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Abstract

In this paper, a parameter-uniform numerical method is suggested to solve a system of singularly
perturbed convection-diffusion equations with discontinuous convection coefficients and source
terms subject to the Dirichlet boundary condition. The second derivative of each equation is
multiplied by a distinctly small parameter, which leads to an overlap and interacting interior
layer. A numerical method based on a piecewise uniform Shishkin mesh is constructed.
Numerical results are presented to support the theoretical results.
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1. Introduction

Singular perturbation problems (SPPs) arise in various fields of applied mathematics such as
fluid dynamics, elasticity, quantum mechanics, electrical networks, chemical reactor-theory, bio-
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chemical kinetics, gas porous electrodes theory, aerodynamics, plasma dynamics, oceanography,
diffraction theory, reaction-diffusion processes and many other areas. Examples of SPPs include
the linearized Navier-Stokes equation of fluid at high Reynolds number, heat transportation
problem with large Peclet numbers, magneto-hydrodynamics duct problems at Hartman number
and drift diffusion equation of semiconductor device modeling. It is a well-known fact that the
solutions of the SPPs have a multi-scale character (non-uniform behaviour), that is, there are thin
layer(s)(Boundary layer region) where the solution varies rapidly but when distant from the
layer(s)(Outer region) the solution behaves regularly and varies slowly. There is a vast literature
dealing with SPPs with smooth coefficients and source term for single equation (see Miller et al.
(1996) — Farrel et al. (2000a) and references therein) and for system of differential equations (see
Mathews (2000) — Tamilselvan and Ramanujam (2010) and references therein). Recently, a few
authors have developed uniform numerical methods for SPPs with non-smooth data, that is,
discontinuous source term and/or discontinuous convection coefficient and/or discontinuous
diffusion coefficient for single equation Farrell et al. (2000b) — Mythili and Ramanujam (2009)
and for system of equations Tamilselvan et al. (2007, 2010).

In Matthews et al. (2000a, 2000b), the authors studied a system of two coupled singularly
perturbed reaction-diffusion equations for the cases 0<¢g =¢,<<1l and 0<¢g <<g,=1. It is
shown that a parameter robust numerical method can be constructed which gives first order
convergence. Madden and Stynes (2003) examined the same problem for the cases
0<¢g <g,<1. The solution to the system has boundary layers that overlap and interact. The
structure of these layers was analysed and this led to the construction of a piecewise uniform
mesh that is a variant of the usual Shishkin mesh. They showed that the scheme is almost first
order uniform convergence in the perturbation parameters. In Valanarasu and Ramanujam
(2004), the authors proposed an asymptotic numerical initial value method to solve a system of
two coupled singularly perturbed convection-diffusion equations which involves solving a set of
initial value problems and a system of terminal value problem by fitted operator method. Cen
(2005) has examined the same for the case 0<g¢ <¢, <1, which leads to an overlap and

interacting boundary layer.

In this paper, a system of singularly perturbed convection-diffusion equations with discontinuous
convection coefficients and source terms are considered on the unit interval Q =(0,1). A single

discontinuity in the convection coefficients and source terms are assumed to occur at a point
d e Q. It is convenient to introduce the notation Q™ =(0,d),Q" =(d,1) and to denote the jump
at d in any function with [w](d) = w(d+) —w(d—-). In fact, we consider the following class of
problems: find

Yo, ¥, €CH(Q)NCHQ)NCH(Q LQY)

such that
Ly = _glyl” + ai(x) y1' + bll(x) it blZ(X)yZ = fl(X)’ 1)
Ly = _gz)g + az(x)yé + b21(X)yl + b22 (x) Y, = fz (x), xeQ uQ,
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with the boundary conditions

{w®)=p, y, (1) =r, @
y,(0) =q, y,(1) =s.

Assume that
[[a,1(d)[<C, [[a,](d)|<C, [[f](d)[<C, [[f](d)|<C,
a >a,(X)>a, >0, x<d, -a,<a(X)<-a,<0, d<x,
a, >a,(X)>a, >0, x<d, -a,<a,(X)<-a,<0, d<x,
b,(X)<0, b, (X)<0,
b,(X)+b,(x)>0,  b,(X)+b,(X)>0, V xeQ.

