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Abstract 
 
We have proposed and analyzed a nonlinear mathematical model for the spread of bacterial disease in an 
economically structured population (rich and poor) including the role of vaccination. It is assumed that 
rich susceptible get infected through direct contact with infectives in the same class and with infectives 
from the poor class who work as service providers in the houses of rich people, living in much cleaner 
environment. The susceptible in the poor class are assumed to become infected through direct contact 
with infectives in the same class as well as by bacteria present in their own environment, degraded due to 
unhygienic environmental conditions. It is further assumed that the bacteria population affects only the 
population in the degraded environment of the poor class but does not survive in the clean environment of 
rich people. The density of bacteria population is assumed to be governed by a logistic model and is 
dependent on environmental discharges conducive to the growth of bacteria population. The cumulative 
density of environmental discharges depends upon the human population related factors of the poor class. 
The model analysis shows that the increased growth rate of environmental discharges increases the 
bacteria population density in the poor class due to unhygienic environmental conditions leading to 
increase the infectives in the poor class i.e., service providers. As a consequence, due to interaction with 
these service providers the spread of disease increases in the rich class. The improved environmental 
conditions of the region inhabited by service providers along with suitable vaccination strategy can be 
helpful in reducing the spread of the disease. 
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1.  Introduction 
 
Infectious diseases are the world’s biggest killer of people and accounts for millions of   deaths 
per year. There are many infectious diseases in which infection is transmitted by direct contact of 
susceptible with infectives, while there are some diseases like tuberculosis, which are also 
transmitted indirectly by the flow of bacteria from infectives into the environment. The poor 
environmental conditions existing in the densely populated cities of the third world countries 
have the greatest impact on the spread of bacterial diseases. If the environment is conducive to 
the growth of bacterial population, then it further helps in the spread of infectious diseases, 
Ghosh et al. (2005, 2006), Naresh et al. (2008, 2009). Also, the migration of population from 
environmentally degraded region to a cleaner region plays a vital role in the spread of infectious 
diseases as infected persons act as carrier/reservoir of infection. Various modeling studies of 
infectious diseases have been done, May and Anderson (1979), Anderson and May (1981, 1983), 
Struchiner et al. (1989), Mena-Lorca and Hethcote (1992), Kribs-Zaleta and Velasco-Hernandez 
(2000), Feng et al. (2002), Murphy et al. (2002), Moghadas and Alexander (2004), Bowman et. 
al. (2005), Naresh and Tripathi (2005), White and Comiskey (2007), Naresh et al. (2009), Pedro 
and Tchuenche (2010), Mushayabasa et al. (2011). In particular, Ghosh et al. (2005) modeled the 
effect of service providers from an environmentally degraded region on the spread of bacterial 
disease and concluded that the spread of the infectious disease increases when the growth of 
bacteria caused by conducive environmental discharge due to human sources increases. Also the 
spread of the infectious disease in rich class increases due to the interaction with service 
providers. Thus, unhygienic environmental conditions in the habitat caused by service providers 
become responsible for the fast spread of an infectious disease. They (2006) also formulated an 
SIS model for the spread of a bacterial disease assuming logistically growing human population 
and concluded that the disease spread is faster when bacterial growth increases due to conducive 
environmental discharges.  
 
Li and Jin (2005) analyzed a SEIR model having infectious force in latent, infected and immune 
period. They derived basic reproduction number, R0, and concluded that if 10 R , the disease-

free equilibrium is globally stable so that the disease always dies out and if 10 R , the disease-

