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Abstract 
 
Both exponential and gamma distributions play pivotal roles in the study of records because of 
their wide applicability in the modeling and analysis of life time data in various fields of applied 
sciences. In this paper, a distribution of record values of the ratio of independent exponential and 
gamma random variables is presented. The expressions for the cumulative distribution functions, 
moments, hazard function and Shannon entropy have been derived. The maximum likelihood, 
method of moments and minimum variance linear unbiased estimators of the parameters, using 
record values and the expressions to calculate the best linear unbiased predictor of record values, 
are obtained. 
  
Keywords:  Moments, exponential distribution, gamma distribution, Lomax distribution, ratio,  
  record values 
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1.   Introduction 
  
Suppose that   1  nnX  is a sequence of independent and identically distributed ( ... dii )   random 

variables ( srv' ) with cumulative distribution function ( cdf ) F .  Let 
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max nY  min  njX j 1 |    for   1n .  We say  jX  is an upper (lower) record value of 

 ,1 | nX n  if   jY 1  jY ,  .1j  By definition  1X  is an upper as well as a lower record 

value. The indices at which the upper record values occur are given by the record times 
  1, nnU ,  where   minnU     1 ,  , 1 | 1    nXXnUjj nUj  and   11 U . For 

detailed treatment of the record values, see Ahsanullah (2004). From here onward, for simplicity, 
the nth  upper record value  nUX   will be denoted by )(nX . The development of the general 

theory of statistical analysis of record values began with the seminal work of Chandler (1952). 
Further contributions continued with the work of many authors and researchers, among them 
Ahsanullah (1980, 2004, and 2006), Arnold et al. (1998), Rao and Shanbhag (1998), Nevzorov 
(2000), Gulati and Padgett (2003), Balakrishnan et al. (2009), Ahsanullah et al. (2010), and 
Ahsanullah and Hamedani (2010) are notable. It appears from the literature that, despite many 
researches on record values such as estimation of parameters, prediction of record values, 
characterizations, reconstruction of past record values (which may also be viewed as the missing 
records) based on observed records, etc., not much attention was paid to the studies of record 
values from the ratio of independently distributed random variables. The distribution of the ratio 
of independent random variables arises naturally in many applied problems of biology, 
economics, engineering, genetics, hydrology, medicine, number theory, order statistics, physics, 
psychology, etc. Some of the notable examples are the ratios of inventory in economics, ratios of 
inheritance in genetics, ratios of target to control precipitation in meteorology, ratios of mass to 
energy in physics, among others. The distributions of the ratio /X Y , where X  and Y  are 

independent random variables and belong to the same family, have been studied by many 
researchers, see, for example, Press (1969), Malik and Trudel (1986), Pham-Gia (2000), 
Nadarajah (2005a, 2006, 2010), Nadarajah and Ali. (2005), Nadarajah and Gupta (2005, 2006), 
Nadarajah and Dey (2006), Ali et al. (2007), and Khoolenjani and Khorshidian (2009), among 
others. Recently, some researcher have started looking at the distributions of the ratio /X Y , 

when X   and Y  are independent random variables and belong to different families, see, for 
example, Nadarajah (2005b), Nadarajah and Kotz (2005a, 2005b, 2006, 2007), Shakil and Kibria 
(2006), Shakil et al. (2006, 2008), among others. In addition, some researchers have begun to 
study the record values of the ratio of independent random variables when they belong to the 
same family, see, for example, Shakil and Ahsanullah (2011) for the record values of the ratio of 
independent Rayleigh random variables, and Ahsanullah and Shakil (2011) for the record values 
of the ratio of independent exponential random variables. In this paper, the distribution of record 
values of the ratio 1 2/X X , when 1X  and 2X  are independent exponential and gamma random 

variables, is investigated. The organization is as follows. Section 2 contains the distributional 
properties of record values of the ratio of independent exponential and gamma random variables. 
In Section 3, some recurrence relations for calculating the higher moments are given. Section 4 
contains the estimation of parameters using record values and prediction of record values. 
Concluding remarks are given in Section 5. 
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2.  Distributional Properties of Record Values of the Ratio of Independent                    
Exponential and Gamma Random Variables 

 
In what follows, the distributional properties of record values of the ratio of independent 
exponential and gamma random variables are provided. For the sake of completeness, the ratio of 
Independent exponential and gamma random variables is first given below. 
 
