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Abstract 
 
The unsteady free convection boundary layer flow of a thermo-micropolar fluid along a vertical 
plate has been investigated in this paper. The temperature of the plate is assumed to be 
oscillating about a mean temperature, w(x), with small amplitude . The governing boundary 
layer equations are analyzed using straight forward finite difference method. The effects of the 
material parameters such as micropolar heat conduction parameter, N*, the vortex viscosity 
parameter, K, on the shear stress,, surface heat transfer, q, and the couple-stress, m, have 
been investigated.  
 
Keywords: Thermomicropolar fluid, fluctuating surface temperature, micropolar heat 

conduction 
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1.  Introduction 
 

Free convection has been the focus of many researchers due to its numerous applications in heat 
transfer such as: rocket nozzles, cooling of nuclear reactors, high speed aircrafts and their 
atmospheric re-entry, high sinks in turbine blades, chemical devices and process equipment, 
formation and dispersion of fog, distribution of temperature and moisture over agricultural fields 
and groves of fruit trees, damage of crops due to freezing and pollution of the environment etc. 
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Hence a thorough investigation and knowledge of heat transfer process must be acquired in order 
to be able to design heat exchangers, bearing etc., so that no overheating or damage is caused to 
the components. In case of heated vertical plate the heat transferred from the surface causes a 
decrease in liquid density and a subsequent upward flow due to buoyancy force occurs. Mathur 
(1970) has studied the free convection flow of an elastico-viscous fluid past a non-uniformly 
heated vertical plate. An excellent survey of this problem for Newtonian and non-Newtonian 
fluids has been given in Mathur (1970). Although a number of studies on the laminar free 
convection flow and heat transfer of Newtonian and non-Newtonian fluids have been found in 
literature, these do not give satisfactory results if the fluid is a mixture of heterogeneous means 
such as liquid crystals, ferro-liquid, liquid with polymer additives, which is more realistic and 
important from technological point of view.  
 
For the realistic description of the flow of fluids such as fluids with polymeric additives etc., the 
classical continuum mechanics cannot be used. To overcome this, Eringen (1966) has introduced 
the concept of thermomicropolar fluids that deals with a class of fluids, which exhibit certain 
microscopic effects arising from the local structure and micromotions of the fluid elements. 
These fluids contain dilute suspensions of rigid micromolecules with individual motions, which 
support stress and body moments and are influenced by spin-inertia. The theory of micropolar 
fluid and its extension to thermomicropolar fluids Eringen (1972) may form suitable non-
Newtonian fluid models which can be used to analyze the behavior of exotic lubricants 
(Khonsari and Brewe (1989) and Hadimoto and Tokioka (1969)), colloidal suspensions or 
polymeric fluids (Lockwood et al. (1987)), liquid crystals (Lockwood et al. (1987) and Lee and 
Eringen (1971)), and animal blood (Ariman et al. (1973)). Kolpashchikov et al. (1983) have 
developed a method to measure micropolar parameters experimentally. A thorough review of 
this subject and application of micropolar fluid mechanics has been provided by Ariman et al. 
(1973) and Ahmadi (1976). 
 
Jena and Mathur (1981) studied the similarity solutions for the steady laminar free convection 
boundary layer flow of a thermomicropolar fluid past a non-isothermal vertical flat plate. 
Hossain et al. (1999) investigated a steady two-dimensional natural convection flow of a viscous 
incompressible thermomicropolar fluid with uniform spin-gradient over a flat plate with a small 
inclination to the horizontal. Studies of heat convection in micropolar fluids have been focused 
on flat plates (Jena and Mathur (1981, 1982), Gorla (1983); Yucel (1989); Hossain et al. (1995); 
Chiu and Chou (1993)) and a wavy surface (Muri (1961)). Gorla and Takhar (1991) examined 
the effect of buoyancy force on an unsteady incompressible micropolar fluid in the vicinity of the 
lower stagnation point of a circular cylinder. Helmy (2000) studied the unsteady free convection 
flow of a micropolar fluid for a vertical  plate under uniform heating after solving the governing 
equations using the state space and Laplace-transform techniques. 
 
