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Abstract 

In this paper, a new efficient method called the parametric iteration method (PIM) is applied to 
accurately solve the multispecies Lotka–Volterra equations (MLVEs). Some cases of MLVEs are 
highlighted in order to show the simplicity and efficiency of the method. The results obtained in 
this work demonstrate that the present algorithm is a powerful analytic tool for the solution of 
MLVEs.   
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1. Introduction 
 
In this paper, we study the analytical approximate solution of the multispecies Lotka–Volterra 
equations of the type 
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with the initial conditions 
 

,,...,2,1,)0( micN ii                                                                        (2) 

 
by a new analytical method based on the parametric iteration method (PIM) proposed in [Saberi-
Nadjafi and Ghorbani (2010)]. Here, iij ba ,  and ic  are real constants. These equations model the 

dynamic behaviour of an arbitrary number of competitors [Hofbauer and Sigmund (1988)]. 
Though originally formulated to describe the time history of a biological system, these equations 
find their application in a number of engineering fields such as simultaneous chemical and 
nonlinear control. In fact, the one-predator one-prey Lotka–Volterra model is one of the most 
popular ones to demonstrate a simple nonlinear control system. The accurate solutions of the 
LVEs may become a difficult task either if the equations are stiff (even with a small number of 
species), or when the number of species is large [Olek (1994)]. These kinds of equations have 
been solved using the approximate analytical methods such as the variational iteration method 
(VIM) [Batiha et al. (2007)] and homotopy perturbation method (HPM) [Chowdhury et al. 
(2007)]. However, the convergence region and rate of the corresponding results is small. In order 
to overcome these shortcomings, a new analytic algorithm is proposed to simulate (1). 
 

In our previous paper [Saberi-Nadjafi and Ghorbani (2010)], we proposed a new approximate 
analytical algorithm based on the PIM called the piecewise-truncated PIM (PTP) for solving the 
Abel differential equations. The new algorithm analytically approximates the solution of an 
initial value problem of ODEs in a sequence of subintervals, which is continuous everywhere. 
The local convergence and the stability of the algorithm were discussed in details [Saberi-
Nadjafi and Ghorbani (2010)]. One of the main advantages of the PTP`algorithm is its ability in 
providing us a continuous representation of the approximate solution, which allows better 
information of the solution over the time interval. In this paper, an application of this algorithm 
to solve MLVEs is introduced. Some cases of the MLVEs are examined to illustrate the 
efficiency and accuracy of this method, and in all cases, the present technique performed 
excellently. 
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2. The Basic Idea of the New Method 

In this section, we describe the PIM and PTP algorithms for solving the nonlinear system (1). 
The method gives rapidly convergent successive approximations of the exact solution if such a 
solution exists, otherwise approximations may be used for numerical purposes. Also, it has been 
shown in [Ghorbani (2008) and Saberi-Nadjafi and Ghorbani (2010)] that the PIM logically 
contains the approximate analytical method of the VIM, which is widely used in approximate 
calculations.  
 
The idea of the PIM is very simple and straightforward. To explain the basic idea of the PIM, we 
first consider (1) as follows:  
 

),(=)]([N)]([L tftNtN iii    ,,...,2,1 mi                                              (3) 

 
where L , with the property 0L g  when 0g , denotes the so-called auxiliary linear operator 

with respect to iN ,   is a nonlinear operator with respect to iN  and )(tfi  is the source term. 

Then, we construct a family of iterative processes for Equation (3) as [Saberi-Nadjafi and 
Ghorbani (2010)]: 
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with the initial condition 
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and )(0, tNi  is the initial guess (which can be freely chosen with possible unknown constants, or 

it can also be solved from its corresponding linear homogeneous equation 0=)]([L 0, tNi ) and the 

subscript n  denotes the n th iteration. 
 
The 0h  and 0)( tHi  denote the so-called auxiliary parameter and auxiliary function, 

respectively, which can be identified easily and efficiently by the techniques proposed in [Saberi-
Nadjafi and Ghorbani (2010)]. In this work, for simplicity, we take mitHi ,...,1,1)(  . 

