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Abstract 

A nonlinear delayed mathematical model with immigration for the spread of an infectious 
disease cholera with carriers in the environment is proposed and analyzed. It is assumed that all 
susceptible are affected by carrier population density. The carrier population density is assumed 
to follow the logistic model and grows due to conducive human population density related 
factors. The model is analyzed by stability theory of differential equations and computer 
simulation. Both the disease-free (DFE), (CFE) and endemic equilibria are found and their 
stability investigated. Bifurcation analyses about endemic equilibrium are also carried out 
analytically using the theory of differential equations. The model study shows that the spread of 
the infectious disease cholera increases due to growth of carriers in the environment and disease 
becomes more endemic due to immigration. Numerical simulations are also carried out to 
investigate the influence of certain parameters on the spread of disease, to support the analytical 
results of the model. 

 

Keywords: Nonlinear delayed model; Cholera; Carriers; Infectious diseases; Stability;      
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1.   Introduction 

 
A recent study on cholera Emch et al. (2008) reveals that local environmental parameters are 
intensely associated with cholera dynamics. In particular, increase in ocean chlorophyll 
concentration; sea surface temperature and river height play a significant role on the occurrence 
of cholera and the magnitude of the epidemic. Cholera, a man-environment disease is transmitted 
through drinking water which is contaminated from improper treatment of sewage. Many 
infectious diseases spread by carriers such as flies, ticks, mites and snails, which are present in 
the environment. For example, air-borne carriers or bacteria spread diseases such as tuberculosis 
and measles; while water-borne carriers or bacteria are responsible for the spread of dysentery, 
diarrhea, cholera, etc. The last few years have witnessed many cholera outbreaks in developing 
countries, including India (2007), Congo (2008), Iraq (2008), Zimbabwe (2008-2009) 
Mukandavire et al. (2009, Vietnam), Nigeria (2010), and Haiti (2010). In the year 2010 alone, it 
is estimated that cholera affected 3-5 million people and caused 100000-130000 deaths in the 
world (WHO). Particularly, cholera represents a significant public health burden to developing 
countries and cholera continues to receive worldwide attention.  
 
If the degree of infectivity increases due to sociological or other mechanisms saturation of 
infectives takes place Busenberge et al. (1993). It is therefore important to determine the effect 
of environmental fluctuations by considering the saturation incidence term ).1/( IkkSI   The 
form of )1/( IkkSI   tends to kSI when k   is small and tends to kkS /  for very large value of .I  
In this study we revisit the carrier dependent cholera model already studied in Das et al. (2005) 
to investigate the effect of random fluctuation to the model system (2.1). We first consider a 
delayed SIRS  model with a period of immunity of fixed length   after recovery from the disease 
(the limiting case 0 is an SIS model, and the limiting case  is an SIRS model). It is 
known that for such a single patch model with constant population size [Hethcote et al. (1981)] 
or with recruitment-death demographics and standard incidence [Genik et al. (1999)]. 
 
The classical disease transmission compartmental models assume homogeneous mixing of 
members of the population being studied. In the SARS epidemic of 2002-2003, infection was 
carried to many places by international travelers, with the disease becoming established in some 
locations but not in others Riley et al. (2003). A more realistic way of looking at the spread of 
disease may be to think of populations in several locations, or ‘patches’ with some travel 
between patches. For the formulation and analysis of the multi patches model, see for example, 
the review articles [Arino et al. (2006) and Wang et al. (2007) references therein.] This patch 
approach is analogous to a social network of contacts in which there is a small number of long 
distance contacts; see, for example, Meyers et al. (2007), Meyers et al. (2005) and Newman 
(2002). 
 