free equilibrium becomes unstable while the endemic equilibrium emerges as the unique positive 
equilibrium and  is locally and globally stable when disease induced death rate is zero. 
Mccluskey (2006) proposed and analyzed models for the spread of TB, which included fast and 
slow progression to the infected class and showed that when basic reproduction number is less 
than or equal to one, the disease-free equilibrium is globally asymptotically stable and when it is 
greater than one there is an endemic equilibrium which is globally asymptotically stable. 
Martcheva et al. (2007) formulated an epidemic model to investigate the complexities of the 
effect of vaccination on a multi strain disease in the presence of mutation. Naresh et al. (2009) 
analyzed a nonlinear model for the spread of HIV/AIDS in a population of varying size with 
immigration of infectives (also assumed infectious) and all infectives ultimately developing 
AIDS. They concluded that the spread of infection can be slowed down if direct inflow of 
infectives is restricted into the population. Pedro and Tchuenche (2010) studied an HIV/AIDS 
model by taking into account the social structure of population (rich and poor) and found that the 
prevalence of HIV in rich communities is higher than that in the poor, but the disease develops 
faster in impoverished individuals. 
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It is pointed out here that in some of the above models, vaccination has been studied without 
considering the effective role of variable bacteria population density which depends on 
cumulative density of environmental discharges and indirectly on population density of service 
providers and is responsible for spreading the bacterial disease. In big cities of third world 
countries where rich and poor people live in nearby neighborhoods, then the poor people work as 
service providers in the houses of rich people but do not settle in the habitat of rich people. These 
service providers play vital role in the spread of infectious diseases as they carry pathogens in or 
on their bodies and may also transport disease vectors. With increase in the population density of 
service providers, the effects of human population related factors like discharge of household 
wastes; open sewage drainage, open water storage tanks, ponds etc. lead to further growth in the 
density of bacteria population, thereby increasing the fast spread of bacterial disease. It is, 
therefore, reasonable to assume the growth rate and the carrying capacity of bacteria population 
density to be the functions of cumulative density of environmental discharges. The growth rate 
of environmental discharges is also assumed to be the function of total population of service 
providers. 

  
In this paper, we therefore propose a nonlinear model to study the spread of bacterial disease in 
an economically structured population (rich and poor) including the role of vaccination. We have 
taken into account the growth rate and carrying capacity of bacteria population to be function of 
cumulative density of environmental discharges. The growth rate of environmental discharges is 
also taken to be dependent on the total population of service providers, living in a degraded 
environment. Since our objective is to study explicitly the role of environmental factors 
conducive to the growth of bacteria population on the spread of disease with the above 
population structure, we have considered bilinear interaction to model the transmission dynamics. 
The model, however, can further be generalized by assuming standard incidence or other 
nonlinear interactions, Mena-Lorca and Hethcote (1992), Naresh et al. (2008).  

 
2.  Mathematical Model 
 
We consider the spread of bacterial infectious disease in an economically structured population 
(rich and poor) living in two adjoining habitats or neighborhoods with different environmental 
conditions. The environment where the rich people live is much cleaner, whereas the 
environment where poor people live is not so clean and is very conducive to the growth of 
bacteria population due to unhygienic household discharges. Here the total population N1 of rich 
class is divided into susceptible X1, infectives Y1 and vaccinated individuals V1. The total 
population N2 of poor class is divided into susceptible X2, infectives Y2 and vaccinated 
individuals V2.  It is assumed that rich susceptible get infected through direct contacts with 
infectives in the same class and with infectives from the poor class who work as service 
providers in the houses of the rich people. These service providers interact with people in the 
rich class during work and then they return back to their homes. The service providers do not 
settle in the habitat of rich people.  
 
Thus, we have considered interaction between rich and poor population but not the migration of 
poor population into rich population. It is further assumed that the bacteria population affects 
only the population in the degraded environment of the poor class but does not survive in the 
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clean environment of rich people. It is also assumed that susceptible in the poor class get infected 
through direct contacts with infectives in the same class and indirectly by bacteria present in 
their degraded environment. The susceptible in the poor class may also get infected by the 
infected rich people and the heterogeneity of the mixing patterns between the rich and poor may 
also influence the infection dynamics of bacterial disease, Bhunu et al. (2012). However, in the 
modeling process we have considered the interaction of infected rich people only with 
susceptible in the same class but not with the susceptible of the poor class as our purpose is to 
study the spread of bacterial disease through service providers (poor people) living in unhygienic 
environmental conditions conducive to the growth of bacteria, Ghosh et al (2005). The density of 
bacteria population B is assumed to grow logistically with the growth rate and carrying capacity 
dependent on the cumulative density of environmental discharges in the poor class, which further 
depends on the human population related factors in the poor class. The bacteria population 
density is also enhanced by the release of bacteria from infected poor population. We have also 
assumed that the rich and poor susceptibles X1 and X2 respectively, are vaccinated at a constant 
rate and some of them may again become susceptible due to inefficacy of vaccines. Also, a 
fraction of infectives in both the classes, after recovery, may join the respective susceptible 
classes.  