The parameters ¢, &, €(0,1) and without loss of generality we shall assume that
0<g <g, <l The functions a,(x), f,(x) for i =1, 2 are assumed to be sufficiently smooth on

Q" uQ"U{0,1} and the function b, (x) for i, j=1,2 are to be sufficiently smooth on Q. The

function a,(x), f,(x) for i =1,2 are assumed to have a single jump discontinuity at the point
d € Q. In general this discontinuity give raise to interior layers in the solutions of the problems.
Because a;(x), f;(x) for i =1, 2 are discontinuous at d, the solution y = (y,, y,)" of (1) - (2)

does not necessarily have continuous second derivative at the point d. The above weakly
coupled system of singularly perturbed boundary value problem can be written in the vector form

as

_ L,y _gld_z 0 B B -
LyEL _]z X V+AX) V'+B(X)y=f(X), xeQ uQ,

with the boundary conditions

5(0) :[p} y(1) = (rj
q s

where
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A(X):(am 0 ] B(X):(blmx) blz(x)j . f-(x){fl(x)}
0 2,00 NONHE £,00

Note:

Throughout this paper, C denotes a generic constant (sometimes subscripted) which is
independent of the singular perturbation parameters ¢, &, and the dimension of the discrete
problem N. Let y:D—> %R, D cR. The appropriate norm for studying the convergence of
numerical solution to the exact solution of a singular perturbation problem is the maximum norm
I yllo=sup|y(x)|. In case of vectors y, we define |y(x)|=(|y,(X)].|y,(x)|)" and

xeD

Vo= max{ly,llo, IlY, |} Throughout the paper, we shall also assume that &, <C N
and &, <C N as is often assumed for convection dominated problems.

Remark 1.1.

For simplicity, we are considering the functions b,;, b,,, b,, and b,, are sufficiently smooth on

Q. If we allow a simple jump discontinuity at x =d for those functions, the results of this paper
remain true. The sign condition imposed on a,, a, is motivated by the argument given in Farrel
et al. (2004a) for single equation.

2. Preliminaries

In this section, first we prove the existence of a solution of the BVP (1)-(2). Then we derive a
maximum principle and stability result for the same. Further bounds for the solution, smooth and
singular components and their derivatives are derived.

Theorem 2.1.
The BVP (1)-(2) has a solution such that y,, y, e C*(Q) " C'(Q) nC*(Q uQ").
Proof:

The proof is by construction. Let T~ = (u,,u,)" and T* = (u;,u;)" be particular solutions of the
following systems of equations
d2
—-&— 0

dx* J2 [0+ AT (0 +BOT ()= F(), xeq
0 —&—
2 dx?

and
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e’ e U (X)+AX) T (X)+BX) T (x) = f(x), xeQ".

I dx?

Also let ¢ and i be the solutions of the following BVPs

d2

-&6— 0 B B - - B B B )
dx 2 POO+AMF0+BHF(0=0, xcQ §O)=1, §(1)=0.
0 _SZW

and
LA
< 42 [POO+A T () +B ¥ (=0, xcQ ¥ (=0, y(1)=1,
0 —&—
? dx?

respectively. Here 0= (0,0)" and 1=(1,1)". Then, U can be written as

y;(0)-u; (0) 0

R )

d(X)+K ir(x), xeQ,

y; (1) -u; (1) 0

R Y, (1)-u; (1)

v(X)+K g(x), xeQ,

where K and K™ are matrices with constant entries to be chosen suitably. Note that on the open
interval Q, 0<g, i <1, and ¢, cannot have internal maximum or minimum and hence

$'< 0, '>0, xeQ.

*

2

k, O :
We wish to choose the matrices K = (01 ‘ j and K = [k(; koJ so that y,, y, e C'(Q). That
2

IS, we impose the conditions
y(d-)=y(d+) and y'(d-)=y'(d+).

For the matrices K and K to exist is required that
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p,(d) 0 —¢(d) 0

0 w,(d) 0 - ¢,(d) £0.
y,(d) 0  —¢(d) 0

0 wd) 0 —4,(d)

This follows from observing the fact that (v, ¢, —v, ¢,) (4 v, —v, ¢,) > 0.
Theorem 2.2. (Maximum Principle)

Suppose that a function y(x)=(y,(x),y,(X))", V,,Y,eC’(Q)NC*(Q uQ") satisfies
¥(0)>0, y(1)=0, Ly(x)=0, Ly(x)=0, V xeQ uQ" and [y'](d)<0. Then,
y(x)>0, V xeQ.

Proof:
Define 5(x) = (s,(x), s,(x))" as

5.(x) =5, (X) = 1/2+x/8—-d/8, xeQ” U{0,d}
A 12— x/4+dia, xeQ' U{1},

where s,, s, eC°(Q)NC*(Q LUQY).