 
2.1.  Ratio of Independent Exponential and Gamma Random Variables 
  
Exponential Distribution: A rv  1X  is said to have an exponential distribution if its cdf  F  is 
given by 
 
          (exp11xF )1

1 x , 01 x , 0 ,                                                                               (1)  

 
where   is known as the scale parameter of the exponential distribution.  

 
Gamma Distribution: A rv  2X  is said to have a gamma distribution if its cdf  F  is given by 
 

         
 

 

 2
1 ,

2

x
xF , 2x  ,0    ,0    0 ,                                                                               (2) 

 
where   and   are respectively called the shape and scale parameters of the gamma 

distribution, and   za ,  1  

0

 a
z

t te   dt , 0a , denotes the incomplete gamma function. When 

the scale parameter 1  in (2), the rv  2X  is said to have a standard gamma distribution. For 
detailed treatment on exponential and gamma distributions, the interested readers are referred to 
Johnson et al. (1994). 

  
Suppose that 1X    )(Exp  and 2X    )(Gamma  are independent exponential and gamma 

random variables distributed according to (1) and (2) respectively. Suppose 1 2/X X X . Then, 

using the Equation (3.381.4), Page 317, Gradshteyn and Ryzhik (1980), the cdf  of the rv  X  is 
obtained as 

 

          



0

xFX xFX (
1

)2x )( 22
xf X  




x
dx

  
 

2 1


 ,                                                                  (3) 

 
where 0x ,  0  is the scale parameter and  0  is the shape parameter of the 

distribution of the ratio 1 2/X X X . Obviously, the rv X  with the cdf  (2.3) has the Lomax (or 

Pareto II) distribution [see Lomax (1954)].   Applications of the Lomax distribution mainly lie in 
the fields of business, economics and reliability modeling, see, for example, Giles et al. (2011), 
and references therein. Many researchers have also studied the applications of Lomax 
distribution to order statistics and record values, among them David (1981), Arnold and 
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Balakrishnan (1989), Ahsanullah (1991, 2004), Balakrishnan and Ahsanullah (1994) are notable. 
Also see Lee and Lim (2009). Note that the Lomax distribution considered by Balakrishnan and 
Ahsanullah (1994) is a particular case of Equation (2.3) for 1 . Many properties of the record 
values of the distribution of the ratio of independently distributed srv'  1X    )(Exp  and 2X  
  )(Gamma  can be derived in a similar way to the record values of Lomax distribution. 
However, for the sake of completeness and without loss of generality, the distribution of the 
record values of the ratio 1 2/X X  of the independently distributed srv'  1X    )(Exp  and 2X  

  )(Gamma is independently investigated in this paper. Using the Equation (3.194.3), Page 

285,  Gradshteyn and Ryzhik (1980), the kth  moment of the rv  1 2/X X X  is obtained as 

 
       ][ kXE     k  kkB  ,1 ,                                                                                          (4) 
 
where 0 , 0 , and k , and  .B  denotes the beta function. Clearly, the kth   moment 

of the ratio 1 2/X X X  exists only when k , where 0k  is an integer. Also it is evident 

from Equation (4) that, since the  XVar  exists only when 2 , the distribution of the rv  

1 2/X X X  has very thick (that is, heavy) tails. 

