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Abstract 

 
Two numerical algorithms based on variational iteration and decomposition methods are 
developed to solve a linear partial integro-differential equation with a weakly singular kernel 
arising from viscoelasticity. In addition, analytic solution is re-derived by using the variational 
iteration method and decomposition method. 
 
Keywords:  Variational Iteration Method, Decomposition Method, Partial Integro-differential 
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1. Introduction 

 

Mathematical modeling of real world phenomena often leads to functional equations, like 
integral and integro-differential equations, stochastic equations, etc. While solution techniques 
for many types of these problems are well known, there is a large class of problems that lack 
standard solution methods, namely, partial integro-differential equations. In general, partial 
integro-differential equations are difficult to solve analytically and, as a result, one has to resort 
to numerical approximation of the solution. Main challenges in solving these kinds of problems, 
both numerically and analytically, are due to different factors, such as large range of variables, 
nonlinearity and non-local phenomena, multi-dimensionality, physical constraints, etc. Problems 
involving partial integro-differential equations arise in fluid dynamics, viscoelasticity, 
engineering, mathematical biology, financial mathematics, and other areas. In the study of fluids 
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involving viscoelastic forces [Olmstead et al. (1986); Lodge et al. (1985)]  or in the modeling of 
heat flow in materials with memory [Gurtin and Pipkin (1968); Miller (1978)] or in the modeling 
of linear viscoelastic mechanics [Christensen (1971); Renardy (1989)], the following partial 
integro-differential equation can be found: 
 

௧ݑ ൌ ௫௫ݑߤ ൅ නሺݐ െ ሻିଵݏ ଶ⁄

௧

଴

,ݔ௫௫ሺݑ  ሺ1ሻ                                                                                         ,ݏሻ݀ݏ

 
where the unknown real function ݑሺݔ, ሻ is sought for 0ݐ ൑ ݐ ൑ ܶ, 0 ൑ ݔ ൑ 1, with the initial 
condition 
 

,ݔሺݑ 0ሻ ൌ ,ሻݔ଴ሺݑ 0 ൑ ݔ ൑ 1,                                                                                                      ሺ2ሻ 
 
and the boundary conditions 
 

,ሺ0ݑ ሻݐ ൌ ,ሺ1ݑ ሻݐ ൌ 0,   0 ൑ ݐ ൑ ܶ.                                                                                                   ሺ3ሻ 
 
In (1), ݑߤ௫௫ term represents Newtonian contribution to the viscosity. In this paper we study a 
special case of the problem (1)-(3) when ߤ ൌ 0, that is, non- Newtonian fluids. Namely, we 
study the problem 
 

௧ݑ ൌ නሺݐ െ ሻିଵݏ ଶ⁄

௧

଴

,ݔ௫௫ሺݑ  ሺ4ሻ                                                                                                        ,ݏሻ݀ݏ

 
where the initial and boundary conditions are given by (2)-(3). The memory integrals in (1) and 
(4) can be thought of as representing viscoelastic forces. It is interesting to note that equation (4) 
can be considered as an equation intermediate between the classical parabolic heat and wave 
equations [Sanz-Serna (1988); Lopez-Marcos (1990)]. Also, it should be noted that the analysis 
of equation (4) is an important step in the study of equation (1). Numerical studies of these types 
of problems have been considered by many authors [Dehghan (2006); Sanz-Serna (1988); Tang 
(1993); Lopez-Marcos (1990); and references therein], and were concerned with solving the 
problems by finite differences. 

 
In this paper we used the variational iteration method and Adomian decomposition method to 
solve equation (4) numerically. As a nice by-product of these methods we re-derived the existing 
formula (9) for analytical solution of equation (4). Throughout this paper we choose 
 

,ݔሺݑ 0ሻ ൌ ሻݔ଴ሺݑ ൌ sinሺݔߨሻ , 0 ൑ ݔ ൑ 1,                                                                                ሺ5ሻ 
 
[Dehghan (2006); Tang (1993)]. To our knowledge this is the first paper that deals with 
application of VIM and ADM to a partial integro-differential equation with a singular kernel.  
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The paper is organized as follows. In section 2 we discuss the variational iteration and Adomian 
decomposition methods. As a nice by-product of these methods, we re-derive the analytical 
solution to the given problem in section 3. Conclusions and discussion of the results are in 
section 4. 