Epidemic models have been studied by several researchers [Anderson et al. (1979), Bailey (1975) 
and Hsu et al. (2004)]. The effects of the presence of bacteria and carriers in the environment on 
the spread of infectious disease have not been studied using mathematical models [Gonzalez-
Guzmem (1989)]. Hethcote (1976) discussed an epidemic model in which the carrier population 
is assumed to be constant. But in general, the size of the carrier population is not constant and 
depends on the environmental conditions in the habitat. Singh et al. (2003) and Ghose et al. 
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(2004) have considered variable growth of carrier population which depends on the household 
emissions other population density related factors in their models. Although, Codeço et al. (2006) 
have discussed “Trends in Cholera Epidemiology” and Ghose et al. (2005) and Shukla et al. 
(2006) have studied the spread of infectious diseases with bacteria in the environment they have 
ignored the role of carriers present in the environment. In this paper, a delayed SIRS  model with 
immigration for the spread of the infectious disease cholera is proposed and analyzed by 
considering that  all susceptible population are affected by carrier population density in the 
environment. Also, suppose that a recovered stays in the recovered class for a fixed finite time 
period ,  during which time natural death may occur. After time ,  immunity wanes and 
individuals still alive return to the susceptible class. Thus, we assume a constant period of 
temporary immunity, i.e., a step function distribution in contrast to the more common 
assumption of a negative exponential distribution. 

The organization of this paper is as follows: In Section 2, we introduce our mathematical model. 
In Section 3, we present positivity and boundedness of solutions, respectively. In Section 4 and 5, 
we analyze our model with regard to equilibria and their stabilities. In Section 6, we establish 
bifurcation criterion to show the regulating impact of time delay. Computer simulations are 
performed to illustrate the feasibility of our analytical findings in Section 7. In the last Section 8, 
we present the conclusion based on our analysis. 

 
2.   The Mathematical Model 
 
The population with size denoted by ),(tN is dived into three disjoint classes of individuals that 
are susceptible, infective and temporarily recovered, with class sizes denoted by ),(tS )(tI and 

),(tR respectively. It is assumed that all susceptible are affected by carrier population density 
),(tC which is governed by a general logistic law. For ,t  the model is described by the 

system of delay differential equations (DDEs), 
 
 

),( 
1

  


  tIedSSC
Ik

kSI
A

dt

dS d

 
 

  ,
1

IdSC
Ik

kSI

dt

dI  


                                                                                  (2.1) 

 

 ,)( dRtIeI
dt
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  ,100 CsCsnN
dt
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where .RISN   The associated initial condition is ,0)0( S ,0)0( I (0) 0,  (0) 0.R C   
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Here, A  is the constant immigration rate of human population from outside the region under 
consideration. The parameters k  and  are the transmission coefficients due to infective and 
carrier population respectively. Further d  is the natural death rate,   is the disease related death 
rate and   be the rate at which infective individuals recover. The constant 1s is the death rate 
coefficient of carriers due to natural factors as well as by control measures. We may note that if 
the growth rate and death rate are carrier population are be balanced then it may approach to zero. 
Here, k and 0n  are saturation constant of incidence rate and birth rate of carriers population 

respectively. 0s  is the intraspecific coefficient of competition of carrier population.  Suppose that 

a recovered stays in the recovered class for a fixed finite time period ,  during which time 
natural death may occur. All parameters assumed to be positive except   and  which are non-
negative. After time ,  immunity wanes and individuals still alive return to the susceptible class. 
Thus, we assume a constant period of temporary immunity, i.e., a step function distribution in 
contrast to the more common assumption of a negative exponential distribution. Thus, the third 
equation of model (2.1) is equivalent to, 
 

.)( )( dSeSIR
t

t

std





                                                                                                         (2.2) 

 
For a given set of non- negative initial conditions, there is a unique solution of system (2.1) for 

].,0[ t  Note that if ,0 the system (2.1) reduces to an SIS  model, and the limit , it 
reduces to an SIRS model. To analyze model system (2.1), we consider the following reduced 
system (since RISN  ), 
 

  ,)(
1

)(
IdCRIN
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dt
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,IdNA
dt
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                                                                                                                                           (2.3) 

  .100 CsCsnN
dt

dC
  

 

3.   Boundedness of Solutions 

 
Continuity of the right hand side of system (2.3) and its derivative imply that the model is well 
posed for .0N The invariant region where solution exists is obtained as follows: 
 

d

A
tNtN

d

A



)(suplim)(inflim

)( 
  (as t ), 



410                                                                                                                               Manju Agarwal & Vinay Verma 

 
                                                 

 
since 0)( tN  for all .0t  Therefore, )(tN cannot blow up to infinity in finite time and 
consequently, the model system is dissipative (solutions  are bounded). Hence, the solution exists 
for all 0t in the invariant and compact set, 
 

    ,0 ,,0 :),,,( 4







   mCC

d

A
NRIRCNRI   

 

which is a region of attraction for any arbitrary small constant .0  

Here,
0

10

s

sn
d

A

Cm







 

 , provided 01 n
d

A
s  . 

