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Abstract 
 
In this paper, finite difference method (FDM) and Pade'-variational iteration method (Pade'-
VIM) are successfully implemented for solving the nonlinear fractional Riccati differential 
equation. The fractional derivative is described in the Caputo sense. The existence and the 
uniqueness of the proposed problem are given. The resulting nonlinear system of algebraic 
equations from FDM is solved by using Newton iteration method; moreover the condition of 
convergence is verified. The convergence's domain of the solution is improved and enlarged by 
Pade'-VIM technique. The results obtained by using FDM is compared with Pade'-VIM. It 
should be noted that the Pade'-VIM is preferable because it always converges to the solution 
even for large domain.  
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1.  Introduction 

Ordinary and partial fractional differential equations (FDEs) have the focus of many studies due 
to their frequent appearance in various applications in fluid mechanics, viscoelasticity, biology, 
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physics and engineering Bagley et al. (1984). Fractional calculus is a generalization of ordinary 
differentiation and integration to an arbitrary non-integer order. Many physical processes appear 
to exhibit fractional order behavior that may vary with time or space Podlubny (1999). Most 
FDEs do not have exact solutions, so approximate and numerical techniques [El-Sayed et al. 
(2007), Sweilam et al. (2007), Sweilam et al. (2011)] must be used. Several numerical and 
approximate methods to solve the FDEs have been given such as variational iteration method He 
(1999), homotopy perturbation method Sweilam et al. (2007), Adomian's decomposition method 
Wazwaz (1998), homotopy analysis method Tan and Abbasbandy (2008), collocation method 
[Khader (2011)-Kahder et al. (2012), Sweilam et al. (2012c)] and finite difference method 
[Sweilam et al. (2012a), Sweilam et al. (2012b)]. 
 
The Riccati differential equation is named after the Italian Nobleman Count Jacopo Francesco 
Riccati (1676-1754). The book of Reid (1972) contains the fundamental theories of Riccati 
equation, with applications to random processes, optimal control and diffusion problems. Besides 
important engineering science applications that today is considered classical, such as stochastic 
realization theory, robust stabilization, and network synthesis, the newer applications include 
such areas as financial mathematics Lasiecka and Triggiani (1991). The solution of this equation 
can be reached using classical numerical methods such as the forward Euler method and Runge-
Kutta method. An unconditionally stable scheme was presented by Dubois and Saidi (2000). 
Bahnasawi et al. (2004) presented the usage of Adomian's decomposition method to solve the 
nonlinear Riccati differential equation in an analytic form. Tan and Abbasbandy (2008) 
employed the analytic technique called homotopy analysis method to solve the quadratic Riccati 
equation.  
    
The fractional Riccati differential equation is studied by many authors and using different 
numerical methods. Namely, Khan et al. (2011), solved this problem using by the homotopy 
analysis method, Jafari and Tajadodi (2010) solved the same problem by the variational iteration 
method and Momani and Shawagfeh (2006) solved it using the Adomian's decomposition 
method. 
  
We present some necessary definitions and mathematical preliminaries of the fractional calculus 
theory that will be required in the present paper. 
 

Definition 1.  

The Caputo fractional derivative D   of order   is defined in the following form                                                  

( )
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where 1 ,m m m N     and (.)  is the Gamma function. 

Similar to integer-order differentiation, Caputo fractional derivative operator is a linear operation 
( ( ) ( )) ( ) ( ),D f x g x D f x D g x         where   and   are constants.  

 
Recall that for ,N   the Caputo differential operator coincides with the usual differential 
operator of integer order. 
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Definition 2. 

The fractional integral of order   of the function ( ), 0f x x  is defined as             
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For more details on fractional derivatives definitions and its properties see [Podlubny (1999), 
Samko et al. (1993)].  
 
In this article, we consider the fractional Riccati differential equation (FRDE) of the form 
  

1,<0       0,>       0,=1)()( 2   ttutuD   (1) 
 
the parameter   refers to the fractional order of the time derivative. 
 
We also assume an initial condition 
  

.=(0) 0uu                                                                                                                                (2) 

 
For 1=  Equation (1) is the standard Riccati differential equation 
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The exact solution to this equation is 
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Our paper is organized as follows: In section 2, we study the existence and the uniqueness of the 
FRDE. In section 3, we introduce an approximate formula of the fractional derivative. In section 
4, we present the FDM scheme of the FRDE. In section 5, we give the procedure of the solution 
using Pade'-VIM. Finally in section 6, the paper ends with a brief conclusion.  
 