 
In view of the above assumptions and considerations, the model dynamics is governed by the 
following system of nonlinear ordinary differential equations:  
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where A1 and A2 are the constant immigration rates of human population into the rich and poor 
populations respectively, 1  and 1  are transmission coefficients in the rich population due to 

infectives of the rich and poor class respectively, 2  and 2  are transmission coefficients in the 
poor population due to infectives of the poor class and bacteria respectively, d1 and d2 are the 
natural death rates corresponding to rich and poor classes,  1  and 2 are the disease induced 

death rates corresponding to rich and poor classes respectively. The parameters 1  and 2  

represent the vaccination coverage (of susceptible) of rich and poor population respectively, 1  

and 2  are therapeutic treatment coverage (of infected individuals) of rich and poor classes 

respectively, 1  and 2  denotes the rate at which vaccinated individuals of rich and poor 
population again become susceptible due to inefficacy of vaccines. Here, E(t) denotes the 
cumulative density of environmental discharges conducive to the growth of bacteria population 
and s(E) is the intrinsic growth rate of the bacteria population density, L(E) is the carrying 
capacity of the bacteria population in the natural environment, s20 is the decay rate of bacteria 
population density due to natural factors as well as by control measures, s2 is the rate of release 
of bacteria from the infective poor population, Q(N2) is the rate of cumulative environmental 
discharges conducive to the growth of bacteria into the poor population which depends on the 
density N2 of the poor population and 0 is the depletion rate coefficient of the cumulative 

environmental discharges. 
 
As the human population increases, the effects of human population related factors/activities 
enhance the cumulative density of environmental discharges which further intensify the growth 
of bacteria population. Thus, in the model, s(E) and L(E) are taken to be functions of cumulative 
density of environmental discharges. Since we assume that the growth rate per capita increases 
as the cumulative density of environmental discharges, we have  

 

0)0( ss   and 0)(  Es                                                                                                          (9) 

  
where 0s  is the value of s(E) at   E = 0 and )(   denotes the derivative of the function with respect 

to its argument. We assume that the modified carrying capacity increases with the cumulative 
density of environmental discharges, so that  
 

0)0( 0  LL    and    0)(  EL                                                                                           (10)  

 
where L0 is the value of L(E) when E = 0.                
 
We also assume that rate of cumulative environmental discharges increases with the human 
population density N2, so that  
 

0)0( 0  QQ    and    0)( 2  NQ                                                                                (11)  

 
where Q0 is the value of Q(N2) when N2 = 0.  
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3.  Equilibrium Analysis 
 
It is sufficient to consider the following reduced system of model (1-8)  (since 1111 NVYX   

and 2222 NVYX  ) as follows: 
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Lemma. The region of attraction for the system (12-19) is given by, 
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The equilibrium analysis of the model system (12-19) has been carried out and the results are 
given as follows. There exist following three non-negative equilibria of the system (12-19),  
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This is the disease-free equilibrium (DFE) which exists without any condition. The existence of 
W0 is obvious.  
 

(2) ),0,,,0,,,( 221111 ENVNVYW . 

This is the bacteria-free equilibrium (BFE) and it exists under the following conditions,   
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In this case disease only spreads through direct contacts of susceptible with infectives. 
 