 
As )(tN tends to zero, ),(tS )(tI and )(tR also tends to zero. Hence, each of these subpopulations 
tends to zero as )(tN does. It is therefore natural to interpret these terms as zero at .0)( tN  

 
3.1.   Positivity of Solutions 

 
Let the initial data be 0)0(,0)0(,0)0( 000  RRNNII  and 0)0( 0  CC for all 

.0t Then, the solution )](),(),(),([ tCtRtNtI  of the model remain positive for all time 

.0t From the first equation of model (2.3) we get, ),()()( tIdtI   which gives 

.)( )(
1

tdectI    

Here, 1c is a constant of integration. A similar reasoning for the remaining equations shows that 
they are always positive in   for .0t  We assume that at ,0t )(),(),( tRtItN and )(tC are all 
non-negative and that .0)0( N  
 
We notice that,  
 

,)(suplim)(inflim
)( d

A
tNtN

d

A


 
 this implies that 0)( tS for all .t  

 
4.   Equilibrium Analysis 
 
In this section we investigate the existence of equilibria of system (2.3). Solving the right hand 
side of the model system (2.3) by equating it to zero, we obtain the following biologically 
relevant equilibria. 
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(1) Disease-Free Equilibrium, ,0,0,,00 







d

A
E  exists without any condition. The existence of 

0E is obvious. This equilibrium implies that if the carrier population, which serves as a medium 

of transport of cholera, does not participate in the system then the equilibrium level of human 

population will reach the value 
d

A
. It may also be noted that in the absence of carrier population, 

the infected human population will become zero. 
 

(2) Carrier-Free Equilibrium,  1 , , ,0 .E I R N The equilibrium values of different variables will 

be given by RI ,  and .N We prove the existence of the second equilibrium 1E  by setting right 
hand side of  equations (2.3) to zero and solving the resulting algebraic equations, we get, 
 

.0)1()()(  IkIdIRINk                                                                             (4.1) 
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                                                                                                                      (4.2) 
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                                                                                                                   (4.3) 

 
Now using equation (4.2) and (4.3) in equation (4.1) we get, 
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                                                                     (4.4) 

 
Also, using equation (4.4) in equation (4.2) and (4.3) we get, 
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dekdkddk

ddkA
                                                 (4.6) 

 

Hence, carrier-free equilibrium point  0,,,1 NRIE   exist if .
)(

A

dd
k

 
  

(3)  Endemic Equilibrium, ),,,( ****
2 CNRIE . This equilibrium implies that if the carrier 

population is present in the system, then the infection will be transmitted to the human 
population. The equilibrium values of different variables will be given by *** ,, NRI and .*C  
These equilibrium values are explicitly given by equations (4.8-4.10). We prove the existence of 
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endemic equilibrium 2E  by setting right hand side of equations (2.3) to zero and solving the 
resulting algebraic equations, we get, 
 

,0)1()()1()()(  IkIdIkCRINIRINk                                     (4.7) 

,
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                                                                                                                     (4.8) 
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                                                                                                 (4.9) 

,
)(

0

10
*

*

s

snN
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                                                                                                         (4.10) 

In the equilibrium 2E , *N  is the positive root of the following equation, which can be obtained 

from equation (4.7) after using ** , RI and *C from equations (4.8), (4.9) and (4.10), respectively. 

Using this value of 0*  NN  in equations (4.8-4.10) we obtain other equilibrium values, 
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It would be sufficient if we show that 0)( NF has one and one only root. From equation (4.11), 

if we note that 0
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Thus, there exists a unique positive root of ,0)( NF  (say *N ) in .
d

A
N

d

A


 
 Knowing the 

value of ,*N the value of  ** , RI and *C can be computed from equations (4.8-4.10). 
 
5.    Stability Analysis 
 
Now, we analyze the stability of equilibria 10 , EE and 2E  and the stability results of these 

equilibria are stated in the following theorems. 
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Theorem 5.1. 