Then, 5(x) >0, forall xeQ and L§(x)>0, xeQ uQ". We define

¢ = max{maxxeQ (—%)(x), max__ (—%)(x)}.

By (%)= ¢ or ((22)(x)=¢ or

Sl SZ
both. Further, x, e Q" LUQ" or x, =d. Also (Y+&)(X)>0, V xeQ.

Then, ¢ >0 and there exists a point x, such that either (

Case (i): (y,+¢5,)(%,) =0, for Q" wQ". Therefore, (y, +¢s,) attains its minimum at x,. Then,

0<Ly(x)=—&(y, +5,)"(x) +a,(x)(y, +5,)' (X) + by )y, +5,)(x)
+0, (X)(y, +¢8,)(x) <0,

which is a contradiction.

Case (ii): Similarly, we can consider the case (y, +¢5,)(%,) =0, for x, e QU Q" and arrive at a
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contradiction.

Case (iii): (y, +5,)(X,) =0, for x, = d. Therefore (y, +¢s,) attains its minimum at X,. Then,
0< [(y; +5)1(x) = [y;1(d) + £Ts;1(d) <0,

which is a contradiction.

Case (iv): Similarly, we can consider the case (y, +¢S,)(%,) =0, for x, =d and arrive at a
contradiction.

Hence, y(x)>0, V xeQ.
Theorem 2.3. (Stability Result)
If

¥, Y, €C(Q)NCHQ)NC*H(Q uQY),

then
Y09 1=Cmax] y, @) L1y L1y, @ L1y, @ LILYI LY b
xeQ, j=1,2.
Proof:
Set
A=cmax{ ;01 y; LIy, O LIy, O LILYIL LY, 3

Define two barrier functions W™ (x) = (w;" (x),w; (x))" as

e A(l/2+x/18-d/l8)+y,(x), x<d,
WiVE A2 wia s i)y (9, x>d, j=12

Further, we observe that
W (0)>0, wW'(1)>0, LW (x)=0, LWw*(x)>0

and [W* ](d)<0, by a proper choice of A. Then, W*(x)>0, ¥ xeQ, by Theorem 2.2,
which completes the proof.
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To derive parameter uniform error estimates we need sharper bounds on the derivatives of the
solution y. Consider the following decomposition of the solution y =v+Ww, into a non-layer

component V = (v, v,)" and an interior layer component W = (w,, w,)". Define the discontinuous
functions V, = (v,,, V)" and V, = (v,;,V,,)" to be respectively the solutions of the problems

A(X)V, +B(X)V, = f(x), xeQ uQ*, V,(0)=y(0), V(1) = y(1),

and
2
cor
_ _ e _ o
AX)V, +B(X) ¥, =| ° L g V,, xeQ uQ’, v(0)=0, %(1)=0.
0 —=
g dx

We define the discontinuous functions V and W respectively by

Lv="f(x), xeQ uQ, (3)
V(0)=¥(0), V(d-)=V,(d-)+¢&e, Vi(d-), A
{V(d D =0d4) +ae, T, V(L) =), @

and
LW=0, xeQ uQ’, (5)
w(0) =0, [W](d)=-V](d), [W](d)=-v]d), W(L)=0. (6)

Note that Yy =V +W is in C'(Q). The following lemma provides the bound on the derivatives of
the nonlayer and interior components of the solution .

Lemma 2.4.

Let V. and W be the solution of the BVP (3) - (4) and (5) - (6) respectively. Then there exists a
constant C such that for all xe Q™ UQ" we have for j=1,2,

v <C, k=0,1,23,
and
CB., xeQ,

w. ()| < ‘2
ICIE b

P H
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C(gng;1+gng;2), XxeQ,
C(g;18;1+g;15;2), xeQ',

Cg;lB;Z , XeQ,

CSZ_lB;2 , XeQ',

IWi(X)IS{ |w'2(x)|s{

C(gl‘zB‘Jrgz_zB_z), XxeQ,
C(5{2821+g;28:2), xeQ,

ng_ng_Z' XeQ,

w, (x)]< W, (X)] <
|w, (X) ] { |, (X) | {nglB;rZ’ xe Q.

3p- I -
C(e B, +¢&, sz)’ XeQ,
-3p+ -3p+ +
C(e B, +¢ Bgz), XeQ’,

Ce,'(6°B, +&,°B, ). xeQ,

Ce,'(6°B, +&,’B, ), xeQ,

IWI'(X)|<{ |W'2"(x)|<{

where

B, = exp(—a(d —x)/g,), B, = exp(—a(d —x)/&,),
and

B;l = exp(-a(x—-d)le), B;z =exp(-a(x—-d)le,) and a=min{e,, a,}.
Proof:

Using appropriate barrier functions, applying Theorem 2.2 and adopting the method of proof
used in Cen (2005), the present lemma can be proved.