2. Existence and Uniqueness 
 
Let < ],[0,= TTJ  and )(JC  be the class of all continuous functions defined on J , with the 
norm 
 

 0,>    |,)(|sup||=|| Ntueu Nt

Jt




 

which is equivalent to the sup-norm
 

.|)(|sup||=|| tuu
Jt

 

 



598                                                                                                                                                    N. H. Sweilam et al.  
 

To study the existence and the uniqueness of the initial value problem of the fractional Riccati 
differential equation (1), we suppose that the solution )(tu  belongs to the space  
 

buuB  ||:R{= , for any constant b}.  
 
Definition 3.  
 
The space of integrable functions ][0,1 TL  in the interval ][0,T  is defined as   

  
 

}.<|)(|:)({=][0,
01  dttftfTL
T

 

 
Theorem 1.  
  
The initial value problem (1) has a unique solution 

              
}.||)(||=||||   ],[0,{= ),(

11 L
Nt tueuTLuXuJCu 

 
 

Proof:   
 
From the properties of fractional calculus, the fractional differential equation (1) can be written 
as [El-Sayed et al. (2007)]  
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Operating with I  we obtain 
  

)).((1=)( 2 tuItu                                                                                                                  (3) 
  
Now, let us define the operator )()(: JCJCF   by 
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 therefore, we obtain  
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||,||<|||| vuFvFu   

 
and the operator F  given by Equation(4) has a unique fixed point. Consequently the integral 
Equation (3) has a unique solution )(JCu . Also, we can deduce that [El-Sayed et al. (2007)]  
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Now from Equation (3), we formally have  
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from which we can deduce that )(JCu   and Xu  . Now from Equation (3), we get  
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Then the integral Equation(3) is equivalent to the initial value problem (1) and the theorem is 
proved. 
 
3. Approximate Formula of Fractional Derivatives  
 
In this section, we present a discrete approximation to the fractional derivative )(tuD . For any 

positive integer M , the grid in time for the finite difference algorithm is defined by .=
M

T
k f  The 

grid points in the time interval ][0, fT  are labeled ,= nktn 0,1,2=n   ...., M  
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Now, the discrete approximation of the fractional derivative )(tuD  can be obtained by a simple 
quadrature formula as follows [Burden and Faires (1993), Diethelm (1997), Richtmyer and 
Morton (1967)]  
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Setting and shifting indices, we have  
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Here  
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and the first-order approximation method for the computation of Caputo's fractional derivative is 
given by 
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4. Discretization for Fractional Riccati Differential Equation Using FDM 
 
In this section, finite difference method with the discrete formula (6) is used to estimate the time 
 -order fractional derivative to solve numerically the FRDE (1). Using (6) the restriction of the 
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exact solution to the grid points centered at ,= nktn  in Equation (1)  
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where )(tT  is the truncation term. Thus, according to Equation(7), the numerical scheme is 
consistent, first order correct in time. The resulting finite difference equations are defined by 
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This scheme presents a nonlinear system of algebraic equations. In our calculation, we use the 
Newton iteration method to solve this system. 
 
In view of Newton iteration method, we can write the nonlinear system (8) in the following 
iteration formula  
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Since, it is easy to see that the quantity 0,)2( )()(
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   we can deduce that the 

resulting Jacobian matrix from Newton's formula (9) is nonsingular, therefore, we can show that 
the numerical scheme (8) is convergent.  
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5. Procedure Solution Using Pade'-VIM 
 
In spite of the advantages of VIM [Sweilam and Khader (2007), Sweilam and Khader (2010)], it 
has some drawbacks. By using VIM we get a series, in particular a truncated sequence solution. 
The series often coincides with the Taylor expansion of the true solution at point 0,=t  in the 
initial value case. Although the series can be rapidly convergence in a very small region, it has 
very slow convergence rate in the wider region we examine and the truncated series solution is 
an inaccurate solution in that region, which will greatly restrict the application area of the 
method. All the truncated series solutions have the same problem. Many examples given can be 
used to support this assertion [Wazwaz (1998), Wazwaz (1999)]. 
 