 

2. Two Numerical Algorithms 
 

2.1. The Variational Iteration Method 
 

The variational iteration method (VIM), [He (1999, 1997, 2007)], was proposed by J.H. He to solve 
nonlinear differential equations using an iterative scheme. In this section we develop a VIM algorithm to 
solve partial integro-differential equation (4). To illustrate the main idea of VIM, consider the following, 
in general nonlinear equation 
 

ሻݐሺݑܮ ൅ ሻݐሺݑܴ ൌ ݃ሺݐሻ, 
 
where ܮ is a linear operator, ܴ is a nonlinear operator, and ݃ is a given function. One constructs 
a correction functional as follows 
 

ሻݐ௡ାଵሺݑ ൌ ሻݐ௡ሺݑ ൅ න ሻݏ௡ሺݑܮሾߣ ൅ ܴũ௡ሺݏሻ െ ݃ሺݏሻሿ
௧

௧బ

 ,ݏ݀

 
where  ߣ is a Lagrange multiplier, and ũ௡ is considered a restricted variation, that is, δũ௡ ൌ 0,
[He (1999, 1997, 2007)]. This gives the desired iterative scheme. 
 
Applying the VIM algorithm to (4), we obtain the following iteration scheme 
 

,ݔ௡ାଵሺݑ ሻݐ ൌ ,ݔ௡ሺݑ ሻݐ ൅ න ሺ߬ሻߣ ൥
߲

߲߬
,ݔ௡ሺݑ ߬ሻ െ නሺ߬ െ ሻିଵݏ ଶ⁄ ߲ଶ

ଶݔ߲

ఛ

଴

,ݔ௡ሺݑ ൩ݏሻ݀ݏ
௧

଴
݀߬,                    ሺ6ሻ 

 
where ߣ is a general Lagrangian multiplier, which can be identified optimally via the variation 
theory. Taking variation with respect to ݑ௡ and noticing that δܴũ௡ ൌ 0 (where ܴ is a nonlinear 
operator that contains partial derivatives with respect to ݔ), we obtain 
 

δݑ௡ାଵሺݔ, ሻݐ  ൌ δݑ௡ሺݔ, ሻݐ ൅ δ න ሺ߬ሻߣ ൥
߲

߲߬
,ݔ௡ሺݑ ߬ሻ െ නሺ߬ െ ሻିଵݏ ଶ⁄ ߲ଶ

ଶݔ߲

ఛ

଴

ũ௡ሺݔ, ൩ݏሻ݀ݏ
௧

଴
݀߬  

 

                        ൌ δݑ௡ሺݔ, ሻݐ ൅ ,ݔ௡ሺݑሺ߬ሻδߣ ߬ሻ|ఛୀ௧ െ න Ԣሺ߬ሻߣ
௧

଴
δݑ௡ሺݔ, ߬ሻ݀߬ ൌ 0.  

 
This yields the stationary conditions  
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Ԣሺ߬ሻߣ ൌ 0, and 1 ൅ ሺ߬ሻ|ఛୀ௧ߣ ൌ 0. 