 
(i) The disease-free equilibrium (DFE), 0E  is locally asymptotically stable if 

,/)( Addk   ./01 dAns  Again 0E  is unstable if either ,/)( Addk    or 

./01 dAns   

 
(ii) The carrier-free equilibrium (CFE), 1E  is locally asymptotically stable if Nns  01  and it is 

unstable if .01 Nns   

 
Proof:  
 

(i) The variational matrix 0V  for the system (2.3) corresponding to equilibrium 
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The eigenvalues of 0V  are ),(1   d
d

kA
,2 d d3  and .104 sn

d

A
 Since 

all the model parameters are assumed to be nonnegative, it follows that .0)4,3,2,1( ii  The 

stability of 0E will be depend on the sign of 1  and .4 Thus, the disease-free equilibrium (DFE) 

0E is locally asymptotically stable if ,/)( Addk   and ./01 dAns  Also, disease-free 

equilibrium (DFE) 0E  is unstable if either ,/)( Addk    or ./01 dAns   
 
(ii) The variational matrix 1V  for the system (2.3) corresponding to equilibrium  0,,,1 NRIE  is 
given by, 
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One eigenvalue of 1V  are .101 snN  The stability of 0E will be depend on the sign of 

.1 The carrier-free equilibrium (CFE), 1E  is locally asymptotically stable if Nns  01  and it is 

unstable if .01 Nns    
 
The term "" 01 ns  biologically represents the net decay rate of carrier population. It is to be 

noted here that 1E  becomes stable when the intrinsic growth rate of carrier population at the 
equilibrium density is negative otherwise it is unstable. 
 
(iii) Stability analysis of endemic equilibrium, ),,,( ****

2 CNRIE . The variational matrix 2V  for 

the system (2.3) corresponding to equilibrium  ****
2 ,,, CNRIE  is given by,  
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The characteristic equation of equilibrium 2E is 
 

 ,0)( 765
2

412
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1
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where,  
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 ,/)( ***

336 IdRIdJedJB d      

 
 ,/)( ***
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Let  .0)(),( 765

2
412

2
1

34   eBBBBBBB                                  (5.3) 

 

To show the positive equilibria ),,,( ****
2 CNRIE  is locally asymptotically stable for all 

,0 we use the following Theorem 5.4., Begon (1995). 

Theorem 5.4. A set of necessary and sufficient conditions for ),,,( ****
2 CNRIE  to be 

asymptotically stable for all 0 is 

(i)  The real part of all roots of 0)0,(   are negative. 

(ii)  For all real 0  and ,0 0),( 0  i where .1i  
 

Theorem 5.5. The endemic equilibrium point 2E  exist if  








 




 


0

10
0

)()(
1

s

snNk
kds

dNAk 


    

holds is locally asymptotically stable for all .0  

 
Proof:   
 
We now apply Theorem (5.4) to prove Theorem (5.5). We prove this theorem in two steps. 
 
Step 1. Substituting 0  in equation (5.3), we get 
 

,0)()0,( 765
2

412
2

1
34  BBBBBBB   

 

 ,0)0,( 43
2

2
3

1
4  PPPP                                                                           (5.6) 

 
If, ,011  BP  ,0)( 522  BBP  3 1 6( ) 0,P B B    0)( 744  BBP  and 

2 2
1 2 3 3 1 4 ,PP P P P P   then by Routh-Hurwitz criterion, all roots of equation (5.6) have negative 

real parts. Hence condition (i) of Theorem (5.4) is satisfied and 2E  is a locally asymptotically 
stable equilibrium in the absence of delay. 
 

Step 2. Suppose that 0( , ) 0i    holds for some real .0  

 Firstly, when ,00   
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.0),0( 74  BB  

 
Secondly, suppose ,00   
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 ieBBiBBBiBBii                      (5.7) 

 
Equating real and imaginary parts of equation (5.7), we get 
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3
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Squaring and adding equation (5.8) and (5.9), we get 
 

8 6 4 2
0 1 0 2 0 3 0 4 0,q q q q                                                                                          (5.10) 

 
where   
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It follows that  
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2
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4
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6
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8
0  qqqq   

 
This contradicts (5.10). Hence, .0),( 0  i For any real ,0 it satisfies condition (ii) of 

Theorem (5.4). Therefore, the unique positive equilibrium ),,,( ****
2 CNRIE  is locally 

asymptotically stable for all 0 and the delay is harmless in this case. 
 