3. Discrete Problem

The BVP (1) - (2) is discretised using a fitted mesh method composed of a finite difference
operator on a piecewise uniform mesh. When 0<¢g <¢g,= 1, the solution of (1) - (2) has

overlapping interior layer at x = d. This necessitates the construction of a mesh that is uniform
on each of six subintervals. We define

o
06_ =min E,&mN , (75_ =min g,i,ﬁlnN
2 2 ' 4 2

(24 (24
_ _d o,
o, =min u,ﬁlnN , o, =min u,—z,ﬁlnN :
2 2 « ! 4 2 «

A piecewise uniform mesh ﬁgﬂgz is constructed by dividing [0,1] into six subintervals
[0,d —o'g_z], [d ~0,, d —a;l], [d —0, d], [d,d +0€1]’ [d +o,, d +o€2]and
[d +a;2 ,1].

Then, subdivide [0, d —0;2] and [d +a;2 ,1] into N/4 mesh intervals and subdivide each of the



200 T. Valanarasu et al.

other four intervals into N/8 mesh intervals. The interior points of the mesh are denoted by

QY ={x :1si£%—l}u{xi :%+1si£ N -1}

£1,69

Clearly x,, =d and ﬁ:i,sz ={x}, . The step sizes of the mesh ﬁﬁi,gz satisfy

4d-o,,) :
=2 1<i<N/4,
N
8(o, —0,) .
HZ:%’ N/4 <i <3N/8,
8o, .
H,=—2, 3N/B<i<N/2,
h = N
i 8o, .
M=, N/2 <i <5N/8,
8(c,,-0,) :
Hszﬁ’ 5N/8<i <6N/8,
4(1-d-0o") .
HG:TZ, 6N/8<i<N.

When o, :0;2/2 and agl :0;2/2, then &, =0(g,) and the result can be easily obtained.
Therefore, we only consider the cases o, < 0;2/2 and a:l < 032/2. Then the fitted mesh finite

difference method is to find Y (%) = (Y,(x), Y,(x))" for i=0,1,---,N such that for x, € Q"

LY (%) = =£67Y,(x) + a,(%) DY, (%) +by; (X)) Y,(X) + by, (%) Y, (x) = f,(x), )
LY (%) = =£,67Y,(%) +2,(%) DY, (%) + b, (X)) Y,06) +15, (%) Yo (%) = f,(x,),
{Yl(xa AU R AT R R ACTY R ACHESAC! -
YZ(XO) = y2 (0)’ D7Y2 (XNIZ) = D+Y2(XN/2)’ YZ(XN) = y2 (1)!
where
DY (x) = {DYJ. (x), | <N /2’ 5 ()= (D -D)Y, (xi)1
T DY,(x), i>N/2 T (X1 —X4) /2
D+Yj(Xi) — Y](X)i:l):Ij (Xi) ~and D—Yj (Xi) - Yj (X;():YJ (Xi—l) for J =1,2.

i i-1

The difference operator L can be defined as
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LY (%) —£,0° — - _
Y (x) (LNY(X)] ( JY(Xi)"_A(Xi) DY (%) +B(x) Y (x)

=f(x), X eQN

)
6’82

Y_(Xo) =y(0), D" Y (Xle) = D+Y_(XN/2)1Y_(XN) =y(1).
3.1. Numerical Solution Estimates

Analogous to the continuous results stated in Theorem 2.2 and Theorem 2.3 one can prove the
following result.

Theorem 3.1.
For any mesh function Z (x,), assume that
Z;(%)=0, Z;(xy)=0, D"Z;(Xy,)—D"Z;(xy,) <0,
for j=1,2,and L"Z(x)>0, Vx 692‘1’62 .Then Z(x)>0, V x eﬁg”l,gz :
Proof:
As in the continuous case, assume that the theorem is not true. Let S =(S,,S,)", be

1/2+x/8-d/8, 1<i<N/2,
1/2-x/4+d/4, N/2+1<i<N.

é‘ = max {EDE?\‘((_SZ;L j(xi), EDE%\I(( j(x )}

It is obvious that, £>0 and Z (x)+& S(x) >0 for i = 0(1)N. Further, there exists
one i €{1,2,...,N} such that either Zl(Xi*)+§51(Xi*):0 or Zz(xi*)+.§ Sz(xi*):o or both.

