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Abstract  

The hydromagnetic instability of the plane interface between two uniform, superposed and 
streaming Rivlin-Ericksen viscoelastic fluids through porous medium is considered.  The case of 
two uniform streaming fluids separated by a horizontal boundary is studied. It is observed, for 
the special case where perturbations in the direction and transverse direction of streaming are 
ignored, that the system is stable for stable configuration and unstable for unstable configuration. 
If the perturbations in the direction of streaming only one ignored, then the system is stable for 
stable configuration. However, the magnetic field succeeds in stabilizing certain wave-number 
range, which is otherwise potentially unstable. In all other directions, a minimum wave-number 
value has been found beyond which the system is unstable; the instability is found to be 
postponed by the presence of the magnetic field. 
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1.  Introduction 

When two superposed fluids flow one over the other with a relative horizontal velocity, the 
instability of the plane interface between the two fluids is known as the “Kelvin-Helmholtz 
instability”. The discontinuity arising at the plane interface between two superposed streaming 
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fluids is of prime importance in various astrophysical, geophysical and laboratory situations. The 
Kelvin-Helmholtz instability arise in situations such as air blowing over mercury, highly ionized 
hot plasma surrounded by a slightly colder gas, or a meteor entering the earth’s atmosphere. 
 
The instability of the plane interface between two superposed semi-infinite inviscid fluids 
flowing with different velocities has been considered by Helmholtz (1868) and Kelvin (1910) 
and a review of this Kelvin-Helmholtz instability, under varying assumptions of hydrodynamics 
and hydromagnetics, was given by Chandrasekhar (1981). These problems of instabilities in 
hydrodynamic and hydromagnetic configuration continue to attract the attention of researchers 
due to their importance in actual physical situations. Some experimental observations of the 
Kelvin-Helmholtz instability were made by Francis (1954). Gerwin (1968) studied the stability 
problem of non-conducting, streaming gas flowing over an incompressible conducting fluid. The 
effect of rotation in a general oblique magnetic field on the Kelvin-Helmholtz instability was 
also studied by Sharma and Srivastava (1968). Sengar (1984) analyzed the stability of two 
superposed gravitating streams in a uniform, vertical magnetic field in the presence of magnetic 
resistivity. He found that magnetic resistivity had a destabilizing effect on the system. Mehta and 
Bhatia (1988) studied the Kelvin- Helmholtz instability of two viscous, superposed plasmas in 
the presence of finite Larmor radius (FLR) effects and showed that both viscosity and FLR 
effects suppressed the instability. An excellent reappraisal of the Kelvin-Helmholtz problem was 
made by Benjamin and Bridges (1997), who gave the Hamiltonian formulation of the classic 
Kelvin-Helmholtz problem in hydrodynamics. Allah (1998) investigated the effects of magnetic 
field, heat and mass transfer on the Kelvin-Helmholtz instability of superposed fluids. Meignin et 
al. (2001) and Watson et al. (2004) studied the Kelvin-Helmholtz instability in a Hele-Shaw cell 
and a weakly ionized medium, respectively.  The medium was assumed to be non-porous and 
fluids Newtonian in the above studies. 
 
The flow through a porous medium has been of considerable interest in recent years particularly 
among geophysical fluid dynamicists.  An example in the geophysical context is the recovery of 
crude oil from the pores of reservoir rocks. A great number of applications in geophysics may be 
found in the book by Phillips (1991). The gross effect of the fluid slowly percolating through the 
pores of the rock is given by Darcy’s law.  As a result, the usual viscous term in the equations of 
motion of Rivlin-Ericksen viscoelastic fluid is replaced by the resistance term 
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medium permeability and q


