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Abstract 
 
We propose and analyze a water born disease model introducing water-to-person and person-to-
person transmission and saturated incidence. The disease-free equilibrium and the existence 
criterion of endemic equilibrium are investigated. Trans critical bifurcation at the disease-free 
equilibrium is obtained when the basic reproductive number is one. The local stability of both the 
equilibria is shown and a Lyapunov functional approach is also applied to explore the global 
stability of the system around the equilibria. We display the effects of pathogen contaminated 
water and infection through contact on the system dynamics in the absence of person-to-person 
contact as well as in the presence of water-to-person contact. It is shown that in the presence of 
water-to-person transmission, the model system globally stable around both the disease-free and 
endemic equilibria. Lastly, some numerical simulations are provided to verify our analytical 
results.  
 
Keywords:  Water-borne disease, epidemic model, basic reproductive number, global stability,    
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1. Introduction 
 
In mathematical epidemiology it is interesting to study the water-borne disease spreading 
primarily through contaminated water. In recent years, people have been facing the major 
problems that are related to water quantity or quality issues. Water-borne diseases like hepatitis, 
cholera, dysentery and typhoid are the more common infectious diseases that affect large 
populations in the tropical regions. These diseases are spread either directly or through flies or 
filth. Hepatitis A and hepatitis E viruses, while unrelated to one another, are both transmitted via 
the faecal oral route, most often through contaminated water and from person-to-person. Nasser 
(1994) discussed prevalence and fate of hepatitis A virus in water and which is transmitted 
primarily through person-person contact, with contaminated water providing a secondary 
transmission route. Cholera is a diarrhoeal illness caused by infection of the intestine with the 
bacterium Vibrio cholerae. Most intestine diseases are infectious and transmitted through faecal 
washed (see Hopkins et al. (1986), Laursen et al. (1994), Hrudey et al. (2003)). Pathogens-which 
include virus, bacteria, protozoa and parasitic worms-are disease producing agents found in the 
faeces or infected persons. These pathogens directly travel through water sources or through 
person with handling water and food.  
 
Now, outbreaks of water-borne diseases are at the top of the list among other infectious diseases 
whereas cholera is the most frequent disease followed by acute diarrhea and typhoid fever (see 
WHO 2002, http://www.who.int/whr/2002/overview/en/index.html). A life-threatening situation 
has been happened in Sunderbans, Calcutta, India- when Cyclone Alia hit the Bay of Bengal at 
midnight on 26th May 2009 and in just 15 minutes everything was flooded. A lack of hygiene 
and sanitation makes people more susceptible to diarrhoeal diseases and 100,000 diarrheoal 
cases resulting in 31 deaths have been reported by the government. Incorporating a class for 
severe infections as well as a class for mild or in apparent infections into a two-path cholera 
model, King et al. (2008) produced long likelihood estimates using 1900’s mortality data in 26 
Bengal districts and indicate that the districts of Bogra and Calcutta are well described by the 
two-path model, yet differ greatly in several parameter estimates, most particularly the estimated 
proportion of infections resulting in severe symptoms.  
 
In epidemiological model, the disease transmission rate plays an important role in incidence 
form. The bilinear incidence rate SI  and the standard incidence rate NSI /  were assumed in 
most of the epidemic model, where S  and I  are the susceptible and infected individuals 
respectively, N  is the total population and   is the disease transmission rate. Several authors 
(see Anderson and May (1978), Ruan and Wang (2003), Korobeinikov and Maini (2004), Zhang 
and Teng (2008)) have suggested that the disease transmission procedure may follow saturation 
incidence form. Kar and Mondal (2011) elucidated global dynamics of delayed SIR epidemic 
model introducing the incidence term is of saturated form with the susceptible. They investigated 
the local and global stability of the system around the endemic equilibrium, and also presented 
how the basic reproduction number varies with the saturation factor. Assuming the force of 
infection for human population interaction as saturation form, Cai et al. (2009) studied the global 
dynamics of dengue epidemic mathematical model. They investigated global stability of disease-
free equilibrium and endemic equilibrium based on Lyapunov functional approach. Zhang et al. 
(2008) analyzed delayed SIR model with nonlinear incidence rate which is saturated with the 
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susceptible and found that the global dynamics of the system around the disease-free equilibrium 
are completely determined by the values of the threshold value 0R  and time delay.        