S1(%) = S,(x) :{

Define

Also either X, € QF , OF X. = Xy,.
Case (i): Xox lelygz and Zl(xi*) +<& Sl(xi*) = 0. Then for X < Xy, WE have

L(Z(x)+ £ S(x.) =682 (Z,(x.) + £ $,(x.)) + 2, (x.)D (Zy(x.) + & S,(x.))
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by (X )(Z4 () +E 8,(X.)) + by (X )(Z, (%) + € S,(x.)) <O,

a contradiction. Also for X > Xy, WE have

L (Z(x.)+ &5 (x.)) = ~6,87(Z,(6.) + &,(x.) +2,(x.)D7 (Z,(x.) + &5,(x.))
By (X )(Z (%) + & 8,06 0) + B, (X )(Z(X.) + € S, (1) <0,

a contradiction.

Case (ii): Similarly, we can consider the case X € Qi“m and Zz(xi*)+§ Sz(xi*) =0, and arrive
at a contradiction.

Case (iii): X = Xy Then,
D (Z,(x.)+5,(x.)) =D (Zy(x.) +5,(¢.)) 20, if  Z,(x.)+£S(x.) =0,

or
D*(Zz(xi*) + Sz(xi*)) - D’(Zz(xi*) + Sz(xi*)) >0, if Zz(xi*) +& Sz(xi*) =0,

which is a contradiction. Hence, we get the desired result.
Theorem 3.2.

If Y;(x) is the solution of the problem (7), then

[Y;(x)|< C, j=12, X, eﬁg’“lygz.
To bound the nodal error |(Y —¥)(x,)|, we define mesh functions V, and V., which

approximate V respectively to the left and right of the point of discontinuity x =d. Then, we
construct mesh functions W, and W,, so that the amplitude of the jump W,(d)-W, (d) is

determined by the size of the jump |[V](d)|. Also W, and W,, are sufficiently small away from
the interior layer region. Using these mesh functions the nodal error |(Y —¥)(x,)| is then

bounded separately outside and inside the layer. Define the mesh functions V, and V, to be the
solutions of the following discrete problems respectively :

L'V, (x)=f(x), for i=1,.,N/2-1, 9)
V(%) = V(0), Vi (Xy) = V(d-), (10)

and



AAM: Intern. J., Vol. 8, Issue 1 (June 2013) 203

LV (%)= f(x), fori=N/2+1,..,N-1, (11)
Ve (Xy) = V(d+), Va(xy) =V(2). (12)

Now, we define the mesh functions W, and W, to be the solutions of the following system of
finite difference equations

L"W, (x)=0, for i=1,..,N/2-1, (13)
L"W,(x)=0, for i=N/2+1,..,N-1, (14)
W, _(x,) =0, W,(x,)=0, (15)
Wi (%) + Vi (Xi2) =W (Xp) + VL (X), (16)
D*"We (Xy;) + D Vg (Xyy5) = DW, (Xy,) + DV (Xy,). (17)

Now, we can define Y (x,) to be

V, (x)+W, (x), fori=1,..,N/2-1,
Y (%) = Wq (%) +Vo (X)), fori=N/2, (18)
V(%) +W, (%) =V (%) +W,(x), fori=N/2+1,..,N-1,

C

_ C - C —
Since |Y(xN,2)|s[Cj, we have |WL(XN/2)|S(CJ and |WR(xN,2)|£(C

Cen (2005), for i < N/4, we have

J. Using the arguments in

— — CN™
W, (x)[<|W, (x N7 < ,
IW_ (%) [ < TWL (X2) | [C Nlj

and

mﬁL—W)(xi)|S|WL(xi>|+|v—v<xi)|s[g Ej (19)

Similarly, for i >3N/4, we have

— _ CN™
W, (%) | <|W., (x N7 <
[We (%) | < [Wg (Xy2) | [C N‘l]

and
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— — _ CN™
I(WR—W)(Xi)ISIWR(Xi)|+|W(Xi)IS(C Nl} (20)
Lemma 3.3.
At each mesh point x; eQ"jl’gz, the regular component of the error satisfies the estimate for

j:1|21

-1

WV J(x) | < Cx N7, for i=1,---,N/2-1,
VUK )| S
o C(l-x)N™ for i=N/2+1,--,N-1,

where V and V are the solutions of (3) - (4) and (9) - (12) respectively.