In this section, we present a modification of VIM by using the Pade' approximation and then 
apply this modification to solve the fractional Riccati differential equations.    When we obtain 
the truncated series solution of order at least ML   in t  by VIM, we will use it to obtain Pade' 
approximation )](/[ tMLPA  for the solution )(tu .  
 
Definition 4.  
 
The Pade' approximation is a particular type of rational fraction approximation to the value of the 
function (Baker (1975), Boyd (1997)). The idea is to match the Taylor series expansion as far as 
possible. 
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where )(tPL  is a polynomial of degree at most L  and )(tQM  is a polynomial of degree at most  

M  
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The suggested modification of VIM can be done by using the following algorithm. 
  
Algorithm 
 
Step 1.   
 
Application of VIM to solve Equation (1): 
The VIM gives the possibility to write the solution of Equation (1), 1)<(0   with the aid of 
the correction functionals in the form 
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pp                                                                                 (12) 
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where   is a general Lagrange multiplier, which can be identified optimally via the variational 
theory He (1999). The function pu~  is a restricted variation, which means that 0=~

pu . 

Therefore, we first determine the Lagrange multiplier   that will be identified optimally via 
integration by parts. The successive approximations 1, pu p , of the solution u  will be readily 

obtained upon using the Lagrange multiplier obtained and by using any selective function 0u . 

The initial values of the solution are usually used for selecting the zeroth approximation 0u . With 

  determined, then several approximations 1, pu p , follow immediately. 

 
Making the above correction functional stationary 
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where pu~  is considered as a restricted variation, i.e., 0=~

pu , yields the following stationary 

conditions (by comparison the two sides in the above equation) 
  

0.=|)(10,=)( =t                                                                                                 (13) 

 
The equations in (13) are called Lagrange-Euler equation and the natural boundary conditions, 
respectively. The solution of this equation gives the Lagrange multiplier 1.=)(   
 
Now, by substituting in Equation(12), the following variational iteration formula can be obtained 
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We start with initial approximation 0==)( 00 utu , and by using the above iteration formula (14), 

we can directly obtain the components of the solution. Now, the first three components of the 
solution )(tu  by using (14) of the fractional Riccati equation are given by 
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and so on, other components can be obtained in a like manner. Consequently, the exact solution 
may be obtained by using  
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).(lim=)( tutu p

p 
  (15) 

 
Step 2.  
 
Truncate the obtained sequence solution by using VIM: 
Therefore, the approximate solution can be readily obtained by ),()( 4 tutu  1)= at(   coincide 
until fifth term with the partial sum of the Taylor series of the solution )(tu  at 0=t . Figure 1, 

shows the error between the exact solution )(tu  and the approximate solution using VIM, )(4 tu . 
From this figure we can conclude that the error at [0,1]t  is nearly to 0, but at [1,3]t , the 
error takes large values.  

 

Figure 1. The behavior of the error between )(tu  and )(4 tu . 
Step 3.  
 
Find the Pade' approximation of the previous step: we find the Pade' approximation )[4/4](tPA  

of the solution )(4 tu  at 1=  as follows 
  

.
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1.859304.270294
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432

432

tttt

ttt
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
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The approximate solution using Pade'-VIM, VIMePadu ` , with 4=n , and the numerical solution 

using FDM, u FDM , with 0.1=k  for different values of   are presented in figures 2-4 in the 

interval [0, 3].  
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Figure 2: The behavior of the approximate solution using Pade'-VIM, the numerical 

solution using FDM at 0.1=k  and the exact solution at 1= . 

  
Figure 3: The behavior of FDMu  and VIMePadu `  at 0.75= . 

 
Figure 4. The behavior of FDMu  and VIMePadu `  at 0.5= . 
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6.   Conclusion 
 
In this paper, we used two computational methods, FDM and Pade'-VIM for solving the 
fractional Riccati differential equation. Special attention is given to study the existence and the 
uniqueness of the proposed problem. We derived an approximate formula of the fractional 
derivative. The presented formula reduced the fractional Riccati differential equation to a 
nonlinear system of algebraic equations which solved by the Newton iteration method. The 
convergence of the resulting nonlinear system of algebraic equations is discussed. From the 
obtained numerical results we can conclude that these two methods give results with an excellent 
agreement with the exact solution. Also, it is evident that the overall errors can be made smaller 
by adding new terms of the sequence which obtained from VIM or using the Pade' 
approximation. All numerical results are obtained using the Matlab program.  
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