  
2.2.  Record Values of the Ratio of Exponential and Gamma Random Variables  

 
2.2.1.   Many properties of the upper record value sequence can be expressed in terms of the 

cumulative hazard function,    xFxR ln , where   10  xF  and     xFxF  1 . If 

we define  xFn  as the cdf  of )( nX  for 1n ,   then we have 

 

           
   uFdxF n
uRx

n

n

 
  

 

 1  





 , 

  
where  x , see Ahsanullah (2004). Hence using the above equation, the cdf   xFn  of 

the nth  record value )( nX  of the ratio 1 2/X X X , where 1X    )(Exp  and 2X    

)(Gamma , is given by 
 

 
 

  ...,3,2,1, 

ln,
  

  

 






 


nxF n

n

n
x





 ,                                                                          (5) 

 
where x ,  , 0 . Note that the distribution of the first record value is the distribution of the 
parent ratio of exponential and gamma random variables. The possible shapes of the pdf  

 xfn  corresponding to the cdf  (5) of the nth  record value )( nX , when 2n  and 5 , are 

provided for some select values of the parameters   and   in Figures 1 (a) and (b) respectively. 
The effects of the parameters can easily be seen from these graphs. For example, it is clear from 
the plotted Figures 1 (a) and (b), for selected values of the parameters, the distributions of the 
random variable )( nX  are unimodal and positively (that is, right) skewed with longer and 
heavier right tails. 
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        (a) dashdot;2,=0.5,=:2 n                    (b) dashdot;5,=0.5,=:5 n  
       longdash.0.5,=2,= solid;1,=1,=      longdash.0.5,=2,= solid;1,=1,=   

 
                   Figure 1: PDF Plots for (a) 2n  (above left); and (b) 5n  (above right). 

 
 
2.2.2. Moments: The kth  moment of the nth  record value )( nX  with the cdf  (5) is given by 
 

      
 

    dxxnXE
xn

kk

n

x

1

1  

  
  

  
 

ln

0])([ 










 

 








 .                                                                      (6) 

 

Substituting   ux  





  
  ln  in equation (6), the kth  moment is obtained as 

       nk nXE ])([ k     njkj

jkkkj

j
) ( !

)1()1(

0

1








 
 ,                                                                     (7) 

where  , 0 ,  k1 , and 1k   is an integer. Taking 1n  in (7), and applying the series 
representation of the beta function (see Eq. 3.382.1, page 950, Gradshteyn and Ryzhik (1980)), 
the kth  moment (4) of the first record value can easily be obtained.  
 
 
2.2.3. Hazard Function: The hazard function of )( nX with cdf  (2.5) is given by 
 

   
 

 
          ln,

ln 

1 1
  

  

1  

  
  

 

 












 





 





 

 













xnn
xF

xf

n
x

n

x

n

nxh ,                                                              (8)                         

 
where x ,  , 0 , and ...,3,2,1n . The possible shapes of the hazard function  xhn  in 

Eq. (8), when 2n  and 5 , are provided for some selected values of the parameter   and   in 
Figures 2 (a) and (b) respectively. The effects of the parameters can easily be seen from these 
graphs. For example, it is clear from the plotted Figures 2 (a) and (b), for selected values of the 
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parameters, the hazard functions have upside down bathtub shapes, and are unimodal and 
positively (that is, right) skewed with longer and heavier right tails. 
 
      (a) dot;1,=1,=:2 n                                      (b) dot;1,=1,=:5 n  

longdash;3,=1,= dash;2,=1,=              longdash;3,=1,= dash;2,=1,=   
      solid.5,=1,=                                                         solid.5,=1,=       

 
    Figure 2:  Hazard Function Plots for (a) 2n , 1  and 5,3,2,1  (above left); and (b)  5n , 1  

and 5,3,2,1  (above right). 

 
2.2.4. Entropy: Further, as proposed by Shannon (1948), entropy of an absolutely continuous 
random variable X  having the probability density function X  x  is defined as 

 

          dxxxxEXH XX

S

X  lnln  ,                                              (9) 

where   0 :  xxS X . Entropy provides an excellent tool to quantify the amount of 

information (or uncertainty) contained in a random observation regarding its parent distribution 
(population). A large value of entropy implies the greater uncertainty in the data. Using the pdf  
corresponding to the cdf  (5) in Eq. (9), and applying the Eqs. 3.194.3/p. 950, 4.293.14/p. 558, 

and 4.352.1/p. 576 of Gradshteyn and Ryzhik (1980), we obtain the Shannon entropy )(nH  of the 

nth  record value )( nX with cdf  (5) as 
 

     )( nH     


 n ln     11 1  nn    n ,                                                           (10) 

 
where 1n  is an integer , and  z  denotes digamma function, see Abramowitz and Stegun 
(1970).  
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Remark:  From Equation (10), it follows that 
 