 
Therefore, the Lagrangian multiplier ߣ ൌ െ1. Substituting the identified multiplier into (6), we 
obtain the following iteration formula 

 

,ݔ௡ାଵሺݑ ሻݐ ൌ ,ݔ௡ሺݑ ሻݐ െ න ൥
߲

߲߬
,ݔ௡ሺݑ ߬ሻ െ නሺ߬ െ ሻିଵݏ ଶ⁄ ߲ଶ

ଶݔ߲

ఛ

଴

,ݔ௡ሺݑ ൩ݏሻ݀ݏ
௧

଴
݀߬,                     ሺ7ሻ 

 
for ݊ ൌ 0, 1, 2, 3, … For ݊ ൌ 0, we choose 

 
,ݔ଴ሺݑ ሻݐ ൌ ,ݔሺݑ 0ሻ ൌ sinሺݔߨሻ.                                                                                                           ሺ8ሻ 
 

Thus, when ݊ ൌ 1, 
 

,ݔଵሺݑ ሻݐ ൌ ,ݔ଴ሺݑ ሻݐ െ න ൥
߲

߲߬
,ݔ଴ሺݑ ߬ሻ െ නሺ߬ െ ሻିଵݏ ଶ⁄ ߲ଶ

ଶݔ߲

ఛ

଴

,ݔ଴ሺݑ ൩ݏሻ݀ݏ
௧

଴
݀߬ 

                       ൌ sinሺݔߨሻ െ ସ

ଷ
ଶߨ sinሺݔߨሻ ݐ

ଷ
ଶൗ .   

 
Similarly, for ݊ ൌ 2, 3, …, we get 

 

,ݔଶሺݑ ሻݐ ൌ ,ݔଵሺݑ ሻݐ െ න ൥
߲

߲߬
,ݔଵሺݑ ߬ሻ െ නሺ߬ െ ሻିଵݏ ଶ⁄ ߲ଶ

ଶݔ߲

ఛ

଴

,ݔଵሺݑ ൩ݏሻ݀ݏ
௧

଴
݀߬ 

 

                ൌ sinሺݔߨሻ െ ସ

ଷ
ଶߨ sinሺݔߨሻ ݐ

ଷ
ଶൗ ൅ ଵ

଺
ହߨ sinሺݔߨሻ  ,ଷݐ

 

,ݔଷሺݑ ሻݐ ൌ sinሺݔߨሻ െ ସ

ଷ
ଶߨ sinሺݔߨሻ ݐ

ଷ
ଶൗ ൅ ଵ

଺
ହߨ sinሺݔߨሻ ଷݐ െ ଷଶ

ଽସହ
଻ߨ sinሺݔߨሻ ݐ

ଽ
ଶൗ , etc. 

 
From the iteration process (7), it can be observed that the numerical solution of VIM shows a 
reasonably rapid convergence of iterates after around twenty iterations.  

 
It is known [Sanz-Serna (1988); Tang (1993)] that 

 

,ݔሺݑ ሻݐ ൌ ∑ ሺെ1ሻ௡ஶ
௡ୀ଴ ߁ ቀଷ

ଶ
݊ ൅ 1ቁ

ିଵ
ሺߨ

ହ
ଶൗ ݐ

ଷ
ଶൗ ሻ௡ sinሺݔߨሻ                                                    (9) 

 
is the analytic solution satisfying the partial integro-differential equation (4) with the given 
boundary and initial conditions, (3) and (5), where ߁ denotes  the Gamma function. Table 1 
shows the errors (|ݑ௔௡௔௟௬௧௜௖ െ  ଶ଴ ofݑ ௏ூெ|) between the analytic solutions and the 20th iterationݑ
VIM at ܶ ൌ 1.0. For a comparison, the errors (|ݑ௔௡௔௟௬௧௜௖ െ  ஼ே|) between the analytic solutionݑ
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and Crank-Nicolson method with ∆ݔ ൌ 0.1 and ∆ݐ ൌ 0.005 (that is, 10 steps in ݔ direction and 
200 steps in ݐ direction) are also listed in the table. 

 
It can be seen from the table that the solutions obtained by variational iteration method are much 
closer to the analytic solutions than Crank-Nicolson method. Furthermore, it is important to point 
out that our VIM algorithm is designed in such a way that the iterations can be computed rapidly 
in Maple with only a few seconds to complete the 20 iterations. In comparison, the computing 
time in Maple for the Crank-Nicolson method is nearly one minute, which is much slower than 
the VIM algorithm. 
 