(3) Endemic equilibrium, ),,,,,,( ***
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We prove the existence of endemic equilibrium by the isocline method. Setting the right hand 
side of the equations in model (12-19) to zero, we get following algebraic equations, 
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Now we show the existence of *

2Y  and *B  from Equations (24) and (25), and the corresponding 

values of *
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2V , *
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which is positive or negative depending upon 2
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which is positive or negative depending upon 2

~
Y being positive or negative, respectively. 

 
From Equation (25), we observe the following points, 
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(i)  When Y2 = 0, 
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Thus, after plotting Y2 and B corresponding to Equations (24) and (25) in Figure 1, we see that 
there are two intersecting points (0, 0) and ),( **

2 BY . After finding *
2Y  and *B , we can calculate 
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2V and *E using eqs. (21), (22) and (23). 

 
 

 
 

    Figure 1 (a). Existence of endemic equilibrium when Y2 > 0. 
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Figure 1 (b). Existence of endemic equilibrium when Y2 < 0. 
 
 
4.  Stability Analysis 
 
Now we analyze the stability of equilibria W0, W1 and W2. The local stability results of these 
equilibria are stated in the following theorem. 
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(For proof see Appendix - I) 
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Theorem 4.2. In addition to assumptions (9), (10) and (11), let s(E), L(E) and Q(N2) satisfy 

pEs  )(0 , qEL  )(0  and rNQ  )(0 2  for some positive constant p, q and r in  , 
then endemic equilibrium W2 is nonlinearly asymptotically stable in the region    provided the 
following inequalities are satisfied, 
 

2*
1

2
1

2
21

2
2

2
11 2

1
YddA                                                                                             (30) 

*
121

2*
1

*
1

*
1

2
1 5

1
)( YVYN                                                                                       (31) 

2*
2

2
22

22
22 15

4
YdBm                                                                                               (32) 

2*
2

**
2

2*
2

*
2

*
2 )(

5

2
))(( YBEsVNEL                                                                           (33) 

)(
3

8)(

)(
1)( *2

022

2

2
0

*
2**

22 Esd
L

BEs
q

EL

B
prBEL mmm  

















                                (34) 

)/2,1(.min)(
9

1
)/( 11

2*
1

2
111

2
1

2
221

*
11

2
1  dYddAY                                      (35) 

)3/,5/1(.min)(
45

16
)( 22

2*
2

2
222

2
2

2
2

*
22

2
2  dYdBY m                                   (36) 

 
(For proof see Appendix-II) 
 
Remark. If the contact rate of the susceptible of the rich class with the infectives of the poor 
class is very small i.e., 01  , then inequalities (26, 30 and 31) are automatically satisfied. If 
the indirect contact rate of the susceptible of the poor class with bacteria is very small 
i.e., 02  , then inequalities (27, 32 and 33) are automatically satisfied. It is clear from 
inequality (34) that in the absence of environmental and human population related factors i.e., p 
= q = r = 0, the inequality is automatically satisfied. This implies that the environmental and 
human population related factors, conducive to the growth of bacteria population, have a 
destabilizing effect on the system. We also note that due to the presence of vaccinated class, 
conditions (28), (29) and (35) and (36) are required for the local and nonlinear stability which 
further destabilize the system. 
 
5.  Numerical Simulation 
 
In order to study the dynamical behavior of the model (12-19) and to prove feasibility of stability 
conditions, we have conducted numerical simulation for the set of parameters given in Table 1, 
using MAPLE 7.0, Feng et al. (2002), Bowman et. al. (2005), Ghosh et al. (2005).  
  
In the model, s(E) and L(E) are the growth rates and modified carrying capacity of the bacteria 
population and are functions of the cumulative density of the environmental discharge E.  The 
rate of the cumulative environmental discharges is also a function of the population density N2 of 
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the poor class. Thus, for numerical simulation it is assumed that s(E) and L(E) are  linear 
functions of E, i.e., s(E) = s0 + aE and L(E) = L0 +bE, satisfying conditions (9) and (10). We have 
also assumed Q(N2) to be a linear function of N2 such as Q(N2) = Q0 + lN2, satisfying condition 
(11). 
 