Mixed and natural convection flow of micropolar fluids with uniform surface 
temperature/surface heat flux has been studied along a solid surface by Chang and Lee (2008), 
stretching sheet by Ishak et al. (2008), a truncated cone by Postelnicu (1012); effect of melting 
heat transfer on the stagnation flow along stretched or shrinked surface investigated by Takob et 
al. (2008). Cheng (2008, 2010) considered conjugate effect thermal and mass diffusion on the 
flow of thermo-micropolar fluid.  On the above flows effect of transverse magnetic has been 
considered by, Aziz (2006), Eshak et al. (2008), Yakob and Ishak (2011). In addition to the 
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above studies, attention has been given to see effect of radiation on the flow of thermo-microplar 
fluid by Ishak (2010), Hsiao (2010), Bhattacharyyaa, et al. (2012) and Zheng (2012). All the 
above studies are restricted to similarity flows in the boundary layer region.  Recently, Saleem et 
al. (2011) has investigated the natural convection flow of micropolar fluid in a rectangular cavity 
heated from below with cold sidewalls and Mahfouz (2013) the buoyancy driven micropolar 
fluid flow within uniformly heated eccentric annulus. 
 
It is worth mentioning that unsteady laminar boundary layer theory, one area of study which has 
received much attention in the past deals with boundary layer responses to imposed oscillations. 
Lighthill (1954) was the first to have studied the unsteady forced flow of a viscous 
incompressible fluid past a flat plate and a circular cylinder with small amplitude oscillation in 
free stream. The corresponding problem of unsteady free convection flow along a vertical plate 
with oscillating surface temperature was studied by Nanda and Sharma (1963) and Eshghy et al. 
(1965). In consideration of this class of problems, Muhuri and Maiti (1967) and Verma (1982) 
analyzed the effect of oscillation of the surface temperature on the unsteady free convection 
along a horizontal plate.  
 
All the above investigations are based on the assumption that the surface temperature oscillates 
with small amplitude about the uniform mean temperature and they were carried out employing 
the Karman-Pohlhausen approximate integral method. Based on the linearized theory, Kelleher 
and Yang (1968) have studied the heat transfer responses of a laminar free convection boundary 
layer along a vertical heated plate to surface temperature oscillations, when the mean surface 
temperature Tw(x) is proportional to xn, where x is the distance measured from the leading edge 
of the plate. This study had been extended by Hossain et al. (1998 a, b) for 
magnetohydrodynamic flows for variable mean surface temperature and surface heat flux. 
Recent investigation on fluctuating hydro-magnetic natural convection flow of an optically gray 
fluid past a magnetized vertical surface with effect of thermal radiation has been made by Ashraf 
et al. (2012). On the other hand, Jaman et al. (1012) extend the problem posed by Kelleher and 
Yang (1968) for the case of the flow along a circular cylinder. 
 
In this study, the unsteady free convection boundary layer flow of a thermomicropolar fluid 
along a vertical plate has been investigated considering that the surface temperature is oscillating 
about a mean temperature w(x) with a small amplitude  as posed by Kelleher and Yang (1968). 
As for as known, this problem has not been discussed in the literature.  
 
2. Mathematical Formalisms 
 
A two-dimensional unsteady laminar boundary layer flow of a thermo-micropolar fluid along a 
permeable vertical flat plate is considered. The temperature of the ambient fluid and the surface 
are assumed to be T and WT  respectively. The co-ordinate system and the flow configuration are 

shown in Figure 1. 
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Figure 1. Flow Configuration and Coordinate System 

 
Under the usual Boussinesq approximation the dimensionless equations of conservation of mass, 
momentum, angular velocity and energy that govern the flow are given as (see Jena and Mathur 
(1981)), 
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which are based on the following dimensionless dependent and independent variables 
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Here,  ,x y  are the co-ordinates parallel with and perpendicular to the flat surface respectively, 

 ,u v  are the velocity components, t, time, N , the angular velocity, , dimensionless 
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temperature,  j, the micro-inertia per unit mass, , the density of the fluid, g the acceleration due 
to gravity, κ, the thermal conductivity of the fluid,  = ( +  /2)j, the gyro-viscosity coefficient 
and α*, the micropolar heat conduction coefficient. 
 
Following Jena and Mathur (1981), it is assumed that micro-inertia, j, is a constant and, 
therefore, it is set equal to a reference value, j0 = L2. Further, L is the characteristic length, 
K  ( /) is vortex viscosity parameter, , the dynamic viscosity, Pr = (ν/α) is the Prandtl 
number that gives the ratio of momentum diffusivity to thermal diffusivity, , viscosity 
coefficient, N* = (α*/L2) is the micropolar heat conduction parameter and  is the amplitude of 
oscillation. 
 