 
In this paper, the disease transmission process will be regarded as multiple ways viz. ‘water-to-
person’ transmission and ‘person-to-person’ transmission. Tien and Earn (2010) discussed 
multiple transmission path ways and disease dynamics in a waterborne pathogen model including 
a pathogen compartment into the classical SIR model. Both person-to-person transmission and 
water-to-person transmission were included as bilinear incidence form and their analysis 
illustrated how multiple transmission routes and persistence in a reservoir outside of human hosts 
can affect fundamental characteristics such as the basic reproductive number and epidemic 
growth rate. Kistemann et al. (2002) found that floods make extremely large contributions to 
load the bacterial and parasite in drinking water reservoirs. Their results showed that substantial 
shares of the total microbial loads in watercourses and in drinking-water reservoirs result from 
rainfall and extreme runoff events. The dynamics of floods during runoff events correspond well 
with drastic increases in turbidity.  
 
So, if different types of pathogens initially load in water, then a high infection rate will be taken 
place in a community. In this paper, we consider the disease transmission rate from water-to-
person as saturation incidence rate of the form ),/( 1 WSWW   where W  denotes the 

concentration of pathogens in a water source, W  is the transmission coefficient and 1  is the 

saturation factor. Moreover, from a practical point of view, the disease transmission rate from 
person-to-person is assumed saturation incidence rate instead of the bilinear incidence rate in 
Tien and Earn (2010) and the force of infection is in this version )/( 2 SSI   which is 
saturated with the susceptible.  
 
Rest of this paper is arranged as follows. In section 2, SIWR  model is constructed for illustrating 
the multiple transmission pathways and some basic results are provided. Also, the existence of 
equilibria and some simulations are investigated in this section. Section 3 includes the 
bifurcation analysis at the disease-free equilibrium, local stability of both the equilibria, and the 
global stability of the system around the endemic equilibrium and then some numerical results 
are provided in this section. We discuss a sub model in section 4 when only water-to-person 
transmission is applied to the original model system. The objective of this paper is to compare 
the original model to that sub model. In section 4, it is discussed that both the disease-free and 
endemic equilibria are globally asymptotically stable and in addition some numerical simulations 
are presented in this section. Concluding remarks close the paper by section 5.        
   
2. SIWR Model for Water-Borne Disease  
 
We consider the following system of differential equations as follows: 
 

1 2
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,
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where IS,  and R  are respectively denoted as the density of susceptible, infected and recovered 
individuals within the population, W  represents the pathogen concentration in water source,  the 
total constant population is ,RISN   W  and   are the disease transmission coefficients 

for water-to-person and person-to-person contact respectively. If A  is the total recruitment rate, 
then we obtain ,/ NAdtdN   where   is the natural death rate. In our paper, as the total 
population N  is constant, so N   is the total recruitment rate. In this scenario the birth rate is 

equal to the natural death rate .  Also, 1  and 2  are the saturation factors,    is the recovery 
rate, that is, an individual who acquire an infection stay in the infected class during a period of 
time 1  and 1)(    indicates the mean time spent in the infected class,   is the pathogen 
shedding rate per day per infected individual,   is the pathogen particle inactivation rate in 
water.   
 