Table 1. Error comparison between VIM and Crank-Nicolson solution for T =1.0 

x Analytic Solution |uanalytic uVIM | |uanalytic uCN | 
0.1 0.00796108296 2.1×10-9 3.2×10-5 
0.2 0.01514289252 1.2×10-7 6.1×10-5 
0.3 0.02084234944 1.7×10-7 8.4×10-5 
0.4 0.02450164262 6.8×10-8 9.9×10-5 
0.5 0.02576258933 4.0×10-8 1.0×10-4 
0.6 0.02450164262 1.5×10-7 9.9×10-5 
0.7 0.02084234944 8.5×10-8 8.4×10-5 
0.8 0.01514289252 9.7×10-8 6.1×10-5 
0.9 0.00796108296 1.7×10-8 3.2×10-5 

 
 
2.3.   Adomian Decomposition Method 
 
Similarly to the VIM, the Adomian decomposition method (ADM), [Adomian (1984, 1990)], 
was proposed by G. Adomian to solve differential equations using a recursive formula. In this 
section we apply the ADM algorithm to solve partial integro-differential equation (4). By the 
decomposition algorithm, we assume a series solution 
 

,ݔሺݑ ሻݐ ൌ ෍ ,ݔ௡ሺݒ ሻݐ ൌ

ஶ

௡ୀ଴

,ݔ଴ሺݒ ሻݐ ൅ ,ݔଵሺݒ ሻݐ ൅ ,ݔଶሺݒ ሻݐ ൅  ڮ

 
for problem (3)-(5). Integrating both sides of (4) from 0 to t, we obtain the following recursive 
relation 
 

,ݔ௡ାଵሺݒ ሻݐ ൌ න ቈන ሺ߬ െ ሻିଵݏ ଶ⁄ డమ

డ௫మ

ఛ

଴
,ݔ௡ሺݒ ቉ݏሻ݀ݏ

௧

଴
݀߬ 

 
For n=1, 2, 3, …, with v0(x, t) chosen to be v0(x, t) = u0(x, 0) = sin(πx). 

 
Then, for n = 1, 
 

,ݔଵሺݒ ሻݐ ൌ න ቈන ሺ߬ െ ሻିଵݏ ଶ⁄ డమ

డ௫మ

ఛ

଴
,ݔ଴ሺݒ ቉ݏሻ݀ݏ

௧

଴
݀߬ ൌ െ

4
3

sinሺݔߨሻ ଷݐ ଶ⁄ . 
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Similarly, for n=2, 3, …, 
 

,ݔଶሺݒ ሻݐ ൌ න ቈන ሺ߬ െ ሻିଵݏ ଶ⁄ డమ

డ௫మ

ఛ

଴
,ݔଵሺݒ ቉ݏሻ݀ݏ

௧

଴
݀߬ ൌ

1
6

ሻݔߨହsinሺߨ  .ଷݐ

 

,ݔଷሺݒ ሻݐ ൌ ׬ ׬ൣ ሺ߬ െ ሻିଵݏ ଶ⁄ ങమ

ങೣమ
ఛ

଴ ,ݔଶሺݒ ൧ݏሻ݀ݏ
௧

଴ ݀߬ ൌ െ ଷଶ

ଽସହ
଻ߨ sinሺݔߨሻ ଷݐ ଶ⁄ , etc. 

 
We can observe that each term of the ADM solution is the same as corresponding term of the 
series solution obtained by VIM. Therefore, the numerical results of ADM are the same as those 
of VIM shown in Table 1. 
 
3.   Analytic Solution by VIM 
 
In this section the VIM scheme (7) is used to re-derive the analytic solution obtained in [8, 9] for 
the problem (3) – (5). The results are summarized in the following theorem. 
 
Theorem 3.1. The series solution obtained using the variational iteration scheme (7) for the 
partial integro-differential equation (4) with conditions (3) and (5) is  
 

,ݔሺݑ ሻݐ ൌ ෍ሺെ1ሻ௡Γ ൬
3
2

݊ ൅ 1൰
ିଵ

൫ߨହ ଶ⁄ ଷݐ ଶ⁄ ൯
௡

sinሺݔߨሻ,

ஶ

௡ୀ଴

 

 
which is the analytic solution (9) of the problem. 
 