The corresponding boundary conditions are 

0, 0, , ( )(1 cos( ) ) at 0w
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0,    0 asu y   , (7)

 
where n is a constant such that 0 ≤ n ≤ 1. The case n = 0 corresponds to the strong concentration 
of microelements. Thus equation (6) suggests that when n = 0 (i.e., N = 0) near the walls, the 
concentration of the particles is strong enough so that the micro-elements near the walls are 
unable to rotate because of its concentration. The case, n = 1/2, on the other hand, indicates the 
vanishing of anti-symmetric part of the stress tensor and denotes weak concentration. 
 
The boundary condition for  (, 0) given in 6)–7) suggests the solutions of equations 1)–4) 
of the following form: 
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 0 1expN N i N   , 

(10)

 

 0 1exp i      , 
(11)

 
where, t . Further, u0, v0, 0N and 0  represent the flow variables for the steady mean flow 

and u1, v1, N1 and 1  are the fluctuating flow variables. The real parts of the functions defined in 

8)–11) are our desired solutions.  
 
Now, substituting the functions given in 8)–11) into equations 1)–7) and equating the terms 
up to O() , one gets 
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with boundary conditions 
 

 0
0 0 00, 0,   , at 0w

u
u N n x y

y
 

     
0v , (16)

 

0 00,    0 as .u y   , (17)

 
and 
 

1 1 0
u

x y

 
 

 
v

, (18)

 

 
2

0 01 1 1 1
1 0 1 1 12

1
u uu u u N

iu u u K K
x x y y y y

    
     

     0v + v + , (19)

 
2

0 01 1 1 1
1 0 1 1 12

1 2
2

N NN N N uK
iN u u K N

x x y y y y

                      
0v + v , (20)

 

0 01 1
1 0 1 1

2
0 0 0 01 1 1 1 1

2

1
,

Pr

i u u
x x y y

N NN N
N

y x y x y y x y x

  

   

  
   

   

        
              

0v v

 (21)

 
subject to the boundary conditions 
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Here, the equations 12)–17) are the equations for the steady state flow and those 18)–23) are 
for the fluctuating flow. 
  
3. Methods of Solution 
  
In this section, emphasis is given to the method of  solution which is used to solve the boundary 
layer equations 12)–17) will represent the steady mean flow and those 18)–23) the oscillating 
flow. The numerical solutions are obtained with the help of an efficient finite difference scheme.   
 
To get the similarity equations for the steady state equations 12)–17), we introduce the 
following group of transformations: 
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The boundary conditions to be satisfied by the above equations are 
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Here, “  “ denotes differentiation with respect to  . 
 
Equations 26)–28) are considered by Jena and Mathur (1981). Representative numerical values 
of shear stress, surface heat transfer and couple stress obtained from the present investigation of 
these equations are entered in Table 1, for comparison with those of Jena and Mathur (1981). 
From this table it is seen that the present solutions are in excellent agreement with those of Jena 
and Mathur (1981). 
 
Table 1.  The effect of variation of K on shear stress, surface heat transfer and couple-stress when   Pr = 9.0 

and N= 1.0  
 K= 0.1 K = 0.25 
 F (0)  G (0)   (0) F (0)  G (0)   (0) 
Jena and Mathur (1981) 0.1558  0.0365 0.3675 0.1480  0.0389 0.3561 
Present 0.15574  0.03652 0.36764 0.14829  0.03883 0.35787 
 
Again, to get the similarity equations for the unsteady state equations 18)–23), we introduce the 
following group of transformations: 
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The set of equations (26)–(28) and (33)–(35) together with the boundary conditions (29)–(30) 
and (36)–(37) can be integrated by straight forward finite difference method. Before going to 
apply the aforementioned method we first set f = V0, f’ = U0, F = V and F’ = U so that the 
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Now equations (38)–(40) are discretized by a simple numerical scheme, in which we use central-
difference for diffusion terms and convection terms and thus, for example, (38) gives 
 

 
 

 
       0 0

0 0 0 02 2 21 1

1 1

2 11 1

2 2

.
2

j j

j j j j

j j
j

V V KK K
U U U U

g g
K

    



 

 

                             
 

    

 (46)



AAM: Intern. J., Vol. 8, Issue 1 (June 2013)                                                                                                             137                              
          

   

 
Equation (46) can be rewritten in the form 
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Similarly, the equations (39)–(40) can be rendered in the form (47). The resulted tri-diagonal 
algebraic system is solved by Gaussian elimination technique. The computation is started at η = 
0, and then marches downstream implicitly. The ordinary differential equations governing the 
upstream condition at η = 0 can be obtained by taking the limit of equations (46) that η 
approaches zero.  The associated boundary conditions are equations (41)–(42) with η = 0. 
 