Set 
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For simplicity, we ignore the upper scripts and then the system (1) is transformed to the 
following system:  
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where  
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b


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In this paper, a simple extension of the classical SIR model is considered by adding a extra 
compartment W (a waterborne pathogen). We also assume that those individuals who have been 
recovered from the waterborne infection will not be infected again by the same disease. Thereby, 
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S  and W  are independent of .R  As ISNR   and ,S  W  are independent of ,R  so, the 
dynamical behaviour of ,S I  simply give the dynamical behaviour .R  Therefore, we do not 
consider the last equation of (2) in our discussion. Now, we shall study the following nonlinear 
ordinary differential equations: 
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                                                                                            (3) 

 
For the bounded ness and persistence of the system (3), we state the following two important 
lemmas.    
 
Lemma 1.  
 
For any ,0  the set }1,1,0,,|),,{(  WISWISWIS  is a positive invariant 

subset of .3R   
 
Proof: 
 
The proof is evidently true.                                                                                                 � 
 
Lemma 2. 
 
For every positive solution )),(),(),(( tWtItS  the system (3) is uniformly persistent (Kuang, 
1993). 
 
Proof: 
 
From the first equation of the system (3), we obtain 
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)(
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which implies that .0)0()(inflim 
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StS

t
 Similarly, from the other equations of the system (3), 

we can show that  
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Hence, the system is uniformly persistent for every positive solution.                                � 
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Note 1:  
 
From the lemma 1, we can conclude that all solutions starting in the positive invariant set   stay 
in ,  whereas the lemma 2 indicates the existence of positive solution of the system (3).     
 
2.1.   Equilibria and their Existence Criteria 
 
Equilibrium analysis of the model (3) is stated in the following theorem: 
 
Theorem 1. 
 
The system (3) has two equilibria, namely  

 
(i)  disease-free equilibrium )0,0,1(0 D ,  

 
and  

 

(ii)  unique positive equilibrium  ,,, eeee WISD    
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The second equilibrium exists if ,11 R  where  
 


 ))((

1


 WR   

 
and the other symbols are stated in the proof. 
  
Proof: 
 
We prove the existence of equilibria as follows. Setting right hand side of the system (3) to zero, 
we obtain  
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From these three equations, it can be concluded that  
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(i)  The existence of the disease-free equilibrium )0,0,1(0 D  is obvious. 
 

(ii)  The endemic equilibrium is  ,,, eeee WISD    
 
where  
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and eS  is a positive root of the following equation: 
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If ,11 R  then 01 x  and therefore, there is only one sign change in the coefficients of the 
equation (4). By Descartes’ rule of signs, the number of positive root of (4) is exactly one.  
Therefore,  
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Hence, the theorem 1(ii) is proved.                                                                                      � 
 
For the system (3), the basic reproductive number is defined as 
 

.
1

1
0 



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


ab
R W


                                                                                                       (5) 

 
Note 2: 
 
From the theorem 1, we obtain a threshold parameter 1R  which provides the existence of 
endemic equilibrium of the system (3). Moreover, it is an increasing function of water-to-person 
transmission coefficient and inversely proportional to the person-to-person contact rate. If the 
total mortality of infected individual decreases that is if the mean infectious period increases, the 
value of 1R  decreases. Now, we want to remind that this threshold value isn’t the basic 
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reproductive number. Comparing the basic reproductive number 0R   with another threshold 

value ,1R  it is cleared that if ,01 RR   then 10 R  implies that the system has unique endemic 

equilibrium. But, when ,10 RR   then 11 R  provides the existence of unique endemic 

equilibrium of the system (3) and in this case trivially the basic reproduction number is above 
one.  
 
From the expression of ,0R  it is observed that 0R  increases while the mean time is very long and 

it decreases when both the saturation factors increase. Variation of basic reproductive number 
with the saturation factors and recovery rate are plotted in figures 1 and 2 respectively taking the 
simulated parameter values which are depicted in table 1. In figure 1(i-ii), it is found that the 
disease will extinct if the value of the pathogen induced saturation factor is above 1.667 where as 
the basic reproductive number decreases with the saturation factor b  very slowly and the disease 
may wipe out from the community for too much high value of the susceptible induced saturation 
factor. Also, the basic reproductive number has a sharp decrease is depicted in figure 2 and it is 
found that when the value of the recovery rate is greater than 26.18, then this noticeably shows 
that no other recover individuals become infected again. The effect of both the saturation factors 
on the basic reproductive number is shown in figure 3 and in this figure, it is observed that the 
basic reproduction number 9866.00 R  when the values of 593.1a  and .08814.0b  As the 

value of the basic reproduction number is below one, the disease-free equilibrium is locally 
asymptotically stable and so the disease may not persist in the population.  
 