Proof:   
 
We prove it using mathematical induction. First, it is obvious for n = 0 that  
 

,ݔ଴ሺݑ ሻݐ ൌ ෍ሺെ1ሻ௡Γ ൬
3
2

݊ ൅ 1൰
ିଵ

൫ߨହ ଶ⁄ ଷݐ ଶ⁄ ൯
௡

sinሺݔߨሻ ൌ sinሺݔߨሻ ,

଴

௡ୀ଴

 

 
which is the same as the definition for u0(x, 0) in (8). Assume by induction that for some k 
 

,ݔ௞ሺݑ ሻݐ ൌ ෍ሺെ1ሻ௡Γ ൬
3
2

݊ ൅ 1൰
ିଵ

൫ߨହ ଶ⁄ ଷݐ ଶ⁄ ൯
௡

sinሺݔߨሻ,

௞

௡ୀ଴

                                                      ሺ10ሻ 

 
For n = k + 1, it can be obtained by variational iteration scheme (7) that 
  

,ݔ௞ାଵሺݑ ሻݐ ൌ ,ݔ௞ሺݑ ሻݐ െ න ቈ
߲

߲߬
,ݔ௞ሺݑ ߬ሻ െ න ሺ߬ െ ሻିଵݏ ଶ⁄ డమ

డ௫మ

ఛ

଴
,ݔ௞ሺݑ ቉ݏሻ݀ݏ

௧

଴
݀߬ 
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                       ൌ ,ݔ௞ሺݑ ሻݐ െ ,ݔ௞ሺݑ ሻݐ ൅ ,ݔ௞ሺݑ 0ሻ ൅ ׬ ׬ ሺ߬ െ ሻିଵݏ ଶ⁄ ങమ

ങೣమ
ఛ

଴ ,ݔ௞ሺݑ ߬݀ݏሻ݀ݏ
௧

଴             
                             

              ൌ sinሺݔߨሻ ൅ ׬ ׬ ሺ߬ െ ሻିଵݏ ଶ⁄ ∑ ሺെ1ሻ௡ గ
ఱ
మ೙௦

య
మ೙

Гቀయ
మ

௡ାଵቁ
ሾെߨଶ sinሺݔߨሻሿ௞

௡ୀ଴
ఛ

଴ .߬݀ݏ݀
௧

଴          ሺ11ሻ      

 
The last equality is derived from the assumption (10). The integration in (11) can be further 
simplified with a substitution s = τy. 
 

න න ሺ߬ െ ሻିଵݏ ଶ⁄ ෍ሺെ1ሻ௡ ߨ
ହ
ଶ௡ݏ

ଷ
ଶ௡

Г ቀ3
2 ݊ ൅ 1ቁ

ሾെߨଶ sinሺݔߨሻሿ
௞

௡ୀ଴

ఛ

଴
߬݀ݏ݀

௧

଴
 

 

ൌ ෍ሺെ1ሻ௡ାଵ ߨ
ହ
ଶ௡ାଶ sinሺݔߨሻ

Г ቀ3
2 ݊ ൅ 1ቁ

න ߬
ଷ
ଶ௡ାଵ

ଶ ݀߬ න ݕ
ଷ
ଶ௡ሺ1 െ ሻିଵݕ

ଶ݀ݕ
ଵ

଴

௧

଴

௞

௡ୀ଴

 

 