 
It should be emphasized that though we have the great freedom to choose the auxiliary linear 
operator  , the auxiliary parameter h  and the initial approximation )(0, tNi , which is 

fundamental to the validity and flexibility of the PIM, we can also assume that all of them are 
properly chosen so that solution of (4) exists, as will be shown in this paper later. Accordingly, 
the successive approximations )1()(, ntN ni  of the PIM in the auxiliary parameter h  will be 
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readily obtained by choosing the zeroth component. Consequently, the exact solution may be 
obtained by using 
  

.,...,1,)(lim=)( , mitNtN ni
n

i 
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                                                                                          (7) 

 
Now, in order to avoid expensive computational work for solving (4) via the PIM, it is 
straightforward to use the set of base functions 
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to represent )(tNi , i.e., 
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In view of the solution expression (8) and according to the initial condition (5), it is 
straightforward to choose 
 

,)(=)]([L ,, tNtN nini                                                                                                                (10) 

 
with the property (where id  is the integral constant) 

 
0=][L tdi ,                                                                                                                           (11) 

 
as the auxiliary linear operator, and to choose an initial approximation of )(tNi , which is the 

solution of the corresponding linear homogeneous equation 0=)]([L 0, tNi  as 

 
.)(0, ii ctN                                                                                                                            (12) 

 
According to (4) and (10), the solution of the equation (4) becomes 
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Therefore, the successive approximations )1()(, ntN ni  of the PIM iterative relation of (13) in 

the auxiliary parameter h  will be readily obtained, especially by means of symbolic computation 
software such as Maple, Mathematica, Matlab and others. 
 
In general, the application of the PIM to solve the MLVEs leads to calculation of unneeded 
terms. The repeated calculations may or may not lead to faster convergence. In order to 
completely eliminate these repeated calculations, using the integration by parts and Taylor series 
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around 0, the following improved version of the PIM called the truncated PIM (TP) is proposed 
for solving the MLVEs of (1) [Saberi-Nadjafi and Ghorbani (2010)]: 
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Here, we assume that the right hand (1) in each of iterations of the PIM is an analytic function. It 
is worth mentioning that the TP formula (14) can cancel all the repeated calculations and terms 
that are not needed. Furthermore, it is capable of solving strongly nonlinear problems with the 
complicated variable coefficients in a straightforward manner. Besides, this modified method 
reduces the volume of calculations and constructs a sequence which converges to the exact 
solution rapidly. 
 
By using the TP algorithm (14), we obtain a series solution, which in practice is a truncated 
series solution. Unfortunately, this series solution gives a good approximation to the exact 
solution in a small region of t . An easy and reliable way of ensuring the validity of the 
approximations (14) for large t  (i.e., ],0[ T ) is to determine the solution in a sequence of equal 

subintervals t , i.e. ],[ 1 kkk ttI  where kk ttt  1Δ , 1,...,2,1,0  Mk , with TtN  . 

According to [Saberi-Nadjafi and Ghorbani (2010)], therefore, we can obtain the following 1kn -

order piecewise approximation )(1
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 on kI  for Equation (14), which was called the 

piecewise TP (PTP): 
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where 0,00
0
, =)(=)(

0 iiini cctNtN  . Now, we can obtain the 1kn -order PTP approximation 
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analytical solution of (1) on the entire interval ][0,T  can easily be obtained. It should be 
emphasized that the PIM and TP algorithms provide analytical solutions in ][0,T , while the PTP 

technique provides analytical solutions in ],[ 1kk tt , which are continuous at the end points of 
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Following the present subsection, the 1kn -order approximate analytical solution via the PTP 

method for Equation  (1) can be written as:  
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where ),...,,( 1, mk

k
ri cctγ  is a coefficient dependent of kt  and mcc ,...,1 . The expression (17) 

demonstrates that the 1kn -order PTP method has an error per step of the order of 11)(Δ knt , 

while the total accumulated error is of order 1)(Δ knt . 
 