 

 
Figure 1 (a-b): We plot the basic reproductive number as a function of saturation factors  
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Figure 2. Variation of basic reproductive number with recovery rate   

 
Figure 3. Surface plot of basic reproductive number as a function of saturation factors 

 
 

Table 1. The values assigned for the model’s parameters 
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3. Stability Criteria and Bifurcation Analysis 
 
Theorem 2. 
  
The disease-free equilibrium )0,0,1(0 D  is locally asymptotically stable when 10 R  and 

unstable when .10 R  

 
Proof: 
 
The characteristic equation for the system (3) at the disease-free equilibrium is 
 

,0))(( 21
2  aa                                                                                                       (6) 
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If ,10 R  then both 1a  and 2a  are positive. So, the equation (6) has one negative real root and 

two other roots with negative real parts. Hence, the disease-free equilibrium is locally 
asymptotically stable when 10 R  and unstable when .10 R                                            � 

 
Note 3:  
 
The above theorem shows that the stability of the disease-free equilibrium changes when the 
basic reproductive number passes through one. In this scenario the system exhibits trans critical 
bifurcation at disease-free equilibrium when the basic reproductive number is equal to one which 
is proved in the next theorem.  
 
Theorem 3.  
 
The system (3) undergoes trans critical bifurcation at )0,0,1(0 D  when .10 R   

 
Proof: 
 
The Jacobian matrix at the disease-free equilibrium is  
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The Jacobian matrix (7) has a geometrically simple zero eigenvalue with left eigenvector 
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From the above discussion, we obtain 
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Hence, the system (3) undergoes trans critical bifurcation at the disease-free equilibrium 0D  

(Guckenheimer and Holmes, 1983).                                                                             � 
 
Theorem 4. 
 
The endemic equilibrium point  eeee WISD ,,  is locally asymptotically stable if .11 R  
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Proof:  
 
The characteristic equation for the system (3) at the endemic equilibrium is  
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Therefore, all the coefficients of (8) are positive and .0CAB  Hence, the Routh-Hurwitz 
condition is satisfied. Thus, the theorem.                                     � 
   
To investigate the global stability (see Li et al. (2001), McCluskey (2006)) of the system around 
the endemic equilibrium, we give an analytical proof in the next theorem using Lyapunov 
functional approach.  
 
Theorem 5.  
 
For ,11 R  the endemic equilibrium eD  of system (3) exists and is globally asymptotically 

stable (GAS) provided )3()2()(2 aSbIbaab e
W

e    and ,0F  where the symbol 

is stated in the proof of this theorem. 
 
Proof:  
 
We define a Lyapunov function as follows: 
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eee WWdIIdSSdWISV                                                        (9) 

 
where 21, dd  and 3d  are arbitrary positive constants to be chosen afterward. 

 
The time derivative of ),,( WISV  along the solution path is given by 
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Thus, ,0),,( WISV  provided )3()2()(2 aSbIbaab e

W
e    and ,0F  with 

equality only at ).,,( eee WWIISS   Hence, the system (3) is globally asymptotically 

stable around its endemic equilibrium.                                                       � 

 
Figure 4: The global stability regions in ),( WS  and ),( W plane respectively are 

presented for the endemic equilibrium. The numerical values for the other 
parameters are chosen from Table 1 
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Remark 1. 
  
From the above theorem, it can be concluded that the disease surely persist in the total 
population as the endemic equilibrium globally stable in our feasible region. 
  