Proof:
-1

Consider the local truncation error, | LN (V —V)(x,) | < (g j Using the two mesh functions

Nfl
YE(x) =g (x) %V —V)(x), where for j=1,2,

Cx N*'/d,for i=1,---,N/2-1,
(/’j(xi):

C(1-x)Nt/(1-d),for i=N/2+1,-- N-1

on the appropriate sides of the discontinuity, and applying discrete maximum principle, we
get ¥*(x)>0, V x eﬁg which completes the proof.

&:€9 !
Lemma 3.4.

At each mesh point x, € Q" the singular component of the error satisfies the estimate

|<W—v—v>(xi)|s(C Nl('”N)zj,

C N*(InN)?

where W and W are the solutions of (5) - (6) and (13) - (17) , respectively.
Proof:

. : 2 2
First we consider the case o, :ag*z =%%2|nN  and o, :a;1 =“%1InN. From (19) and
o o

(20), it follows that

| (WL _W)(XN/4) | <CN™ and | (WR _W)(XSNM) | <CN™.
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Adopting the procedure in Farrel et al. (2004a), Cen (2005, Theorem 3); using the inequality
g ™ <& ™2 for t>kela, k=1,2,--, and Lemma 2.4, we have

for j=1,2; i=N/4+1,---,3N/8,

| (I—TVVL - LjV_V)(Xi) | < g (Xi+1 - Xi—1) | W§3)(Xi) | + aj (Xi) (Xi - Xi—l) | WEZ)(Xi) |
<C N‘l(o;2 -o,) &,

and

for j=1,2; 1=3N/8+1,---,N/2-1, we have

| (I—TVVL - LjV_V)(Xi) | < gj (Xi+1 - Xi—1) | W§3)(Xi) | + aj (Xi) (Xi - Xi—l) | WEZ)(Xi) |

<C N‘la;l (&7 +&°).
Similarly for j=1,2; i=N/2+1,---,5N/8-1, we have

[ (LW, — L)) | < 2,060 —% 1) [WE06) |+ 2, () (X

<CN7o, (" +&,),

=%) W (%)

i+1

and for j=1,2; 1=5N/8,---,6N/8-1, we have

| (L’}IV\_/R - LjW)(Xi) |< & (X1 — X0 | WES)(Xi) |+ a; (%) (x

<C N_l(q:2 -0;) &°.

= %) W (x)]

i+1

At the mesh point x,,, = d, since (D" =D~ )W (x,,,) = 0 we have
(D" - D_)V\_/(XNIZ) —(D" = D7) W(Xy,) = (D" = D7) W(Xyy,)-
Let H, and H, be the mesh interval size on either side of x,,. Thus,

(D" = D )W ~W)(%) | =] (D — D )W(xyy)|
S|(D+—di)v—v(d>|+|(D-—i)v—v(dn
X dx
1 — 1 yvald
SEH4|W (XN/2)|+EH3|W (Xn2) |

CN7(o, +0,)(a" +&")
< .
CN¥ (o, +0,) (e +&")
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Consider the mesh functions ¥*(x,) = ¢ (x,) = (W —W)(x;), where for j=1,2,

(0, —0,) & (x—(d-0, )).forxeQ) (-0, ,d-0,),
) TalE e (=(d =), for x e Q) n(d-o,d),
p;(x)=CN'+CN™*y * + : +
o, (e’ +&°) (d+o, —x), forxeQ}, n(dd+o)),

(0, —0.) & (d+o, —x), for xeQ}, n(d+o,,d+o, ).
Applying the discrete maximum principle to ¥j(x), for j=12 over the interval
[d _0-;2 ! d +O-;2]a we get

(o"2 —a;l)zggz,for X €Q

&

, m(d—ojz,d—ojl),

A(d-o,d),

N
Sl,é.‘
) . (0,) (& +&°)for  x ey,
|W, —w,)(%)|[SC N +C N~

(o)) (&7 +&2) for % eQ) A(d,d+o)),

+ +\2 -2 N
(o"g2 —agl) &, ,for X €Q,

<C N'(InN)?, for xieQ'j1

, N (d +0'£l,d—0'82).

) m(d—a;z,d +(7€2),

&

which is the required result.

Now we complete the proof by considering the case where at least one of the four transition

points take the value o :i, o :i, o, -1-d and o :ﬂ.
1 4 2 2 1 4 2 2

In all such cases &, <CInN and &," <CInN. We have for j=1,2,

(LYW = Lw)(x) 1< & (X, — %) W] (6) 1+, (%) (4.1 = %) [ W] (%) | SCN A (In N)*
and
|(D* = D)W, —w;)(Xy,) |=[ (D" = D)W, (Xy,) | <C N (InN)?.