Table 1. Parameter Values 
 

Parameters Symbol Parameter 
value 

Recruitment rate of susceptibles in rich class A1 100 
Rrecruitment rate of susceptibles in poor class A2 100 
Transmission coefficient due to contacts of susceptibles with 
infectives in rich class 

1  0.002 

Transmission coefficient due to contacts of susceptibles with 
infectives in poor class 

2  0.003 

Transmission coefficient due to contacts of susceptibles in rich class 
with infectives in poor class 

1  0.000005 

Transmission coefficient due to contacts of susceptibles with 
bacteria in poor class 

2  0.00001 

Recovery rate of infected individuals in rich class 
1  0.02 

Recovery rate of infected individuals in poor class 
2  0.01 

Natural death rate of indviduals in rich class d1 0.15 
Natural death rate of indviduals in poor class d2 0.13 
Disease-induced death rate in rich class 

1  0.2 

Disease-induced death rate in poor class 2  0.25 

Vaccination coverage (of susceptibles) of rich population 
1  0.05 

Vaccination coverage (of susceptibles) of poor population 
2  0.04 

Rate at which vaccinated individuals of rich population again 
become susceptible 

1  0.001 

Rate at which vaccinated individuals of poor population again 
become susceptible 

2  0.0011 

Growth rate of bacteria population (s(E) = s0 + aE) s0 0.85 
a 0.001 

Rate of release of bacteria from infected individuals of poor class s2 0.0001 
Decay rate of bacteria in the environment s20 0.3 
Carrying capacity of the bacterial population in the natural 
environment (L(E) = L0 + bE) 

L0 10000 
b 0.01 

Rate of cumulative environmental discharges conducive to the 
growth of bacteria into the poor population (Q(N2) = Q0 + lN2) 

Q0 25 
l 0.002 

Depletion rate coefficient of the cumulative environmental 
discharges 

0  0.1 

  
The equilibrium values for the model system (12-19) are computed as follows,  
 



438                                                                                                                                Ram Naresh and Surabhi Pandey                             

*
1Y = 180.4827434, *

1V  = 61.07966804, *
1N  = 426.0230089, *

2Y  = 211.1081722,                              
 

*
2V  = 35.56875341, *

2N  = 363.2535149, *B  = 7292.523432, *E  = 257.2650703. 
 
The eigenvalues of variational matrix corresponding to the endemic equilibrium for the model 
system (12-19) are 

 
 
-0.2814919115 + i0.2181458923, -0.2814919115 - i0.2181458923, -0.1511160098,                        
-0.582490291 + i0.2552674044, -0.582490291 - i0.2552674044, -0.1311104566,                        
-0.1000192890, -0.8072630391. 
 
Since all the eigenvalues are negative or have negative real parts, it implies that the endemic 
equilibrium W2 is locally asymptotically stable for the above set of parameter values. 
  
The computer simulation is performed for different initial starts in the following four cases and 
displayed graphically in figs. 2 and 3. In these figures, the variation of infectives with the total 
population of rich and poor classes is shown respectively. The trajectories starting with different 
initial starts reach the equilibrium point. Thus, the system (12-19) is nonlinearly asymptotically 
stable for the above set of parameter values.  
 