 
3.1.   Simulations 
 
In this section, the numerical results are used to confirm and visualize our analytical findings. 
For this purpose a simulated set of parameters value are chosen, given in table 1. Then the 
system (3) has a unique endemic equilibrium )11911.0,11911.0,106679.0(  and the basic 

reproduction number .12492.350 R  Also, the another important threshold parameter 

.33.10 01 RR   The eigenvalues of the system at the endemic equilibrium are ,444341.0  

.382799.0492871.0 i  Therefore, the endemic equilibrium is locally asymptotically stable (see 
figure 5) because of the negative real parts of the eigenvalues. The figure 5 indicates that the 
susceptible individuals decrease in numbers within small time interval and then increases, and 
converge to the endemic point. It has been also observed in Figure 5 that both the infected 
individuals and pathogen concentration increase sharply during a period of time and at the end of 
time of our noticeable time period both these decrease and then comes together to their endemic 
point. Biologically the Figure 5 indicates that the disease spreads into the total population within 
a small period of time and after then the disease becomes endemic. The bifurcation diagram is 
presented in Figure 6 and it has been understood that our model system will be globally stable 
around the endemic equilibrium. 
  

 
Figure 5. Solution curves for susceptible individuals, infected individuals and 

pathogen concentration 
 

0 5 10 15 20 25 30
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Time

P
op

ul
at

io
n

 

 

S

I

W



AAM: Intern. J., Vol. 8, Issue 1 (June 2013)                                                                                                             89                                 
          

   

 
Figure 6. Bifurcation diagram in ),( IS -plane indicates that the endemic 

equilibrium is globally asymptotically stable 
 
4. Model in Absence of Person-to-Person Transmission    
 
In this section, we will concern about such a waterborne disease model in which the disease is 
transmitted only through contaminated water to the person. In many urban or municipal areas 
(e.g. Kolkata, Howrah etc. in West Bengal, India), most of the water supply pipe lines are not in 
good position being used for long times. Thereby, different types of harmful virus viz. Rota, 
Hepatitis, Parvo etc., bacteria viz. Cholera, Salmonella, Escherisia Coli are mixed into the 
drinking water through the leakage of pipe lines. So, drinking water gets contaminated from the 
supply source of water and spreading various infections in population. In recent years, arsenic in 
West Bengal (India) available geogenically resulting 50% to 60% rural population of about 5 
million people are victim of arsenic containing water. So, our model system (3) will be analyzed 
in this section when the susceptible individuals become infected only through contact with 
contaminated water.   
  
Then, the system (3) reduces to 
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The basic reproductive number for the system (10) is defined by 
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.
)(0 





a

R WWP                                                                                                                   (11) 

 
Clearly, the basic reproductive number is an increasing function of the disease transmission rate 
and also of the mean time. It is found that WPR0   decreases if the saturation factor ,a  that 

measures the inhibitory effect, increases. Moreover, if we compare both the basic reproductive 
numbers in (5) and (11), then it is seen that .00

WPRR   It indicates that both the type of 

transmissions is possible, when 10 WPR  and the disease will persist in a population.    

 
4.1.   Equilibria and Stability Criteria 
 
Theorem 6.  
 
The system (10) has also disease-free equilibrium )0,0,1(),,( 000 WIS  and it is locally 

asymptotically stable for 10 WPR  and unstable for .10 WPR  

 
Proof:  
 
The proof is trivially true.                                                                                                    �  
 
Theorem 7.  
 

(a) If the basic reproductive number ,10 WPR  then the system (10) has unique endemic 

equilibrium point ),,,( **** WISE  where  
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(b) The endemic equilibrium is locally asymptotically stable if .10 WPR    

 
Proof:  
 

(a)  One can easily verify this theorem by equating the right side of all the equations of 
system (10) to zero.   

 
(b) The result is true using theorem 3.                                                                                 � 

 
Theorem 8.  
 