(i)  the sequence  )( nH  is monotonic increasing in n ,    , 0 , which follows from the 

definition of digamma function and the inequality  
1

2 
1 )()(ln zz zz   , 0z , see Alzer 

(1997); 
 
(ii) the sequence  )(nH  is a monotonic increasing function of  ,    , 0 , and 1n  (an 

integer), which follows from (10) by differentiating it with respect to  ; 
  
(iii) the sequence  )(nH  is a monotonic decreasing convex function of  ,    , 0 , and 

1n  (an integer), which follows from (10) by differentiating it twice with respect to  . 
  
2.3.   Representation of Records 
 

Consider the cdf  of 
2

1

X

X
X  , where 1X    )(Exp  and 2X    )(Gamma , given by the 

Equation (3), from which we have 
 

11 ( ) [ (1 ) 1],F x x      ,  
 

where x ,  , 0 . Suppose that 
 

   ( ) ln (1 ( ) ) ln .x
Fg x F x



    . 

 
Then, 

 
 ixn

iiF
n
i xg  

11 ln)( 
     

 

                        
 ixn

i
 

1ln 
 . 

 
Thus, 












































i

ix
n
i

iF
n

i

x

n
i

xg
ee

 1

ln
)(

111

 

1

1 . 

 
Further, since the inverse of the function ))(1(ln)( xFxg F   is given by 
 

)1()( 11 x
F eFxg   , 

 
it follows that 
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  ]1[))((
 1

1
1

1 




ix

n
iiF

n
iF Fxgg





    

 

                                  






 



 1
1

 1





ix
n
i . 

 
Hence, using the Representation Theorem 8.4.1, page 256, Ahsanullah (2004), we have 
 



















 1
1

1)(
i

X

n
i

d

nUX


 ,                                                                           (11) 

 
where iX , ni ,...,2,1   are ... dii  with the cdf (3). If 1n , then from Equation (11), we have 

 

XX
d

U )1( . 

 
Thus the moment of the first record value )1(UX  is given by Equation (4) of the moment  kXE  

of the parent distribution of the ratio 1 2/X X X . It is obvious from Equation (4) that, for 

k ,  kXE  fails to exist. Now, for some 0 , we consider 
 

  dxxXE
x

kk
1]  [

  
0

 



 




  

 

                      dx
x

kx
1  

  

  1 0 






 






 , 

from which, by letting u
x



, and applying Equation (3.194.3), Page 285, Gradshteyn and 

Ryzhik (1980), we have 
 

   1, ,
k kE X B k k

            

 
which is finite only when  k  for some 0 . Thus, by Theorem 1.3.1, page 15, 

Ahsanullah (2004), it follows that the kth  moment ])([ nXE k of the nth  upper record value 

 nUX  of the ratio 1 2/X X X , where 1X    )(Exp  and 2X    )(Gamma , exists for all 

1n , provided  k  for some 0 . 
 
 
3.    Recurrence Relations for Higher Moments 
 
 
In this section, we derive some recurrence relations by which higher moments can easily be 
calculated. The expressions for the variance and covariance are also given. 
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3.1.   Variance and Covariance 
 
Equation (11) can be simplified to 
 

1 2

( ) ( ... 1),n
d

XX X
U nX  

        

 
where the pdf  of iX  is )1()(    x . Now 

 
nX

nU EXE ))(()( )( 
  , 

 

where 1
1

0 )()( 
  



  dxxE X , 1 . Thus, 

 
n

nUXE )()( 1)(  
 ,  

 
from which we obtain 
 

n
n

nUXE  
   )1)(()( 1)( ,                                                                                  (12) 

  
where  
 

  11  
n

n 
 , 1 .  

