation (5.3), first we expand sin(x - t) and cos(x) in Taylor series on x0 = 0 and t0 = 0. 
By solving LVIE of the second kind (5.3) using the Tau method, the vector of unknown 
coefficients and hence yN(x) can be found. Therefore, using initial conditions and two times 
integration of ݑே

′′ ሺݔሻ, concludes the exact solution. 
 
Comparison of the proposed method and the direct method in [Babolian and Masouri (2008)] 
shows that with assumption ݄ ൌ ܾ/ܰ and ݔ௜ ൌ ݄݅ where ݅ ൌ 0,1, … ,ܰ for ܰ ൌ 8, the proposed 
method gives the solution ݕேሺݔሻ ൌ ேݑ

′′ ሺݔሻ ൌ 2 with the computed error ሺ1/ܰ∑  ே
௜ୀ଴ ݁ே

ଶሺݔ௜ሻሻଵ/ଶ ൌ
0 but the direct method in [Babolian and Masouri (2008)] gives the solution ݕேሺݔሻ ൌ ேݑ

′′ ሺݔሻ ൌ 2 
with the computed error ሺ1/ܰ∑  ே

௜ୀ଴ ݁ே
ଶሺݔ௜ሻሻଵ/ଶ ≃ ܧ1.7 െ 14. Therefore, the proposed method is 

very powerful in comparison the numerical results of [Babolian and Masouri (2008)]. 
  
Example 5.2. Consider the NVIE of the first kind [Babolian and Salimi (2008)]  
 

׬  
௫
଴ ݁ሺ௫ି௧ሻݑଶሺݐሻ݀ݐ ൌ ݁ଶ௫ െ ݁௫,				ݔ ∈ ሾ0,1ሿ,                                                                        (5.4) 

 
whose exact solution is ݑሺݔሻ ൌ ݁௫.  
 
Similar to Example 5.1, we convert NVIE of the first kind (5.4) to LVIE of the second kind. For 
this purpose, we set ݕሺݐሻ ൌ   ሻ. So the integral Equation (5.4) convert toݐଶሺݑ
 

׬  
௫
଴ ݁ሺ௫ି௧ሻݕሺݐሻ݀ݐ ൌ ݁ଶ௫ െ ݁௫,				ݔ ∈ ሾ0,1ሿ.                                                                          (5.5) 
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Taking derivative with respect to ݔ on both sides of the above equation, leads to  
 

ሻݔሺݕ ൅ ׬  
௫
଴ ݁ሺ௫ି௧ሻݕሺݐሻ݀ݐ ൌ 2݁ଶ௫ െ ݁௫,				ݔ ∈ ሾ0,1ሿ,                                                           (5.6) 

 
which is a LVIE of the second kind in the unknown ݕሺݔሻ. 
 
To solve Equation (5.6), first we expand ݁ሺ௫ି௧ሻ , ݁ଶ௫  and ݁௫  in Taylor series on ݔ଴ ൌ 0  and 
଴ݐ ൌ 0. By solving LVIE of the second kind (5.6) using the Tau method, the vector of unknown 
coefficients and hence ݕேሺݔሻ can be found, therefore ݑேሺݔሻ ൌ ඥݕேሺݔሻ. 
 
Computational results in Table 1 show that high accuracy is obtained for ܰ ൌ 16 in comparison 
to the absolute error at the points ݔ௜ ൌ ݅/ܰ where ݅ ൌ 0,1, … ,ܰ for ܰ ൌ 16, in [Babolian and 
Salimi (2008)].  
 
Example 5.3. Consider the third example as  
 

׬  
௫
଴ ݁௫ି௧݈݊൫ݑሺݐሻ൯݀ݐ ൌ ݁௫ െ ݔ െ ݔ				,1 ∈ ሾ0,1ሿ,                                                                 (5.7)  

 
which has the exact solution ݑሺݔሻ ൌ ݁௫.  
 
Similar to previous examples, we convert NVIE of the first kind (5.7) to LVIE of the second 
kind. By setting ݕሺݐሻ ൌ ݈݊ሺݑሺݐሻሻ the integral Equation (5.7) can be written as  
 

׬  
௫
଴ ݁௫ି௧ݕሺݐሻ݀ݐ ൌ ݁௫ െ ݔ െ ݔ				,1 ∈ ሾ0,1ሿ.                                                                         (5.8) 

 
Taking derivative with respect to ݔ on both sides of the above equation, leads to  
 

ሻݔሺݕ ൅ ׬  
௫
଴ ݁௫ି௧ݕሺݐሻ݀ݐ ൌ ݁௫ െ ݔ				,1 ∈ ሾ0,1ሿ,                        (5.9) 

 
which is a LVIE of the second kind in the unknown ݕሺݔሻ. 
 
To solve Equation (5.9), applying the proposed method to the problem leads to ݕேሺݔሻ ൌ  which ݔ
is the exact solution of (5.9). Note that this confirms the remark 4.5. Therefore ݑேሺݔሻ ൌ
݁௬ಿሺ௫ሻ ൌ ݁௫ which is the exact solution of Equation (5.7), too.  
  