If ,10 WPR  then the disease-free equilibrium of the system (10) is GAS in 

}.0:),,{( 00000
0 WIWIS   

 



AAM: Intern. J., Vol. 8, Issue 1 (June 2013)                                                                                                             91                                 
          

   

Proof:  
 
Using the approach of Mwasa and Tchuenche (2011), consider an average Lyapunov function of 
the form 
 

,),,( 321
1

hhh WISWISV     with  .3,2,1;0  ihi                                                               (12) 

 
Taking time derivative of (12), we have 
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Since ,10 S  so 01 V  for 0SS   and the equality holds at ).0,0,1(),,( 000 WIS  Hence, the 

disease-free equilibrium is GAS for .0SS                                                      � 
 
Theorem 9. 
  
If ,10 WPR  then the system (10) is GAS around endemic equilibrium in 0\   provided 

IW   )(2  and .)()( *** WSWaSWWa   
 
Proof:  
 
Using the approach of Korobeinikov (2006), we define a Lyapunov function as 
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This function is defined and continuous for all 0,, WIS  and satisfies 
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Hence, it is easy to see that *E  is the only extremum and the global minimum of the function in 
the positive octant .3

R  Consequently, the function (13) is indeed a Lyapunov function (see 
Lyapunov (1992)). Taking time derivative of (13) along the positive solution of the system (10), 
we obtain 
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Therefore, ,0),,(2 WISV  provided IW   )(2  and equality holds at 

).,,( *** WWIISS   Hence, the endemic equilibrium is GAS.                                  � 
 
 

    
Figure 7. The global stability regions in ),( WS  and ),( WI plane respectively are 

presented for the endemic equilibrium. The numerical values for the other 
parameters are chosen from table 1. 
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Remark 2.  
 
From the theorem 8, it is confirmed that the population may be totally disease free in presence of 
water-to-person disease transmission while the basic reproductive number is below one and 
when its value above one, the theorem 9 shows that our system is globally asymptotically stable 
around the endemic equilibrium in the regions, presented in figure 6. It implies that the disease 
may not extinct totally from the community.    
  
5. Sensitivity Analysis 
 
To determine the robustness of the model system, it is useful to carry out a sensitivity analysis of 
the system with respect to some important parameters. The disease prevalence is directly related 
to the endemic equilibrium. The most sensitive parameters in our water dynamics are the 
multiple contact rates, the decay rate of pathogen in the water source and both the saturation 
factors. So, we discuss the sensitivity analysis of the system (3) varying the disease transmission 
coefficients ,  ,W  the decay rate of pathogen   and the saturation factors ., ba  In figure 9, we 

see that the number of infected and the pathogen populations are directly proportional with the 
force of infection ,  but the susceptible population is inversely proportional with the force of 
infection. If the time is taken as days, then it is found that the number of infected individuals 
increase fast within one and half days where as the pathogen concentration increases rapidly after 
two days.  

 
              Figure 9. Sensitivity of the system (3) for different values of person-to-person transmission 
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              Figure 10. Sensitivity of the system (3) due to the effect of water-to-person transmission 
 

 
                   Figure 11.  Sensitivity of the system (3) for different values of pathogen decay rate 
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The Figure (10) represents the variation of susceptibles, infected and pathogen concentration 
with the different values of water-to-person disease transmission rate. The number of infected 
and the pathogen populations are directly proportional with the force of infection ,W  but the 

susceptible population is inversely proportional with the force of infection as it is noticed in 
Figure 10. In Figure 11, we see that the pathogen concentration gradually decreases when the 
decay rate of pathogen decreases. Further it is noticeable from figure 11 that the pathogen decay 
rate doesn’t have so much impact on susceptible and infected populations. From Figures (12) & 
(13), it is observed that the number of susceptible individuals is directly proportional to both the 
saturation factors where as the number of infected individuals and pathogen concentration is 
inversely proportional to that saturation factors. It has also been noticed that the number of 
susceptible individuals much more increase in Figure 12 than in Figure 13 when both the 
saturation factors are equal to one. In this scenario the number of infected individuals and the 
number of pathogens decrease quickly in Figure 12 than in Figure 13.   