  
We can calculate higher moments of )(nUX  as follows. From Equation (11), we have 

 
nkXkk

nU EXE ))(()( )( 
  . 

 
Taking 2k  in the above equation, we have, for 2 ,  

 
n

nUXE )()( 2
22

)(  
 ,   

 
since 
 

dxxE xX 12
0

2 )()()(   




    

 

                        dxx 12
0 )(       
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                       2
122


 
    

 
                       2 

 , 2 .   

 
The variance of )(nUX  is obtained as  

    
)()( )()(  nUnU XVarXVar   

 
                           ])()([ 2

12
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  



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Again, from Eq. (11), we have 
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, 

 
where kXXX ,...,, 21  are ... dii  with the cdf  as 


 )( x . Also kXXX ,...,, 21  are independent of 

)( knUX   and )(nUX . Thus we have 
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from which we obtain  
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Thus, 
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3.2. Recurrence Relations for Moments 
 
From Equation (3), we have 
 

 x      )(1 xFxf XX   , 0,, x ,  
 
where  xf X  denotes the pdf  corresponding to the cdf (3) of the rv 1 2/X X X . Using the 

above equation, the following recurrence relations for the single and product moments of the 
record values of the rv  1 2/X X X  are obtained from Ahsanullah (2004), Section 4.2, with 

1/   and   , or following Balakrishnan and Ahsanullah (1994). For the sake of brevity, 
the proofs are omitted here. 
  
Result 1.  For 2n , ,2,1,0r ...,  and 1r , 
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)1(




r
nUXE . 

 
Result 2.  For 21  nm , ,2,1,0, sr ...,  1r , and 1s ,  
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Result 3.  For 21  nm , and 1 ,  

 
)(),( 1)()(  


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Result 4.  For 11  nm , and 1 ,  
 
       mn

nUmU XXCov 
 )(),( 1)()( 
 )( )(mUXVar . 

 
Result 5.  For 22  nm , and ,2,1,0, sr ...,  
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r
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r
mU XXEXXEXXEXXE  


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


  . 

 
 
4.  Estimation and Prediction 
 
In this section, we derive the minimum variance linear unbiased estimators (MVLUE’s) of the 
parameters of the record values from the distribution of the rv 1 2/X X X . The estimation of 

parameters using the methods of moments (MOM) and maximum likelihood estimation (MLE) 
are also given. The expressions to calculate the Best Linear Unbiased Predictor (BLUP) of 
record values are obtained. For details on MVLUE and BLUP, one can visit Lloyd (1952), 
Sarhan and Greenberg (1962), David (1981), and Ahsanullah (2004), among others. 
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4.1.  Estimating   for Known   Based on n  (Upper) Records 
 
Knowing  , the MVLUE of   using upper record values can be obtained following Lloyd's 
method (1952) for deriving MVLUE as shown below. Let )1(UX , )2(UX , ... , )(nUX  be n  upper 

record values of the rv  1 2/X X X  with the cdf  F  given by (3). Let 

 
 ),...,,( )()2()1(

/
nUUU XXXX  . 

   
Suppose 
 

//
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/
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)1,...,1,1(L  , 

 
and 
 
       )( , jiVV   , 

  
where  jiV ,   is the covariance of  )(iUX   and  )( jUX  , given by 

 
      jiji baV ,  ,  nji 1  ,  jiij VV ,,   , 
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
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
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  . 

 
Then )(XE    and )(XVar V2 .  
 
It follows that 
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12)(,
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
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Note that V  is a pattern matrix and its inverse is well known, see Graybill (1983). Let  

)( ,1 jiVV   . Then, the inverse 1V  can be expressed as 
 

1,,1   iiii VV  
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 , 

 
and 

  
0 , jiV  for 1||  ji , 

 
where 010  nba  and 110  nab . 