Now we define the functions 
 

1, ,r i r i r iU U iU i G G iG         . (48)

 
Using (48) into (43)–(45) and then separating the real and imaginary parts, we can solve the 
resulting systems of equations employing the procedure described above.  
 
Again, from the set of relations 8)–11) together with the transformations given in 24)–25) and 
(31)–(32), we get the expression for the dimensionless axial velocity, temperature and angular 
velocity functions as given below 
 

   , os sin ( )r iu x f c U U         , (49)

 

     , cos sinr ix             , 
(50)

 

     , cos sinr iN x g G G         . 
(51)

 
In equations 38)–40), Ur, Θr, Gr and Ui, Θi, Gi are respectively, the real and imaginary parts of 
the velocity function, u1,, the temperature function, Θ1, and angular velocity, G,. 
  
From the application point of view, it is needed to interpret the behavior of physical quantities 
such as surface shear stress, τ, surface heat flux, q, and the surface couple stress, m, which 
may be obtained from the following dimensionless relations 
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 
0 00

, , .c c

y yy

u T N N T
k kN q k m

y y x y x     
 

          
                      

 (52)

 
Using the equation 6 on equation 41 we obtain 
 

 
0 0 0

1 , , 1
2

y y y

u K N
K q m

y y y  


  

                           
, (53)

 
where  
 

2 4 3

2
, ,

L g L L
q q m m  

 
  

     

 
are, respectively, dimensionless surface shear stress, surface heat flux and the surface couple 
stress. 
 
Once the solutions of the equations 26)–28) and 33)–37) are known, the values of the 
physical quantities are readily obtained. These are the shear stress,, the rate of heat transfer, q, 
and the couple-stress, m, at the surface of the plate, which are important from the experimental 
point of view. Thus, we obtain 
  

   01 cosu u

u
K x A

y   
 

     
, (54)

 

 0 cosT Tq A
y
   

  


, (55)

 

 01 cos
2 N N

NK
m A

y   
           

, (56)

 
where ∂u0/∂y, ∂θ0/∂y and ∂N0/∂y are, respectively, the steady mean shear stress, surface  heat 
transfer and couple stress. 
 
Here, it is proposed to express the available solutions in terms of amplitude (Au, AT, AN) and 
phase (u, T, N) of the shear stress, the heat transfer rate and the couple-stress having the 
following relations: 
 

2 2 2 2 2 2, ,u r i T r i N r iA A q q A m m        (57)

 
and 
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1 1 1tan , tan , tani i i
u T N

r r r

q m

q m

  


     , (58)

 
where the real parts of the transverse velocity gradient, temperature gradient, and couple-stress at 
the surface are τr, qr and mr respectively and the imaginary parts of those are τi, qi and mi 
respectively.                                          
 
4. Results and Discussion 
 
In this study, the straight forward finite difference method has been employed in finding the 
solutions of the equations governing the unsteady natural convection boundary layer flow of a 
viscous and incompressible fluid along a vertical plate. The results are expressed in terms of 
transient the shear stress, , surface heat transfer, q, and couple stress, m, showing the effects 
of the physical parameters involved in the flow field, such as, the micropolar heat conduction 
parameter, N, and vortex viscosity parameter, K .  
 
The effect of the vortex viscosity parameter, K, on the amplitude, Au, and phase, u, of the 
surface shear stress is presented in Figure 2(a) and 2(b) respectively. It is evident from the 
figures that the amplitude and phase of the shear stress decrease as the value of the vortex 
viscosity parameter, K, increases. This is expected because an increase in the value of the vortex 
viscosity parameter gives rise to the total viscosity of the fluid flow, which in turn lowers the 
magnitude of the amplitude and phase of the surface shear stress. Surface heat transfer is the 
major cause of such reduction in the above mentioned quantities. Thus, micropolar fluids exhibit 
drag reduction behavior compared to viscous fluids. 
 