1. Y1(0) = 100, V1(0)  = 60, N1(0)  = 300, Y2(0)  = 150, V2(0)  = 20, N2(0)  = 200, B(0)  = 7000,  
    E(0) = 250. 
 
2. Y1(0) = 300, V1(0)  = 60, N1(0)  = 600, Y2(0)  = 250, V2(0)  = 20, N2(0)  = 600, B(0)  = 7000,  
    E(0) = 250. 
 
3. Y1(0) = 300, V1(0)  = 60, N1(0)  = 350, Y2(0)  = 150, V2(0)  = 20, N2(0)  = 500, B(0)  = 7000,  
    E(0) = 250. 
 
4. Y1(0) = 100, V1(0)  = 60, N1(0)  = 550, Y2(0)  = 270, V2(0)  = 20, N2(0)  = 300, B(0)  = 7000,  
    E(0) = 250. 

 
The results of numerical simulation are displayed graphically in Figures 4-9. In Figures 4 and 5, 
the variation of bacteria population and infective population of the rich and poor classes is shown 
with time, respectively, for different growth rates of cumulative density of environmental 
discharges. It is seen that as the growth rate of environmental discharges increases, bacteria 
population increases. With the increase in bacteria population, the spread of disease also 
increases in infective population of poor class. When this infective population of the poor class, 
i.e., service providers interacts with the susceptible of the rich population at a higher rate, their 
infective population also increases. This implies that the increased bacteria density in poor class 
due to growth of unhygienic environmental discharges results in increasing the infectives in poor 
class and as such disease spread is faster in this class.  
 
Consequently, the population in rich class, living in much cleaner environment, is directly 
affected by the higher number of infectives available from poor class who work as service 
providers. In Figure 6, we have shown the decay of bacterial population density due to natural 
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factors or control measures s20 with time. It is observed that as the impact of control measures 
decreases, the number of infectives in poor class increases leading to higher number of infectives 
in rich class. Figure 7 depicts the role of bacteria released from the infectives of poor class (s2), 

who work as service providers. This additional load of bacteria population density further 
increases the infective population in the poor class which ultimately leads to enhance the disease 
spread in rich population with increased interaction rate with service providers. Here it may be 
noted that since the environment of rich class is comparatively clean and hygienic, the increased 
disease spread in the class of service providers will impact the rich class only if the higher 
number of infected service providers deliver service to them.  
 
It is, therefore, speculated that not only the growth of the bacteria population due to 
environmental considerations or its release from the infectives need to be curbed using effective 
control mechanism but the direct interaction of the susceptible of the rich class with infected 
service providers should also be restricted. In Figures 8-9, the effect of vaccination is shown on 
the vaccinated and the infective population of the poor class. It is found that as the vaccination 
rate 2  increases, the vaccinated population increases tremendously and consequently the 

infective population declines. A similar observation is made for vaccination rate 1  in the rich 
class.  
  
From the above discussion, we infer that in order to control the spread of bacterial infection in a 
population where servants and maids working as service providers act as carrier of infection, 
apart from the introduction of proper vaccination strategy in the population, the environmental 
conditions in which the service providers live be improved so that the bacteria do not get a 
conducive environment to grow or accumulate in the atmosphere. Moreover, people from the 
poor class who are infected with the disease be restricted to act as service providers in the houses 
of rich people in order to keep the disease spread at minimum. 
 

 
Figure 2. Variation of total population with infective population of rich class 
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Figure 3. Variation of total population with infective population of poor class 

 
 

 
Figure 4. Variation of bacteria population with time for different values of Q(N2) i.e., Q0 + lN2 
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Figure 5. Variation of infective population with time for different values of Q(N2) i.e., Q0 + lN2 

 

 
Figure 6. Variation of infective population with time for different values of s20 
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Figure 7. Variation of infective population with time for different values of s2 

 

 
Figure 8. Variation of vaccinated poor population with time for different values of 2  
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Figure 9. Variation of infective poor population with time for different values of 2  

 
6.  Conclusions 
 
In this paper, a nonlinear mathematical model is proposed and analyzed to study the effect of 
environmental factors on the spread of bacterial disease in an economically structured population 
(rich and poor) where people from the poor population work as service providers in the houses of 
the rich people. It is assumed that the susceptible from the rich class get infected through direct 
contacts with infectives in same class and with infectives from the poor class who work as 
service providers. The susceptible in the poor class get infected through direct contacts with the 
infectives in their own class as well as by bacteria present in their unhygienic environment. The 
density of the bacteria population is assumed to be governed by a logistic model and is 
dependent on the environmental factors which are conducive to the growth of the bacteria 
population. The cumulative density of the environmental discharges depends upon the human 
population density related factors in the poor class. The model is analyzed using stability theory 
of differential equations and numerical simulation. The analysis shows that a disease-free 
equilibrium (DFE) and bacteria-free equilibrium (BFE) are always unstable whereas endemic 
equilibrium is locally as well as nonlinearly asymptotically stable under certain conditions. 
Further, the environmental as well as human population related factors conducive to the growth 
of bacteria population have a destabilizing effect on the system. It is found that increased growth 
rates of environmental discharges increase the bacteria population density. This increase of 
bacteria density in the poor class due to unhygienic environmental discharges results in 
increasing the infectives in the poor class i.e., service providers. As a consequence, these service 
providers further escalate the disease in the rich class, living in much cleaner environment. 
 