ൌ ෍ሺെ1ሻ௡ାଵ ߨ
ହ
ଶ௡ାଶ sinሺݔߨሻ

Г ቀ3
2 ݊ ൅ 1ቁ

ݐ
ଷ
ଶ௡ା ଷ

ଶ 

3
2 ݊ ൅ 3

2

௞

௡ୀ଴

ܤ  ൬
3
2

݊ ൅ 1,
1
2

൰,                                         ሺ12ሻ 

 

where B(p, q) is the Beta function defined by ܤሺ݌, ሻݍ ൌ ׬ ௣ିଵଵݕ
଴

ሺ1 െ  .and p, q > 0 ,ݕሻ௤ିଵ݀ݕ
 

Using the relation ܤሺ݌, ሻݍ ൌ Гሺ௣ሻГሺ௤ሻ

Гሺ௣ା௤ሻ
 between Beta and Gamma functions, and properties of 

Gamma function  
 

Г ቀଵ

ଶ
ቁ ൌ ሻݖГሺݖ  and , ߨ√ ൌ Гሺݖ ൅ 1ሻ, 

  
we can rewrite (12) as  
 

෍ሺെ1ሻ௡ାଵ ߨ
ହ
ଶ௡ାଶ sinሺݔߨሻ

Г ቀ3
2 ݊ ൅ 1ቁ

ݐ
ଷ
ଶ௡ାଷ

ଶ 

3
2 ݊ ൅ 3

2

௞

௡ୀ଴

Г ቀ3
2 ݊ ൅ 1ቁ Г ቀ1

2ቁ

Г ቀ3
2 ݊ ൅ 3

2ቁ
 

 

ൌ ෍ሺെ1ሻ௡ାଵ ߨ
ହ
ଶ௡ାଶ sinሺݔߨሻݐ

ଷ
ଶ௡ାଷ

ଶ ߨ
ଵ
ଶ

ቀ3
2 ݊ ൅ 3

2ቁ Г ቀ3
2 ݊ ൅ 3

2ቁ

௞

௡ୀ଴

                                            

 

ൌ ෍ሺെ1ሻ௡ାଵ ߨ
ହ
ଶሺ௡ାଵሻ sinሺݔߨሻݐ

ଷ
ଶሺ௡ାଵሻ

Г ቀ3
2 ሺ݊ ൅ 1ሻ ൅ 1ቁ

                                           

௞

௡ୀ଴
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                               ൌ ෍ ሺെ1ሻ௠ ߨ
ହ
ଶ௠ sinሺݔߨሻݐ

ଷ
ଶ௠

Г ቀ3
2 ݉ ൅ 1ቁ

                                                          

௞ାଵ

௠ୀଵ

                   ሺ13ሻ   

 
The last summation is obtained by a change of the index: m = n+1. Combining expressions (11) 
and (13) yields 
 

,ݔ௞ାଵሺݑ ሻݐ ൌ sinሺݔߨሻ ൅ ෍ ሺെ1ሻ௠ ߨ
ହ
ଶ௠ sinሺݔߨሻݐ

ଷ
ଶ௠

Г ቀ3
2 ݉ ൅ 1ቁ

                                     

௞ାଵ

௠ୀଵ

 

 

                         ൌ ∑ ሺെ1ሻ௠Γ ቀଷ

ଶ
݉ ൅ 1ቁ

ିଵ
൫ߨହ ଶ⁄ ଷݐ ଶ⁄ ൯

௠
sinሺݔߨሻ.௞ାଵ

௠ୀ଴  

 
The proof explains the excellent numerical results listed in Table 1 in Section 2.1. Also it is 
obvious that the proof of the theorem can be done by ADM since it generates identical terms in 
the series solution as VIM. 
 
4.  Conclusions and Discussions 
 
Even though VIM and ADM are already well known, we have shown that those algorithms can 
be used successfully to solve a partial integro-differential equation with a weakly singular kernel. 
From the numerical analysis, we observed that the numerical solution obtained from VIM and 
ADM shows a rapid convergence of iterates after a reasonable number of iterations. Furthermore, 
VIM and ADM are used to derive the analytic solution via the mathematical induction. In our 
work Maple was used to calculate the exact integrations of the series solutions obtained from 
VIM and ADM numerically. The advantage of these two methods is the ability to solve integro-
differential equations rapidly without discretizing variables for numerical integration. 
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