 

           
Figure 2. Amplitude and phase of the surface shear stress showing the effect of K when  

 = 0.1, Pr = 9.0, N = 1.0 
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Figure 3. Amplitude and phase of the surface heat transfer showing the effect of K when               

 = 0.1,   Pr = 9.0, N = 1.0 
 
Figures 3(a) and 3(b) depict the effect of the vortex viscosity parameter, K, on the amplitude, AT, 
and phase, T, of the surface heat transfer. From the figures, it is seen that the amplitude of the 
surface heat transfer decreases while the phase increases when the value of the vortex viscosity 
parameter, K, is increased. In this case, an increase in the vortex viscosity parameter leads to an 
increase in the rotation of microelements which decelerates the fluid flow and ultimately 
diminishes the amplitude of heat transfer. However, the phase of the heat transfer increases 
which is expected since total viscosity of the fluid increases as K gets stonger and due to fluid 
friction T enhances within the boundary layer region.  
 
The effect of varying the vortex viscosity parameter, K, on the amplitude, AN, and phase, N, of 
the couple stress is shown in Figure 4(a) and 4(b). We observe that the amplitude and phase of 
the couple stress decrease owing to the increase of the vortex viscosity parameter, K. Here again, 
an increase in the vortex viscosity parameter gives rise to the rotation of microelements which 
decelerates the motion of the fluid and ultimately diminishes the amplitude as well as phase of 
the couple stress. 
 

            
Figure 4. Amplitude and phases of the couple stress showing the effect of K when  = 0.1, 

Pr = 9.0, N = 1.0 
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Figure 5. Amplitude and phase of surface shear stress showing the effect of N* when  = 0.1, 

Pr = 9.0, N=1.0 
 
In Figure 5 the effect of micropolar heat conduction parameter, N*, is shown for N= 0.25, 0.50, 
0.75, 1.0 while other parameters are  = 0.1 and Pr = 9.0. It is observed from this figure that the 
amplitude of the surface shear stress enhances due to the increase in the micropolar heat 
conduction parameter, N*. However, the phase of the shear stress does not vary much but if we 
look closely it is anticipated that it slightly diminishes. This result is due to the fact that 
micropolar fluids offer a greater resistance (resulting from dynamic viscosity and vortex 
viscosity) to the fluid motion compared to Newtonian fluids.  
 
The influence of micropolar heat conduction parameter, N* (= 0.25, 0.50, 0.75, 1.0) on amplitude 
and phase of heat transfer is shown in Figure 6. It can be seen that the amplitude of heat transfer 
micropolar fluid decreases whereas the phase of heat transfer increases considerably. It happens 
because the rotation of microelements increases due to an increase in the micropolar heat 
conduction parameter which results in the decrease in the amplitude of heat transfer while phase 
of heat transfer increases. 
  
  

          
Figure 6. Amplitude and phase of surface heat transfer showing the effect of N* when  

 = 0.1, Pr = 9.0, N=1.0 
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Figure 7. Amplitude and phase of couple stress showing the effect of N* when   = 0.1, 

Pr = 9.0, N=1.0 
 
The effect of micropolar heat conduction parameter, N*, on the amplitude and phase of couple 
stress is  depicted in Figure 7. The physical parameters are set to be N= 0.25, 0.50, 0.75, 1.0,  = 
0.1 and Pr = 9.0. One can find that amplitude of the couple stress increases while phase 
decreases extensively when micropolar heat conduction parameter enhances from 0.25 to 1.0.  
 
4.1. Effect of Micropolar Heat Conduction Parameter, N*  on Transient Shear Stress, 

Surface Heat Transfer and Couple Stress Coefficients 

Attention is now given to see the effect of the micropolar heat conduction parameter N*(= 0.25, 
0.50, 0.75, and 1.0) on the transient shear stress, , while Pr = 9.0. These figures display the 
effect of N* on shear stress, . As N* increases, the shear stress,, increases. In Figure 8(a), for 
every value of the heat conduction parameter N*, there exists a local maximum of the shear 
stress,. These maximum values of the shear stress,, are recorded to be 0.66683, 0.68414, 
0.70324,  and 0.72449 at  = 6.6 for N* = 0.25, 0.50, 0.75, and 1.0, respectively. For  = 6.6, the 
shear stress increases by 2.3%, 5.5% and 8.7%, respectively, as N* increases from 0.25 to 0.50, 
0.75 and 1.0. Figure 8(b) shows the surface heat transfer coefficient, q, against  for different 
values of the micropolar heat conduction parameter N* (= 0.25, 0.50, 0.75, and 1.0) while Pr = 
9.0. These figures display the effect of N* on the heat transfer coefficient, q.  