3.  Choosing h  and tΔ  in a Geometric Form 

We mentioned that the PTP algorithm, in the present paper, uses a fixed number of 
approximations n  and a fixed step size tΔΔ   to run the iterative procedure (16). So, it is 
important to ensure that the numerical result obtained using the PTP algorithm (i.e., kic , ), which 

is as a series in the auxiliary parameter h  and the fixed step size Δ  is convergent in a large 
enough region whereby the convergence region and rate are dependent upon the h  and Δ . Most 
important, however, is to choose the value of h  in relation to Δ  to make sure that the numerical 
result converges fast enough in a sufficiently large region. Since we have a family of solution 
expressions in the auxiliary parameter h  and the step size Δ , hence, regarding h  and Δ  as 
independent variables, a simple and practical way of selecting h  in relation to Δ  is to plot the 
curves of the resulting series ( kic , ) with respect to h  and Δ .  

 
Thus, if the series is convergent, there exists a segment in its figure called the Δh -curves that 
corresponds to a region of h  and Δ . For brevity, we call such a region the valid region of h  
with relation to Δ , i.e., ΔR h . Accordingly, if we set h  and Δ  values in ΔR h , we are quite sure 

that the corresponding solution series converges. In order to ensure that the numerical results of 
the PTP algorithm converge in the whole spatial and temporal regions, in most cases, we can find 
a proper value of h  in relation to Δ . Therefore, the Δh -curves provide us with a convenient 
way to show the influence of h  and Δ  on the convergence of the PTP algorithm. 
 
In general, by means of the curves of kic ,  versus h  and Δ , only h  and only Δ , it is 

straightforward to know the corresponding valid regions of Δh , h  and Δ . Choosing a value in 
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the valid region, we can ensure that the corresponding solution series is convergent. In this 
manner, we can direct and modify the convergence region and rate of solution series. Thus, the 
auxiliary parameter h  plays an important role within the frame of the PTP algorithm. 
 
4. Some Illustrative Cases 

In this section, to give a clear overview of the content of this study, several modeling cases of the 
MLVEs will be tested by the PTP algorithm, which will ultimately show the simplicity, 
efficiency and accuracy of this method. Moreover, the obtained results reveal that the approach is 
easy to implement and accurate when applied to the MLVEs of (1) and avoids tedious 
computational work. It is noticeable that these equations have been solved by some authors using 
some available approximate analytical methods [Batiha et al. (2007) and Chowdhury et al. 
(2007)]. However, the corresponding approximate solutions are valid for a very small interval. In 
order to completely overcome this disadvantage, here we utilize the PTP algorithm to acquire 
satisfactory solutions of these equations. 
 
Case 1. One species ( 1m ) 
 
In the one-species case, Equation  (1) reduces to one species competing for a given finite source 
of food [Batiha et al. (2007) and Chowdhury et al. (2007)]: 
 

,0)0(,0,0,)( 111
1  NbaaNbN

dt

dN
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where a  and b  are arbitrary constants ( 3a  and 1b ). In order to solve Equation (18) by 
using the PTP algorithm, according to (16), we can obtain the following PTP approximations in 
the subintervals kI : 
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To investigate the valid region of the solution obtained in (20) via the second order PTP 
algorithm, here we plot the curve of 3,1c  and 4,1c  with respect to h  and  , as shown in Figures 1 

and 2. According to this curve, it is easy to discover the valid region of (20). We point out that 
the valid region becomes more accurate as the number 1kn  increases. It is usually convenient to 

investigate the stability region of the PTP method by means of such kinds of curves. 
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Figure 1.  (Plotting the Δh -curves) the valid region of h  with relation to the step size Δ  

(Delta) for Case 1 by using the second order PTP solution where left: the curve 3,1c  

and right: the curve 4,1c  

 
 
 

           
 

Figure 2.  (Plotting the Δ -curves), the valid region Δ  of the second order PTP algorithm when 

1h  for solving the equation (18) of Case 1 where left: the curve 3,1c  and right: 

the curve 4,1c  

 
Figure 3 shows the approximate solution obtained for Equation (18) using the second order PTP 
algorithm (16) when 1h , 1.0Δ  , 1000M  and 100T  versus the numerical RK78 
solution of (18) and also the difference between the second order PTP solution and the numerical 
RK78 solution. It must be emphasized that only the second order term of our algorithm was used 
in evaluating the approximate solution for Figure 3. It is easy to conclude from the numerical 
results in Figure 3 that our approximate analytical solution using the PTP algorithm is in 
excellent agreement with the numerical values in the large interval of t . 
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Figure 3.  Approximate solution (left) and absolute error (right) of the second order PTP 
algorithm when 1h  and 1.0Δ   for the case of the one species where Solid 

line: )(tN  and Circle symbols: )(78 tNRK  

 

Case 2. Two species ( 2m ) 
 
The Lotka–Volterra equations modelling two species competing for a common ecological niche 
are [Batiha et al. (2007) and Chowdhury et al. (2007)]: 
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where the constants are chosen as 
 

1.0,001.0,0009.0,0012.0,0014.0 122211211  baaaa  and 08.02 b .  
 