 is the Darcian (filter) velocity of the fluid. Viscoelasticity is the 
property of materials exhibiting both viscous and elastic characteristics when undergoing 
deformation. Viscous materials, like honey, resist shear flow and strain linearly with time when a 
stress is applied. Elastic materials strain instantaneously when stretched and just as quickly 
return to their original state once the stress is removed. Viscoelastic materials have elements of 
both of these properties and, as such, exhibit time dependent strain/stress. Whereas elasticity is 
usually the result of bond stretching along crystallographic planes in an ordered solid, viscosity 
is the result of the diffusion of atoms or molecules inside an amorphous material 
Generally, it is accepted that comets consist of a dusty ‘snowball’ of a mixture of frozen gases 
which, in the process of their journey, change from solid to gas and vice-versa. The physical 
properties of comets, meteorites and interplanetary dust strongly suggest the importance of 
porosity in an astrophysical context [McDonnel (1978)].  The instability of the plane interface 
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between two uniform superposed and streaming fluids through porous medium has been 
investigated by Sharma and Spanos (1982). Khan et al. (2010) have studied the Kelvin-
Helmholtz instability arising at the interface separating two superposed, viscous, electrically 
conducting fluids through a porous medium in the presence of a uniform two-dimensional 
horizontal magnetic field and it was found that both viscosity and porosity suppressed the 
stability, while streaming motion had a destabilizing influence. 
 
With the growing importance of viscoelastic fluids in modern technology and industries, 
investigations on such fluids are desirable. The Rivlin-Ericksen fluid is one such viscoelastic 
fluid. Rivlin and Ericksen (1955) studied the stress deformation relaxations for isotropic 
materials. Srivastava and Singh (1988) worked on the unsteady flow of a dusty elastico-viscous 
Rivlin-Ericksen fluid through channels of different cross-sections in the presence of time-
dependent pressure gradient. Sharma and Kumar (1997) studied the hydromagnetic stability of 
two Rivlin-Ericksen viscoelastic superposed conducting fluids and the analysis was carried out 
for two highly viscous fluids of equal kinematic viscosities and equal kinematic viscoelasticities. 
Thermal instability in Rivlin-Ericksen viscoelastic fluid in presence of magnetic field and 
rotation was also separately investigated by Sharma and Kumar (1996, 1997). In another study, 
Kumar (2000) discussed the Rayleigh-Taylor instability of Rivlin-Ericksen elastico-viscous 
fluids in presence of suspended particles through a porous medium. The Kelvin-Helmholtz 
instability of Rivlin-Ericksen elastico-viscous fluid in a porous medium for the case of two 
uniform streaming fluid separated by a horizontal boundary is considered by Sharma et al. (2001) 
and it is found that for the special case when perturbations in the direction of streaming are 
ignored, perturbation transverse to the direction of streaming are found to be unaffected by the 
presence of streaming. El-Sayed (2002) has considered the electro hydrodynamic Kelvin-
Helmholtz instability of the interface between two uniform superposed Rivlin-Ericksen dielectric 
fluid particle mixtures in a porous medium and the perturbations transverse to the direction of 
streaming are found to be unaffected by either streaming and applied electric fields for the 
potentially stable configuration as long as perturbations in the direction of streaming are ignored. 
In many geophysical fluid dynamical problems encountered, the fluid is electrically conducting 
and a uniform magnetic field of the Earth pervades the system. A study has, therefore, been 
made of the instability of electrical conducting streaming Rivlin-Ericksen viscoelastic fluids in a 
porous medium in the presence of a uniform magnetic field. It should be noted, however, that the 
linear stability analysis presented in this paper can be applied to the class of second order fluids 
as well. This is because of the fact that their deviatoric stress tensor reduces to the form 
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 , with  TuuDA  21  and 01  , when linearized at a state of rest, see 

e.g. Joseph (1990). The problem is often encountered in chemical engineering, paper and pulp 
technology and several geophysical situations. These aspects form the motivation for the present 
study. 
 
2.  Formulation of the Problem and Perturbation Equations 
 
The initial stationary state, whose stability we wish to examine is that of an incompressible 
electrically conducting Rivlin-Ericksen viscoelastic fluid in which there is a horizontal streaming 
in the x-direction with a velocity  zU  through a homogeneous, isotropic porous medium.  A 
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uniform magnetic field  0,H,HH yx


 pervades the system which is also acted on by a gravity 

force  g,,g 00


.  The character of the equilibrium of this initial state is determined by supposing 
that the system is slightly disturbed and then by following its further evolution. 
 