6.   Bifurcation Analysis 
 
Substituting )()(  iba   in (5.3) and separating real and imaginary parts, we obtain the 
following transcendental equations 

 

 
4 2 2 4 3 2 2 2

1 2 3 4

2 2
5 6 7 5 6

6 ( 3 ) ( )
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3 3 2 3

1 2 3

2 2
5 6 5 6 7

(4 4 ) (3 ) 2

(2 ) ( ) 0.                     (6.2)a a

ba ab a b b B abB bB

e abB bB cos b e a b B aB B sinb   

    

      
  

 
where a and b are functions  of  . We are interested in the change of stability of 2E  which will 
occur at the values of   for which 0a and .0b   

 

Let ̂  be such that for which 0)ˆ( a and .0ˆ)ˆ(  bb  then equation (6.1) and (6.2) becomes 
        

4 2 2
2 4 7 5 6( ) 0.b b B B B b B cos b bB sinb                                                                    (6.3) 

       
3 2

1 3 6 7 5( ) 0.b B bB bB cosb B b B sinb                                                                       (6.4) 

 
Now eliminating ̂  from (6.3) and (6.4), we get 
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1 2 2 1 3 4 5

2 2 2 2 2
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                                             (6.5) 

 
To analyze the change in the behavior of stability of 2E  with respect to , we examine the sign 

of 
d

da
 as a crosses zero. If this derivative is positive (negative), then clearly a stabilization 

(destabilization) cannot take place at that value of .  Differentiating equations (6.1) and (6.2) 

with respect to , then setting ,̂   0a and ,b̂b   we get  
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2 2
1 1 3 7 5 6 6 5

ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆˆ ˆ ˆ ˆ ˆ ˆ3 ( )  c  s 2 ,b B B B b B os b B cosb B b inb B b sinb               

       3 2
2 2 7 5 5 6 6
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 2 2
6 7 5

ˆ ˆ ˆ ˆ ˆˆ ˆ( ) ,g b B cos b B b B b sinb                                                                                   (6.8) 

         2 2
6 7 5
ˆ ˆ ˆ ˆ ˆˆ ˆ( ) .h B b sinb B b B b cos b      

 
Solving (6.6) and (6.7), we get  
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From (6.9), it is clear that )ˆ(
d

da
 has the same sign as .21  hg   From (6.8), after 

simplification, and solving (6.3) and (6.4), we get 
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From (6.11), we note that )(uG is the left hand side of equation (6.5) with .ˆ2 ub  Therefore, 
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This implies that  
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                                                                                                 (6.13) 

 
Hence, the criterion for instability (stability) of 2E  are  
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(1) If the polynomial )(uG has no positive root, there can be no change of stability. 
(2) If )(uG is increasing (decreasing) at all of its positive roots, instability (stability) is preserved.  
 
Now in this case, if  
 

(i)  ,04 S )(uG has unique positive real root then it must increase at that point (since 

)(uG is a cubic in ,u ).)(lim 


uGit
u

 

      
(ii)  ,04 S  then (1) is satisfied, i.e. there can be no change of stability. 

 
Therefore, we have the following theorems. 

Theorem 6.1.  If 04 S  and 2E  is unstable for ,0 it will remain unstable for .0  
 
Theorem 6.2.  If 04 S  and 2E  is asymptotically stable for ,0  it is impossible that it remain 

stable for .0 Hence there exist a ,0ˆ  such that for ,̂  2E  is asymptotically stable for 

,̂  2E  is unstable and as   increases together with ,̂ 2E  bifurcates  into small amplitude  
periodic solutions of Hopf  type Anderson (1979). The value of  ̂  is given by the following 
equation 
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7.    Numerical Simulation 
 
Analytical studies always remain incomplete without numerical verification of the results. To 
facilitate the interpretation of our mathematical findings by numerical simulations, we consider 
the set of parameters values as  , 1 1 dayk   , 02.0 -1day        , 10 1 dayA , 5.0 1 dayd  

, 2 1 day , 1 1 day , 10 dayk  , 2 day , 1 1
0

 dayn , 20 1
0

 days . 10 1
1

 days  

 
For the above set of parameter values, the equilibrium 2E  is given by, ,4499.0* I   

,1002.19* N   ,1376.1* R    .4050.0* C  

 
Again with the set of parameters given above it can be verified that all the conditions of local 
stabilities are satisfied. We find here, in the absence of carrier ),0( C the equilibria 

)0,,,(1 RNIE  for different values of delayed time   is given by the following table: 
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Table 1. 