To solve Equation (22) via the PTP algorithm (16), proceeding as before, we consider a second 
order PTP approximation. The approximate solution and absolute error of the second-order PTP 
solution when 1h , 1.0Δ  , 1000M  and 100T  are given in Figure 4. From the 
numerical results in Figure 4, it is easy to conclude that our approximate analytical solution using 
the PTP algorithm is in good agreement with the numerical values in the large interval of t . 
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Figure 4.   Approximate solution and absolute error of the second order PTP algorithm (lines) 
when 1h  and 1.0Δ   versus the numerical RK78 solution (symbols) for the 
case of the two species 

 

Case 3. Three species ( 3m ) 
 
The following version of the Lotka–Volterra equations modelling three species shall be used 
[Batiha et al. (2007)]: 
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where 1.0a  and 1.0b , [Batiha et al. (2007) and Chowdhury et al. (2007)]. To solve 
Equation  (23) through the PTP algorithm (16), proceeding as before, we consider a second order 
PTP approximation. Figure 5 reveals the approximate solution and absolute error of the second 
order PTP algorithm when 1h , 1.0Δ  , 1000M  and 100T  versus the numerical 
RK78 solution. It is convenient to conclude that our approximate analytical solution using the 
PTP algorithm is in superior agreement with the numerical values in the large interval of t . 
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Figure 5. Approximate solution and absolute error of the second order PTP algorithm (lines) 

when 1h  and 1.0Δ   versus the numerical RK78 solution (symbols) for the 
case of the three species 

Remark 1.  
 
We mention that all the results here were computed using the Maple 11. Most mentionable, 
however, is the fact that the authors only used the PTP algorithm with the fixed number of 
approximations and fixed step sizes in solving the cases given here. Although, the authors 
believe that the best PTP algorithm can be achieved by using a variable number of 
approximations and a variable step size in the series solution to obtain a specified tolerance.     
 
Remark 2.  
 
The convergence of the numerical classical RK4 method for solving Equation  (1) depends 
mainly on choosing the step size tΔ . While, the present PTP algorithm is rather free of this 
shortcoming, using for instance the classical RK4 method with 3Δ t  and greater, to solve the 
case 1 leads to the divergent results. As, the convergent results of utilizing the second order PTP 
algorithm with the fixed step sizes 10,5Δ t  have been given in Figure 6 below.  

           

Figure 6.The absolute errors of the second order  PTP algorithm when (left) 325.0h  and 

(right) 15.0h  for two large values of the fixed step size Δ  for Case 1 
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In closing our analysis, we point out that several modeling cases of the MLVEs were tested  
using the PTP algorithm proposed in this paper, and the obtained results have shown excellent 
performance. As a result, it is easy to conclude that the PTP algorithm is a useful analytical tool 
for solving the MLVEs.   
 
5. Concluding Remarks 
 
It is shown that the solution obtained by the classical RK4 was not valid for large step size. In 
this paper, we proposed a technique which treated the PIM as an algorithm in a sequence of 
intervals for getting highly accurate approximate analytical solutions of the multispecies Lotka–
Volterra equations. Unlike the purely numerical methods like the classical RK4, the solutions 
here are readily given in series form. Moreover, we gave a geometric scheme for determining the 
so-called valid region of the auxiliary parameter and the fixed step size. The obtained numerical 
results demonstrate that the PTP algorithm is easy to implement, accurate when applied to the 
MLVEs and avoids tedious computational work. This confirms our belief that the developed 
approach is a promising analytic tool to solve the MLVEs and more promising because it can 
further be applied to a wider class of nonlinear population ordinary models with highly accuracy. 
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