Let   andpxue iiijijijij ,,,,,,, denote the stress tensor, shear stress tensor, rate-of-strain 

tensor, Kronecker delta, velocity vector, position vector, isotropic pressure, viscosity and 
viscoelasticity, respectively. The constitutive relations for the Rivlin-Ericksen viscoelastic fluid 
[Rivlin and Ericksen (1955), Sharma and Kumar (1997)] are 
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Let  0,0),(,,,,, zUqgp

   denote, respectively, the pressure, density, magnitude of the 
acceleration due to gravity, kinematic viscosity, kinematic viscoelasticity and filter velocity of 
the Rivlin-Ericksen viscoelastic fluid. This fluid layer is assumed to be flowing through an 
isotropic and homogeneous porous medium of porosity   and medium permeability 1k  and the 
interfacial tension is ignored. Then the equations of motion, continuity, incompressibility and 
Maxwell’s equations for the Rivlin-Ericksen viscoelastic fluid through porous medium are given 
by 
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Let    zyx hhhhwvuup ,,  and,,,,
  denote the perturbations in pressure p, density ρ, velocity 

  0,0,zUq


 and magnetic field  0,, yx HHH


. Then the linearized perturbation equations of 

the fluid layer become 
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Analyzing the disturbances into normal modes, we assume that the perturbed quantities have the 
space  zyx ,,  and time  t  dependence of the form 
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where kx, ky are horizontal wave numbers,   2
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yx kkk   is the resultant wave number  and n  is 

the rate at which the system departs from the equilibrium. For perturbation of the form (12), 
equations (7)–(11) give 
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0 Dwvikuik yx , (18) 
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Eliminating p  between equations (13)-(15) with the help of equations (16)-(19), we obtain  
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3. Two Uniform Streaming Rivlin-Ericksen Viscoelastic Fluids Separated by a Horizontal 

Boundary 
        
Consider the case when two superposed streaming Rivlin-Ericksen fluids of uniform densities ρ1 
and ρ2, uniform viscosities 21 and  and uniform viscoelasticities 21 and   are separated by a 
horizontal boundary at z = 0. The subscripts 1 and 2 distinguish the lower and the upper fluids 
respectively. The density ρ2 of the upper fluid is taken to be less than the density ρ1 of the lower 
fluid so that, in the absence of streaming, the configuration is stable and the porous medium 
throughout is assumed to be isotropic and homogeneous.  Let the two fluids be streaming with 
the constant velocities U1 and U2. Then in each of the two regions of constant  ,, and  U , 
equation (20) reduces to 
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The boundary conditions to be satisfied are as follows: 
 
(i)  Since U is discontinuous at z = 0, the uniqueness of the normal displacement of any point on 

the interface implies that 
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must be continuous at an interface. 
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(ii)   Integrating equation (20) between   00 zandz , and passing to the limit 0 , we 

obtain , in view of (22), the jump condition 
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Here      00 000  zfzff is the jump which a quantity ‘f ’ experiences at the interface 

z = z0 and the subscript zero distinguishes the value, a quantity, known to be continuous at an 
interface, takes at .0zz   
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Applying the boundary condition (23) to the solutions (24) and (25), we obtain the dispersion 
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Equation (26) yields 
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Some Cases of Interest are now considered: 
 
(a) When kx = 0, 0yk , equation (27) yields 
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.                                                                          (28) 

 
Here we assume kinematic viscosities 21  ,  and kinematic viscoelasticities 21  ,  of the 

two fluids to be equal, i.e.,  21 ,   21 .  However, any of the essential 
features of the problem are not obscured by this simplifying assumption. Equation (28), 
then, becomes 
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(ii) Unstable Case 

For the potentially unstable configuration i.e. heavier fluid overlying lighter fluid  12  , 
it is evident from equation (29) that one of the values of ‘in’ is positive which means that the 
perturbations grow with time and so the system is unstable. 