It is suggested that along with a suitable vaccination strategy, the environmental condition of the 
region inhabited by service providers be improved so that the bacteria do not get a conducive 
environment to grow and in order to significantly reduce the disease spread.  
 
 



444                                                                                                                                Ram Naresh and Surabhi Pandey                             

Acknowledgements:  
 
Authors are thankful to the anonymous reviewers for their constructive comments and 
suggestions which helped us to improve and finalize the manuscript. 
 

REFERENCES 
 
Anderson, R. M. and May, R. M. (1983). Vaccination against rubella and measles: qualitative 

investigation of different policies. J. Hyg. Camb., 90, pp. 259-352. 
Anderson, R. M. and May, R. M. (1981). Population Biology of Infectious Diseases Part I, 

Nature, 280, pp. 361-367. 
Bhunu, C.P., Mushayabasa, S. and Smith, R.J. (2012). Assessing the effects of poverty in 

tuberculosis transmission dynamics, Appl. Math. Model., 36, pp. 4173-4185. 
Bowman, C., Gumel, A. B., Van den Driessche P., Wu, J. and Zhu, H. (2005). A mathematical 

model for assessing control strategies against West Nile virus, Bull. Math. Biol., 67, pp. 
1107-1133. 

Feng, Z., Iannelli, M. and Milner, F. A. (2002). Two strain Tuberculosis model with age of 
infection, Siam J. Appl. Math., 62, pp. 1634-1656. 

Ghosh, M., Chandra, P., Sinha, P. and Shukla, J. B. (2005). Modeling the spread of bacterial 
disease: effect of service providers from an environmentally degraded region, Appl. Math. 
Comp., 160, pp. 615-647. 

Ghosh, M., Chandra, P., Sinha, P. and Shukla, J. B. (2006). Modeling the spread of bacterial 
infectious disease with environmental effect in a logistically growing human population, 
Nonlinear Analysis: RWA, 7(3), pp. 341-363. 

Kribs-Zaleta, C. M. and Velasco-Hernandez, J. X.(2000). A simple vaccination model with 
multiple endemic states. Math. Biosc., 164, pp. 183-201. 

Li, G. and Jin, Z. (2005). Global stability  of a SEIR epidemic model with infectious force in 
latent, infected and immune period, Chaos, Solitions and Fractals, 25, pp. 1177-1184. 

Martcheva, M., Iannelli, M., Li, Xue-Zhe (2007). Subthreshold coexistence of strains: the impact 
of vaccination and mutation, Math. Biosc. Engg., 4(2), pp. 287-317. 

May, R. M. and Anderson, R. M. (1979). Population Biology of Infectious Diseases Part I, 
Nature, 280, pp. 455-461. 

Mccluskey, C. C. (2006). Lyapunov functions for Tuberculosis models with fast and slow 
progression, Math. Biosc. Engg., 3(4), pp. 603-614. 

Mena-Lorca, J. and Hethcote, H. W. (1992). Dynamic models of infectious diseases as regulators 
of population sizes, J. Math. Biol., 30, pp. 693-716. 

Moghadas, S. M. and Alexander, M. E. (2004). Exogenous reinfection and resurgence of 
Tuberculosis: A theoretical framework, J. Biol. Sys., 12(2), pp. 231-247. 