Using the mesh functions

&

(1-d)x, for %eQ,
d(1l-x), for X eQ,

A (0.d)

¥ (x)=C N*(In N)Z{ ~(d,1)

&

and applying the discrete maximum principle across the entire domain Q we get the

N
&1:89 !
required result.

Theorem 3.5.
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Let ¥(x) = (y,(x), ¥,(x))" be the solution of (1) - (2) and let Y (x) = (Y,(x),Y,(x))" be the
corresponding numerical solution of (7) - (8). Then, we have

Y=l v <C N*(InN)* and IY,=Y,lly <C N*(InN)?2.

£1:89 )
Proof:

Proof follows immediately, if one applies the above Lemmas 3.3 and 34 to
Y-y=V -V+W —-W.
4. Nonlinear Problems

Consider the nonlinear BVP

YX)=F(X¥,¥) xeQ uQ', (21)

¥(0) = m y(1) = @ 22)

where F(x, Y, ") is a function such that

a;>F1y (xy,¥)>a >0, x<d, —0!;<F1y X, ¥,¥')<-a,<0, d<x,
1 it
al*>F2y x,v,y)>a >0, x<d, _a;<F2y (%Y. ¥)<-a,<0, d<x,
2' 2
(R, x¥.7)+FR (790320, {F, (x¥.7)+F, (x¥.¥)}20,
1 Y2 Y1 Yo
FL(xy.9)<0, F, (xy,y)<0, xeQ
2 1

Assume that the BVP (21) - (22) has a unique solution. In order to obtain a numerical solution of
(21) - (22), the Newton’s method of quasilineraisation is applied. Consequently, with a proper

choice of initial approximation ¥ (y® = y(0)+ (y(1) - y(0))x may be a proper initial guess),
we get a sequence of {y'™}* of successive approximations. In fact, we define y'™ for each
fixed non-negative integer m to be the solution of the linear problem:

d? . d
—&— 0 a, — 0 B
Lmy[m+1] - dx I y[m+1] n dx ; y[m+l] n Bmy[mﬂ] =fm (23)
0 -9 0o arl
dx? dx



208 T. Valanarasu et al.

7o) = (p] 7D = [q] (24
r S

where

aim(x) = Flyly (X, y[m]’ 7'““] ), a;“ (X) = F2y2, (x, y[m]’ y'[m] )'

olml ilm] —[m] oi[m]
b () b{;(x)j: Flyl(x,y V™) Flyz(x,y Lyt

Bm(x): —[m] im Im] oim !
(bz“l(x) b3(9) " | By 9™ Fy (639

and

_ B yirmuE (x, y™, vy
fm(x) = F(x,y™,yim)— .

Y R, (YY)
Yo
nR, 0y YT R Gy )
T A R G A A

From the assumption on F(x,y,Y'") it follows that each m, we have

4 >a'()=F (x¥.7)>a>0  x<d,

<l () =R (XV.7)<-a <0, d<x

4> ()=F (x7.¥)>a>0,  x<d,

< ()=F, (x¥.7)<-a <0, d<x

(R0 +bz(0y={F, (x ¥y +F (xy"y"™}=0,
{200 +bL00}={F, (¥ ¥"™)+F, (¥, y"™)}=0,
b200=F, (xy™.y"™)=<0 by()=F, (xy".y")=0.

The problem (23) - (24) for each fixed m, is a linear BVP and is of the form (1) - (2). Hence, it
can be solved by the our method. We can prove that if the initial approximation y(0) is

sufficiently close to y(x), the Newton sequence {y" (x)}.., converge to y(x). Infact, in Doolan

et al. (1980) the author’s has proved a similar result for a single nonlinear equation. For the
above Newton’s quasilinearisation process the following convergence criterion can be used:
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[P =yM)(x)) <4, x€Q, m>0,

where A is the prescribed tolerance bound.

5. Numerical Experiments

In this section, two examples are given to illustrate the numerical method discussed in this paper
for the BVP (1)-(2).