As N* increases, the surface heat transfer coefficient, q, decreases. In the same figure, for all 
values of the heat conduction parameter N*, there exists the local maximum of the surface heat 
transfer coefficient, q, in each case. These maximum values of the surface heat transfer 
coefficient, q, are seen to be 0.62630, 0.56880, 0.50547, and 0.43516 at   = 5.7 for N* = 0.25, 
0.50, 0.75, and 1.0, respectively. At  = 5.7, there are decreases in the heat transfer coefficient, 
q , by 9.18, 21.24 and 30.51 percent respectively, as N* increases from 0.25 to 0.50, 0.75 and 
1.0.   Figure 8(c) depicts the couple stress coefficient, m, against  for different values of the 
heat conduction parameter N* (= 0.25, 0.50, 0.75 and 1.0) while Pr = 9.0. These figures display 
the effect of N* on the couple stress coefficient, m.  

As N* increases, the couple stress coefficient, m, increases. This happens because the increase 
of N* means that the heat conduction through the fluid increases so that the viscosity of the fluid 
decreases. Again Figure 8(c) shows that there exists a local maximum of the couple stress 
coefficient, m, for every values of the heat conduction parameter, N*. These maximum values of 
the couple stress coefficient, m, are found to be 0.48063, 0.49328, 0.50724, and 0.52276 at  = 
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6.4 for N* = 0.25, 0.50, 0.75, and 1.0, respectively. At  = 6.4, the shear stress increases by 2.63, 
5.53 and 8.76 percent, respectively, as N* increases from 0.25 to 0.50, 0.75 and 1.0. 
 
Table 2. Amplitudes and phases of oscillation in shear stress, surface heat transfer and couple stress 

showing the effect of  K  when   = 0.1, Pr = 9.0, N =1.0   
 Au AT AN u T N 

K = 0.5 
0.0 0.54433 0.57995 0.13461 0.00000 0.00000 0.00000 
0.1 0.54402 0.58307 0.13459 -1.73080 5.07365 -0.50783 
0.2 0.54310 0.59256 0.13454 -3.51399 10.09909 -1.12000 
0.3 0.54156 0.60811 0.13445 -5.29338 14.86849 -1.74020 
0.5 0.53656 0.65521 0.13411 -8.83135 23.29560 -3.00369 
0.6 0.53309 0.68538 0.13383 -10.58221 26.87041 -3.64218 
0.7 0.52896 0.71900 0.13348 -12.31395 30.01566 -4.28100 
0.8 0.52420 0.75541 0.13305 -14.02027 32.75422 -4.91669 
0.9 0.51882 0.79401 0.13254 -15.69445 35.11944 -5.54549 
1.0 0.51287 0.83427 0.13195 -17.32975 37.14912 -6.16341 

K = 2.0 
0.0 0.38492    0.52198 0.10949      0.00000  0.00000 0.00000 
0.1 0.38482 0.52686 0.10944 -1.93426 6.47870 -1.11614 
0.2 0.38443 0.54166 0.10923 -4.01690 12.74616 -2.43792 
0.3 0.38362 0.56492 0.10890 -6.13324 18.41238 -3.73035 
0.5 0.38015 0.63021 0.10794 -10.46187 -10.46187 -6.23926 
0.6 0.37727 0.66951 0.10734 -12.64779 31.23695 -7.47043 
0.7 0.37356 0.71188 0.10663 -14.82082 34.25848 -8.68800 
0.8 0.36904 0.75649 0.10582 -16.95900 36.76954 -9.88685 
0.9 0.36377 0.80265 0.10490 -19.04228 38.84107 -11.05924 
1.0 0.35784 0.84976 0.10387 -21.05359 40.53872 -12.19679 
 