 
        Figure 12. Sensitivity of the system (3) for different values of pathogen induced saturation factor  
 
 
 
 

0 1 2 3
0

0.5

1

time

N
um

be
r 
of

 s
us

ce
pt

ib
le

s

 

 

0 1 2 3
0.2

0.3

0.4

0.5

time

N
um

be
r 
of

 I
nf

ec
tiv

es

 

 

0 1 2 3
0.2

0.25

0.3

0.35

0.4

time

N
um

be
r 
of

 P
at

ho
ge

ns

 

 

a=0.001

a=0.03

a=0.07

a=0.1

a=0.3

a=1



96                                                                                                                      Prasanta Kumar Mondal and T.K. Kar                              
 

  
              Figure 13. Sensitivity of the system (3) for different values of .b  

  
 
6. Conclusion  
 
In this paper, we have presented a water-borne disease epidemic model including multiple 
transmissions namely, water-to-person and person-to-person transmission. We also provided a 
positive invariant set for the system (3) and then proved that the system is uniformly persistence. 
Ensuring the global asymptotic stability of the unique endemic equilibrium, we obtained 
sufficient conditions expressing in terms of the parameters as well as also in terms of the state 
variables of the system. Also, the main model is compared with the sub model which is 
elucidated respectively in different sections. These are provided an example of the application of 
the method to a classical water dynamics-like model including peculiar non-linear incidence rate. 
 
Our model system has two equilibria namely; disease-free equilibrium which always exists and 
endemic equilibrium which uniquely exists under some threshold conditions. For the system (3), 
we have investigated the basic reproductive number 0R  and it is an increasing function of both 

the disease transmission rate. It is found that the disease-free equilibrium is locally 
asymptotically stable when the basic reproductive number is below one and if its value above 
one the disease-free equilibrium is unstable but, when its value equal to one the system 
undergoes trans critical bifurcation at the disease-free equilibrium. The local stability and global 
stability of the endemic equilibrium is also investigated considering a Lyapunov function.  
 
Furthermore, we elucidated the model system in absence of person-to-person transmission rate 
that is in presence of water-to-person transmission rate and this sub-model also has two 
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equilibria. The basic reproductive number WPR0  is obtained for the sub-model, which is less than 

the multiple transmissions induced basic reproductive number. It is observed that the disease-free 
equilibrium is globally asymptotically stable while 10 WPR  and this means that the any new 

population will not infected by the disease. The sub-model has unique endemic equilibrium and 
locally asymptotically stable when the basic reproductive number is greater than one. Moreover, 
using Lyapunov functional approach, we have seen that the sub-model is global asymptotically 
stable around the endemic equilibrium and it is evident that the disease may not be removed from 
the community in presence of water-to-person transmission.   
 
Our SIWR model may be fitted for different waterborne diseases. Particularly, this model can be 
fixed for the cholera disease because of the disease transmission process is chosen as water-to-
person and person-to-person (see Goh et al. (1990)). These two types of transmission are very 
crucial in cholera disease, which depends upon the length of time that the Vibrio cholerae 
bacteria can persist in the water compartment. Global stability of our system around the endemic 
equilibrium indicates that the disease surely persist in the community.  
 
Mwasa and Tchuenche (2011) discussed a cholera model with public health interventions 
including only water-to-person transmission only. The analysis of their model without any 
intervention showed that cholera may emerge infinitely many times. We studied the sensitivity 
analysis of the system in refer to some crucial model parameters. There it is seen that the number 
of infected individuals and concentration of pathogens are directly proportional to the two type 
disease transmission rate. We also found that if the person-to-person contact is not applied (see 
figure 9), then the disease may be transmitted initially through the contaminated reservoir and 
within a very tiny time this disease spreads into the population.         
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