Example 5.1.
1, x<05, {1, x<05,
ai(x)_{—l, x> 0.5, aZ(X)_{—l, x> 0.5,
3 -1 2, x<0.5, 4, x<0.5,
B = ' f = f =
) (—1 3) ) {3, x> 0.5, () {2, x> 0.5,
p) (O ry (0
q) (o) Is) (o)
Example 5.2.
1+x, x<0.5, 1+, x<0.5,
a(x) = a,(x) =
—(1+x), x>0.5, -(1+x), x=0.5,

3 -1 2+X, x<05, 4+x, x<0.5
B(x) = , f,(x)= f,(x) =
) [—1 3 ) B {3+x, x> 0.5, () {2+x, x> 0.5,

(oo [E)+(o

Let YJ.N be a numerical approximation for the exact solution y; on the mesh Q"jlygz and N Dbe the

number of mesh points. The exact solutions to the test problems are not available. For a finite set
of values of &, and &, we compute the maximum pointwise errors for j =1, 2,

2048

_ N ) N _ N
=max|Y" -Y; |y . Dj =maxmaxD,, ;.

EE) a %

DN
1

& ,gz,j
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2048

where Y is the piecewise linear interpolant of the mesh function

parameter-uniform order of convergence p}“ are computed from

The computed errors DJ.N(j =1, 2) and the computed order of convergence ij(j =1,2) are
tabulated (Tables 1-3). The nodal errors are plotted as graphs (Figures 1-2).

j

vt PL| =
p; =log, o | J=12

2048
YJ‘

of singular perturbation parameter ¢ ={27°,2°, 27, ..., 2%} From these quantities the

T. Valanarasu et al.

onto [0,1]. The range

Table 1. Values of DlN, plN and DZN, pg' for the solution components Y, and Y, respectively for

the Example 5.1 with &, = 277

Number of mesh points N

32 64 128 256 512
D) 4.0340e-2 2.3020e-2 1.2591e-2 6.5353e-3 3.0404e-3
p, 8.0932e-1 8.7049-1 9.4607e-1 1.1040 -
D) 7.4571e-2 4.5565e-2 2.6495e-2 1.4335e-2 6.8671e-3
p, 7.1069e-1 7.8221e-1 8.8618e-1 1.0618 -

Table 2. Values of DlN, plN and DZN, pg' for the solution components Y, and Y, respectively for

the Example 5.1 with €, = 2¢;

Number of mesh points N
32 64 128 256 512
D) 4.4617e-2 2.5294e-2 1.3969e-2 7.2117e-3 3.3525e-3
p, 8.1880e-1 8.5657e-1 0.5382e-1 1.1051 -
D) 6.4090e-2 3.6512e-2 1.9915e-2 1.0213e-2 4.7275e-3
py 8.1173e-1 8.7452e-1 0.6345e-1 1.1113 -

Table 3. Values of DlN, plN and DZN, pg' for the solution components Y, and Y, respectively for

the Example 5.2 with &, = 277

Number of mesh points N
32 64 128 256 512
D 2.4117e-2 1.5288e-2 8.7279%-3 4.5904e-3 2.1649e-3
p, 6.5765e-1 8.0869e-1 0.2701e-1 1.0843 -
D) 8.0944e-2 5.6433e-2 3.3275e-2 1.9077e-2 0.4286e-3
p, 5.203%-1 7.6210e-1 8.0260e-1 1.0167 -

Table 4. Values of DlN, plN and DZN, pg' for the solution components Y, and Y, respectively for

the Example 5.2 with €, = 2¢;
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Number of mesh points N
32 64 128 256 512
D' [2.6653e-2 1.6374e-2 9.1051e-3 4.8012e-3 2.2536e-3
p [7.028%-1 8.4666e-1 9.2328e-1 1.0912 -
D, |7.5325e-2 4.3871e-2 2.4740e-2 1.3022e-2 6.1480e-3
P, 7.7986e-1 8.2642e-1 0.2601e-1 1.0827 -
" NN K 5 N;:(In S

10’ 0 10 10" 10 10

—— g ~tin

——N
4
ot ks
—ple
— 0
g2
—— 2
10k 10 1

10t il \

o g
13 : 13 :
10’ 0 10° 0’ 0 2

Figure 2. Nodal error for the component Y; and Y, of the Example 5.2

6. Conclusion

A finite difference method is derived for a system of singularly perturbed convection-diffusion
equations with discontinuous convection coefficients and source terms. The distinct singular
perturbation parameters and the discontinuity in the interior domain lead to the overlap and
interact interior layer in the solution. The numerical method uses a piecewise uniform mesh,
which is fitted to the interior layer and the upwind finite difference operator on this mesh.

Tables and figures show that the numerical results agree with the theoretical claims. The graphs
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plotted in the figures 1-2 are convergent curves in the maximum norm at nodal points for the
different values of &, and &, =27 for Examples 5.1-5.2. These graphs clearly indicate that the

optimal error bound is of order O(N ™*(In N)?) as predicted by Theorem 3.5.
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