 
4.2. Effect of Vortex Viscosity Parameter, K, on Transient Shear Stress, Surface Heat 

Transfer and Couple Stress Coefficients 
 
The effect of the vortex viscosity parameter, K, on the transient shear stress, , surface heat 
transfer coefficient, q, and coefficient of couple stress, m, are presented in Figure 9 and in 
Table 2. It is evident from the figures and Table 2 that the shear stress coefficient, surface heat 
transfer coefficient and coefficient of couple stress decreases due to an increase in the value of 
the vortex viscosity parameter, K. Figure 9(a) illustrates shear stress, , against  for different 
values of the vortex viscosity parameter K (= 0.5, 1.0, 1.5 and 2.0) while Pr = 9.0 . These figures 
display the effect of K on shear stress,. As K increases, the shear stress,, decreases. In the 
same figure, for all values of the vortex viscosity parameter K, we observe a local maximum of 
the shear stress, . These maximum values of the shear stress, , are 0.84163, 0.72448, 
0.63753,  and 0.57104 at  = 6.6 for K = 0.5, 1.0, 1.5 and 2.0, respectively. At  = 6.6, the shear 
stress decreases by 13.91, 24.25 and 32.15 percent, respectively, when K increases from 0.50 to 
1.0, 1.5 and 2.0. Figure 9(b) shows the effect of the surface heat transfer coefficient, q, against  
for different values of the vortex viscosity parameter K (= 0.5, 1.0, 1.5, and 2.0) while Pr = 9.0. 
This figure displays the effect of K on the heat transfer coefficient, q. As K increases, the 
surface heat transfer coefficient, q decreases. Again in Figure 9(b), for all values of the vortex 
viscosity parameter, K, there is a local maximum of the heat transfer, q. These maximum values 
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of the heat transfer coefficient, q, are seen to be 0.44791, 0.43549, 0.42693, and 0.41999 at  = 
5.6 for K = 0.50, 1.0, 1.5 and 2.0, respectively. At  = 5.6, the surface heat transfer coefficient, 
q, decreases by 2.77, 4.68 and 6.23 percent, respectively, as K increases from 0.50 to1.0, 1.50 
and 2.0.  
 

Finally Figure 9(c) depicts the couple stress coefficient, m, against  for different values of the 
vortex viscosity parameter K (= 0.5, 1.0, 1.5, and 2.0) while Pr = 9.0. This figure displays the 
effect of K on the couple stress coefficient, m. With the increase of K, the couple stress 
coefficient, m decreases. In the same Figure, for all values of the vortex viscosity parameter K, 
there exists a local maximum of the couple stress coefficient, m. These maximum values of the 
couple stress coefficient, m, are noticed to be 0.59832, 0.52276, 0.46347, and 0.41697 at  = 6.4 
for K = 0.50, 1.0, 1.5, and 2.0 respectively. At  = 6.4, the shear stress decreases by 12.62, 22.53 
and 30.30 percent, respectively, as K increases from 0.50 to 1.0, 1.5 and 2.0. 
 
4.3. Effect of Micropolar Heat Conduction Parameter, N* on Transient Velocity Profiles, 

Temperature Profiles and Angular Velocity Profiles 
 
The effects of varying N on the velocity profiles, temperature profiles and angular velocity 
profiles against η are depicted in Figure 10. It is clear from the figures that the velocity profiles, 
temperature profiles and angular velocity profiles increase with an increase in N. We also 
observe that there is local maximum for velocity profiles and temperature profiles while angular 
velocity always decreases as η increases. Figure 10(a) illustrates velocity profiles, u(0, η), against 
η  for different values of the heat conduction parameter N* (= 0.25, 0.50, 0.75,  and 1.0). As N* 
increases, the velocity profiles, u(0, η), increase . In Figure 10(a), for all values of the heat 
conduction parameter N*, there exists a local maximum of the velocity profiles, u(0, η). These 
maximum values of the velocity profiles, u(0, η), are 0.36891, 0.38174, 0.39588,  and 0.411529 
at  η =  1.53 for N* =  0.5,1.0, 1.5, and 2.0, respectively.  
 