Murphy, B. M., Singer, B. H., Anderson, S. and Kirschner, D. (2002). Comparing epidemic 
tuberculosis in demographically distinct heterogeneous populations, Math. Biosc., 180, pp. 
161-185. 

Mushayabasa, S., Bhunu, C.P., Schwartz, E.J., Magombedze, G. and Tchuenche, J.M. (2011). 
Socio-economic status and HIV/AIDS dynamics: a modeling approach, World J. Model. 
Simul., 7(4), pp. 243-257. 



AAM: Intern. J., Vol. 7, Issue 1 (June 2012)                                                                                                            445                                
          

   

Naresh, R., Pandey, S. and Misra, A. K. (2008). Analysis of a Vaccination model for carrier 
dependent infectious diseases with environmental effects, Nonlinear Analysis: Modelling 
and Control, 13(3), pp. 331-350. 

Naresh, R., Pandey, S. and Shukla, J. B. (2009). Modeling the cumulative effect of ecological 
factors in the habitat on the spread of tuberculosis, Int. J. Biomath., 2(3), pp. 339-355. 

Naresh, R. and Tripathi, A. (2005). Modeling and analysis of HIV-TB coinfection in a variable 
size population, Math. Model. Anal. 10, pp. 275-286. 

Naresh, R., Tripathi, A. and Sharma, D. (2009). Modelling and analysis of the spread of AIDS 
epidemic with immigration of HIV infectives, Math. Comp. Model., 49, pp. 880-892. 

Pedro, S.A. and Tchuenche, J.M. (2010). HIV/AIDS dynamics: impact of economic classes with 
transmission from poor clinical settings, J. Theor. Biol., 267, pp. 471-485. 

Struchiner, C. J., Halloran, M. E. and Spielman, A. (1989). Modeling malaria Vaccines I & II: 
New uses for old ideas. Math. Biosc., 94, pp. 87-113. 

White, E. and Comiskey, C. (2007). Heroin epidemics, treatment and ODE modelling, Math. 
Biosc., 208, pp. 312-324. 

 
 
 



446                                                                                                                                Ram Naresh and Surabhi Pandey                             

APPENDIX - I 
 
Proof of the Theorem 4.1. 
 
(i) The variational matrix M0 of model (12-19) corresponding to equilibrium W0 is given by,  
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The characteristic equation corresponding to above matrix is given by, 
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Using Routh-Hurwitz criteria, this equilibrium is unstable because in the above quadratic, the 
coefficient of    and the constant term are not positive simultaneously.  
 
(ii) The variational matrix M1 of model (12-19) corresponding to equilibrium W1 is given by,  
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The partition matrix will give rise to following characteristic equation, 
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The characteristic equation corresponding to M1 is given by, 
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Using Routh-Hurwitz criteria, this equilibrium is unstable because in the above quadratic, the 
coefficient of    and constant term are not positive simultaneously although a1a2  - a3 > 0. 
 
To establish the local stability of endemic equilibrium W2, we consider the following positive 
definite function,  
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where ki (i = 0 - 7) are positive constants to be chosen appropriately and y1, v1, n1, y2, v2, n2, b 
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Differentiating above equation, with respect to ‘t’ and using the linearized system of model 
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showing that U1 is a Lyapunov function with respect to W2, proving the theorem.  

 
 
 
 

APPENDIX – II 
Proof of the Theorem 4.2 
 
Consider the following positive definite function, corresponding to the model system (12-19) 
about W2, 
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where the coefficients ki (i = 0 - 7) are positive constants to be chosen appropriately. 
 
Differentiating the above equation with respect to ‘t’ and using (12-19) we get,   
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where f(E), g(E) and h(N2) are defined as follows, 
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Then by considering the assumptions of the theorem and the mean value theorem, we have, 
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Now we choose k1, k4, k7, such that, 
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Thus, 
dt

dU 2  is negative definite function inside the region of attraction  , under following 

conditions,  
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showing that U2 is a Lyapunov function with respect to W2, proving the theorem.  