 

(iii)  Stable Case 

For the potentially stable configuration  12   , equation (29) yields that both the values 
of  ‘in’ are either real, negative or complex conjugates with negative real parts implying 
stability of the system. 
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where we have assumed kinematic viscosities 21  ,  and kinematic viscoelasticities 21  ,  

of the two fluids to be equal (let  21 ,   21 ), but this simplifying assumption 
does not obscure any of the essential features of the problem. 

          
(i) Unstable Case 

 
For the potentially unstable configuration  12  , it is evident from equation (30) that 
one of the values of ‘in’ is positive implying that the system is unstable if 
 

22
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whereas both the values of ‘in’ are either real, negative or complex conjugates with negative 
real parts implying stability of the system if 
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12 2)( ByVkgk    .                                                                                                 (32) 

 
(ii)   Stable Case 
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For the potentially stable configuration  12   , equation (30) yields that both the values 
of  ‘in’ are either real, negative or complex conjugates with negative real parts implying 
stability of the system. 

 
(c) In every other direction, instability occurs when 
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The kinematic viscosities 21   and   and the kinematic viscoelasticities 21  and   of two 

fluids here are assumed to be equal i.e.  21 ,   21 , but this simplifying 
assumption does not obscure any of the essential features of the problem. 

 
Thus, for a given difference in velocity U1 – U2 and for a given direction of the wave-vector 
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, instability occurs for all wave numbers 
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where θ is the angle between the directions of    00  and 0 ,U,U,k,kk yx


 i.e. kx = k cos θ, 

ky = k sin θ. Hence, for a given velocity difference U1 – U2, instability occurs for the 

least wave number when k


 is in the direction of U


 and this minimum wave number 
kmin, is given by 
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For k > kmin, the system is unstable.  It is clear from equation (35) that the presence of 
magnetic field increases the value of kmin for which the system is unstable. Thus, the 
instability of the system is postponed.  We thus obtain the stabilizing effect of magnetic 
field.  

 
(d) Since the perturbations most sensitive to the Kelvin-Helmholtz instability are in the direction 

of streaming, we put kx = ky = k. 
 

In the presence of magnetic field, equation (27) yields that stability occurs when 
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The right hand side (RHS) of the above inequality has a minimum when 0
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, i.e., 

when k . Therefore, we shall have stability if 
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The magnetic field, therefore, has stabilizing effect and completely suppresses the Kelvin-
Helmholtz instability for small wavelengths. The medium porosity reduces the stability 
range given in terms of a difference in streaming velocities and the Alfv′en velocities. 

 
 
4.  Conclusions 
 
The foregoing analysis has shown that the stability of an interface between two Rivlin-Ericksen 
viscoelastic fluids through porous medium in the presence of the magnetic field is affected by the 
streaming of the fluids in a direction parallel to the interface. In the special case where 
perturbations in the direction and transverse direction of streaming are ignored, the system is 
stable for stable configuration and unstable for unstable configuration. Further, for the special 
case where the perturbations in only the direction of streaming are ignored; the system is found 
to be stable for a stable configuration. However, in this case, the magnetic field succeeds in 
stabilizing certain wave-number range, which could not be done in the absence of amagnetic 
field for the potentially unstable configuration. When the flow parallel to the interface was 
included in the analysis, the interface was found to be unstable for sufficiently small wavelengths 
and the instability of the system is found to be postponed due to the presence of the magnetic 
field.   
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Similar results can also be obtained for a three layer flow (multilayer flow; plane Poiseuille flow) 
where the stability criteria is similar to that for the two layer flow as the reduction in the effective 
viscosity ratio does not affect the stability criteria of the flow. Furthermore, the reduction in the  
effective viscosity ratio enables us to explain the diminish growth rates which are observed for 
flows of compatible fluids but not the reduction in the size of the unstable region [see e.g. 
Rousset et al. 2005, 2006]. 
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