Example 5.4. Consider the integral equation  
 

׬ 	
௫
଴ ሺ݊݅ݏሺݔ െ ሻݐ ൅ 1ሻܿݏ݋ሺݑሺݐሻሻ݀ݐ ൌ ௫௦௜௡ሺ௫ሻ

ଶ
൅ ݔ				,ሻݔሺ݊݅ݏ ∈ ሾ0,1ሿ                                  (5.10) 

 
with the exact solution ݑሺݔሻ ൌ   .ݔ
 
As mentioned before, we convert NVIE of the first kind (5.10) to LVIE of the second kind. To 
do this, we set ݕሺݐሻ ൌ   ሻሻ so the integral Equation (5.10) is converted toݐሺݑሺݏ݋ܿ
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׬ 	
௫
଴ ሺ݊݅ݏሺݔ െ ሻݐ ൅ 1ሻݕሺݐሻ݀ݐ ൌ ௫௦௜௡ሺ௫ሻ

ଶ
൅ ݔ				,ሻݔሺ݊݅ݏ ∈ ሾ0,1ሿ.                                           (5.11) 

 
Taking derivative with respect to ݔ on both sides of the above equation, leads to  
 

ሻݔሺݕ ൅ ׬ 	
௫
଴ ݔሺݏ݋ܿ െ ݐሻ݀ݐሺݕሻݐ ൌ ଵ

ଶ
ሻݔሺݏ݋ܿݔ ൅ ଵ

ଶ
ሻݔሺ݊݅ݏ ൅ ݔ				,ሻݔሺݏ݋ܿ ∈ ሾ0,1ሿ,                (5.12) 

 
which is a LVIE of the second kind in the unknown ݕሺݔሻ. 
 
We proceed as in previous examples and obtain the results of Table 2 for the absolute error at 
some nodes with ܰ ൌ 8, 16.  
 

Table 1. Computational results of example 5.2 for different ܰ at some nodes. In [Babolian 
and Salimi (2008)] this problem was solved just for ܰ ൌ 16. 

  ܰ ൌ 8       
ݑܽܶ ݐܿܽݔ݁ ݔ  ݎ݋ݎݎ݁

 0.00   1.000000   1.000000     0.00 
1/16   1.064494   1.064494   0.97E-14  
3/16   1.206230   1.206230   0.17E-9  
3/8   1.454991   1.454991   0.76E-7 
1/2  1.648721   1.648720   0.92E-6  
5/8   1.868245   1.868239   0.62E-5  
3/4   2.117000   2.116970   0.29E-4  

13/16   2.253534   2.253477   0.57E-4 
15/16   2.553589   2.553400   0.18E-3  

1   2.718281   2.717959   0.32E-3  

 ܰ ൌ 16       error [Babolian 
and Salimi(2008)]  

 0.00   1.000000   1.000000     0.00     ---  
1/16   1.064494   1.064494   0.59E-30   0.0328 
3/16   1.206230   1.206230   0.68E-22   0.0374 
3/8   1.454991   1.454991   0.75E-17   0.0454 
1/2   1.648721   1.648721   0.90E-15  0.0517  
5/8   1.868245   1.868245   0.35E-13  0.0589 
3/4   2.117000   2.117000   0.71E-12  0.0671 

13/16   2.253534   2.253534   0.26E-11  0.0716 
15/16   2.553589   2.553589   0.26E-10   0.0815 

1   2.718281   2.718281   0.76E-10   0.0870 
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Table 2. Computational result of example 5.4 for different ܰ at some nodes 
 
 

 
  

  
 

ܰ ൌ 8    

 ݎ݋ݎݎ݁ ݑܽܶ ݐܿܽݔ݁ ݔ
0.00 0.000000 0.000000     0.00 

     0.10 0.100000 0.099999 0.27E-15 

0.20 0.200000 0.199999 0.14E-12 

0.30 0.300000 0.299999 0.55E-11 

0.40 0.400000 0.399999 0.74E-10 

0.50 0.500000 0.499999 0.56E-9 
0.60 0.600000 0.599999 0.29E-8 

0.70 0.700000 0.699999 0.12E-7 

0.80 0.800000 0.799999 0.41 E-7 

0.90 0.900000 0.899999 0.12E-6 

1.00 1.000000 0.999999 0.32E-6 

ܰ ൌ 16 
 

   

    0.00 0.000000 
 

  0.000000 0.00 
 

0.10 0.100000 0.199999 0.15E-32 

0.20 0.200000 0.199999 0.20E-27 

0.30 0.300000 0.299999 0.20E-24 

0.40 0.400000 0.399999 0.27 E-22 

0.50 0.500000 0.499999 0.12E-20 

0.60 0.600000 0.599999 0.28E-19 

0.70 0.700000 0.699999 0.39E-18 

0.80 0.800000 0.799999 0.39E-17 

0.90 0.900000 0.899999 0.29E-16 

1.00 1.000000 0.999999 0.18E-15 
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 6.  Conclusion 
 
In this paper we proposed a simple technique for solving the NVIE of the first kind. In this 
method, we transformed NVIE of the first kind to LVIE of the second kind. Then we converted 
LVIE of the second kind to an equivalent linear system of equations by the operational Tau 
method. Comparison with available literature shows that the proposed method gives results of 
high accuracy.  
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