At η = 1.53, the velocity profile increases by 3.47, 7.31 and 11.55 percent, respectively, when N* 
increases from 0.25 to 0.50, 0.75 and 1.0. Figure 10(b) also shows the temperature profiles, (0, 
η), against η for different values of the micropolar heat conduction parameter N*(= 0.25, 0.50, 
0.75, and 1.0). The temperature profiles decrease along η for all values of the heat conduction 
parameter N*.  Figure 10(c) depicts the angular velocity profiles, N(0, η), against η for different 
values of the heat conduction parameter N* (= 0.25, 0.50, 0.75 and 1.0). As N* increases, the 
angular velocity profiles, N(0, η), increase. In the same figure, it is seen that for all values of the 
heat conduction parameter N*, there exists a local maximum of the angular velocity profiles, N(0, 
η). These maximum values of the angular velocity profiles, N(0, η), are  0.214790, 0.22260, 
0.23209, and 0.24973 at η  = 1.83 for N* = 0.25, 0.50, 0.75, and 1.0, respectively. Again at η = 
1.83, the angular velocity increases by 3.63, 8.05 and 12.07 percent, respectively, when N* 
increases from 0.25 to 0.50, 0.75, and 1.0. 
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4.4. Effect of Vortex Viscosity Parameter, K on Transient Velocity Profiles, Temperature 
Profiles and Angular Velocity Profiles 

 
Figure 11 exhibits the velocity profiles, temperature profiles and angular velocity profiles against 
η for different values of the vortex viscosity parameter, K. It is seen from the figure that the 
velocity profiles attain a maximum value while temperature profiles and angular velocity profile 
decrease monotonically with the increase of η. Figure 11(a) illustrates the velocity profiles, u(0, 
η), against η for different values of the vortex viscosity parameter K (= 0.5, 1.0, 1.5,  and 2.0). 
These figures display the effect of K on the velocity profiles, u(0, η). As K increases, the velocity 
profiles, u(0, η), increase. In the same figure, for each value of the vortex viscosity parameter K, 
there exists a local maximum of the corresponding velocity profile, u(0, η). These maximum 
values of velocity profiles, u(0, η), are 0.48234, 0.411529, 0.360379,  and 0.322369 at η = 1.56 
for K =  0.5, 1.0, 1.5,  and 2.0 respectively.  
 
Also η = 1.56, the velocity profiles increases by 14.68, 25.28 and 33.16 percent, respectively, as 
K increases from 0.5 to 1.0, 1.5, and 2.0. Figure 11(b) shows temperature profiles, (0, η), 
against η for different values of the micropolar heat conduction parameter K (= 0.5, 1.0, 1.5, and 
2.0). The temperature profile decreases along η for all values of the vortex viscosity parameter K. 
Figure 11(c) also depicts the angular velocity profile, N(0, η), against η for different values of the 
vortex viscosity parameter K (= 0.5, 1.0, 1.5, and 2.0). As K increases, the angular velocity 
profile, N(0, η), also increases. Finally, figure 11(c) shows that for every value of the vortex 
viscosity parameter, K, there exists a local maximum of the angular velocity profile, N(0, η). 
These maximum values of the angular velocity profile, N(0, η), are 0.27360, 0.24073, 0.214149, 
and 0.193509 at η = 1.83 for K = 0.5, 1.0, 1.5, and 2.0, respectively. At η = 1.83, the angular 
velocity increases by 12.01, 21.72 and 29.27 percent, respectively, as K increases from 0.5 to 1.0, 
1.5, and 2.0. 

         

     
Figure 8. Numerical values of (a) surface shear stress (b) heat transfer coefficient  and (c) couple-stress 

for different values of N* against  while Pr = 9.0 and  = 1 
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Figure 9. Numerical values of (a) shear stress  (b) surface heat transfer coefficient and  (c) couple-

stress for different values of  K  against values of  while Pr = 9.0 and  = 1 
 

           

  
Figure 10. Numerical values of (a) velocity profiles (b) temperature profiles and (c) angular 

velocity profiles for different  values of N* against  while Pr = 9.0 and  = 1 
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Figure 11. Numerical values of (a) velocity profiles (b) temperature profiles and (c) angular 

velocity profiles for different values of  K  against   while Pr = 9.0 and  = 1 
 

 
5.   Conclusions 
 
In this paper, the unsteady free convection boundary layer flow of a thermo-micropolar fluid 
along a vertical plate has been discussed. It is assumed that the temperature of the plate is 
oscillating about a constant mean temperature, w, with small amplitude, . The governing 
boundary layer equations are analyzed using, straight forward finite difference method for the 
entire values of locally varying variable, x. The effects of the material parameters such as angular 
velocity, N*, the vortex viscosity parameter, K, on the shear stress, surface heat transfer and the 
couple-stress have been investigated. Through the present investigation it is found that 
micropolar fluids have a greater resistance (resulting from dynamic viscosity and vortex 
viscosity) to the fluid motion compared to Newtonian fluids. 
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