                              I                 N                 R  

             2           0.40712           19.18575           1.02939 

             4           0.39798           19.20402           1.37650 

             6           0.39472           19.21054           1.50030 

Table 1 shows that in the absence of carrier population, the infective human population and 
recovered population decreases and increases with   respectively.  

The variation of infective human population and recovered population with respect to time for 
different values of rate of dissemination   is shown in Figures 1 and 2 respectively. From these 
figures, it can be noted that as the rate of dissemination   increases, infective human population 
and recovered population decreases and increases respectively. 

From Figures 3-4 the effect of various parameters, i.e.,   and k  on the infective human 
population have been shown. It is noted that these figures that as these parameters values 
increases, the infective human population decreases. In Figure 5 shows that infective human 
population increases for some time, reaches the peak, then starts decreasing and finally attains its 
equilibrium level. From this figure we also note that infective human population remain constant 
at its equilibrium level as k  increases but the amplitude and timing of the peak decreases with 
increases in .k Also, in Figure 6 shows the effect of constant immigration rate of human 
population i.e., A  on the infective population with time. From this figure we concluded that as 
the growth rate of constant immigration rate of human population increases, the infective human 
population increases. In Figure 7 shows that the transmission coefficient due to carrier 
population increases, the number of infective population increases. 
 
8.    Conclusion 
 
In this paper, we have proposed and analyzed a non-linear delayed SIRS  model with 
immigration for the spread of an infectious disease caused by discharges of carrier in the 
environment by infectives and their interactions with the susceptible. The carrier dependent 
infectious disease cholera is studied here by incorporating environmental fluctuations through 
additive white noise. It has been considered that the density of carriers follows the logistic model 
and the growth rate of which increases due to the conducive human density related factors. This 
system is analyzed for positivity, boundedness of solutions, and bifurcations of the model are 
studied analytically using theory of differential equations. The model has three non-negative 
equilibria, namely disease free (DFE), carrier free (CFE) and the endemic equilibrium. The 
stability analysis has shown that the (DFE) and (CFE) are locally asymptotically stable and 
unstable under certain condition. Also, we have to show that the endemic equilibrium is locally 
asymptotically stable. It has been shown that spread of disease increases, apart from direct 
contacts between susceptible and infectives, due to the presence of carrier in the environment, 
their interactions with susceptible directly as well as indirectly through transport mechanisms 
used by carriers. It has been found that the disease become more endemic due to immigration. By 
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computer simulation it is shown that when the growth rate of human population increases due to 
demographic changes, the infectious disease spreads even further and becomes more endemic. It 
is concluded from the analysis that if the growth of carrier population caused by conducive 
household discharges increases, the spread of the infectious disease increases. Also, when 
growth rate at which infective individuals recover increases, the infective human population 
decreases. 
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Figure 1. Variation of infective population with t for different    in the  

                             presence of carrier population and other parameters values are same. 
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                              Figure 2. Variation of recovered population with t for different    in the  
                                               presence of carrier population and other parameters values are same. 

  
                                 Figure 3. Variation of infective population with t for different    in the  

                                                  presence of carrier population and other parameters values are same. 
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                               Figure 4. Variation of infective population with t for different  k   in the  
                                                presence of carrier population and other parameters values are same. 

 

                                  Figure 5. Variation of infective population with t for different  k  in the  
                                                   presence of carrier population and other parameters values are same. 
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                                   Figure 6. Variation of infective population with t for different  A  in the  
                                                    presence of carrier population and other parameters values are same. 

 
                                 Figure 7. Variation of infective population with t for different   and other  
                                                 parameters values are same. 

 

                     
 

 

             