 
On simplification of the above, it can be shown that  

 
iii cV )142( 2,   , 1,...,2,1  ni , 

 
iiiii cVV )23( 21,,1    , 1,...,2,1  ni , 

 
nnn cV )12( 2,   , 

 
0, jVi  for 1||  ji , 

 
where 

  


 2c , 2 . 

 
Now, let   be the MVLUE of  . Then, using Lloyd's method (1952) for deriving MVLUE, we 
have 
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from which we have 
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Further, based on the first n  upper record values, the best linear invariant estimator (BLIE) 
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  is given by  
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see Ahsanullah (2004). Hence, the mean squared error (MSE) of 
~

  is given by 
       

 





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that is,  
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
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T
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In the following Table 1, the variances and the mean squared errors of MVLUE and BLIE, 
respectively, are calculated for some selected values of   and n . 
 

Table 1: The variances and the mean squared errors of MVLUE and BLIE  1  

n  
 

  
 

 *Var  
 






 ~

MSE  

2    
 3 4.3333 0.8125

 5 1.8444 0.6484

 8 1.3819 0.5802

 10 1.2781 0.5610

 20 1.1170 0.5276

5    
 3 3.0333 0.7521

 5 0.8840 0.4691

 8 0.5186 0.3415

 10 0.4412 0.3062

 20 0.3268 0.2463

10    
 3 3.0001 0.7500

 5 0.7850 0.4398

 8 0.3887 0.2799

 10 0.3049 0.2336

 20 0.1834 0.1559
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It is evident from the Table 1 that the mean squared errors of BLIE, that is, 





 ~

MSE , are 

considerably smaller than those of the MVLUE, that is, )( Var . As   increases, both 







 ~

MSE  and )( Var  decrease. 

 
4.2.  Method of Moments (MOM) Estimation of the Parameters   and   
 
Suppose that the sample kth  raw moment of the nth  record value )(nX  with the cdf  (5) be 

denoted by 


k . Now, since from Equation (12), we have 

 

n
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nUXE  
   )1)(()( 11)( ,  

 
where  
 

         11  
n

n 
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therefore we can take 
^

   as the MOM estimator of   given by 
 

      
n

^

1
^

 .  

 
Using Equations (12) and (13), it can be seen that 
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 , 

 
from which we obtain  
 
    1

2

^
2( )

1  
^ ^

22  ( )2 1

n



   


 
 
 
 

  
 

  , 

 
which is the required MOM estimator of  . 
 
 
4.3.  Maximum Likelihood Estimation (MLE) of the Parameters   and    
 
In this section, we find the MLE's of   and   based on n  upper record values )1(UX , )2(UX , ..., 

)(nUX  of the rv  1 2/X X X  with the cdf  F  given by (3).  
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Using Equation (3), the log-likelihood function is given by 
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.             (15)  

 
Setting the partial derivatives of Equation (15) with respect to   and   equal to zero, that is, 

0
ln






L
 and 0

ln






L
, and solving these iteratively gives the MLE's MLE

^

  and MLE

^

  of    

and   respectively. Further, assuming that   is known, then, using Eq. (15), the MLE MLE

^

  of 
  is obtained by solving the following equation 
 

0
ln






L
, 

 
which gives 

    ln  ln

^


nx

n
MLE . 

 
Also see Abd Ellah (2006) for Bayesian and non-Bayesian estimates using record statistics from 
Lomax distribution. 
 
 
4.4.  Best Linear Unbiased Predictor (BLUP) 
 
In this section, we derive the expressions to calculate the BLUP of record values.  Suppose 

 
)1,...,1,1( 21  n , 

 
j

j )( 1
1
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and 
 
 kk

kUkk XVarv 2
12)(, )()()(   



 . 

 
Then the BLUP of ,,)( nsX sL   is given by 

 
      )()1)(( 1

1)(  
 


  XVWX s
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where   is the MVLUE of   given by 
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 It can be shown that 
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sU XEXE  


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Also, since 

)(sUX  is an unbiased estimate of )(sLX , we have 

 

     1
( ) 1( ) [ ( ( ) 1) ( ) ].s

U sVar X Var W V X
  

   
     

 
The above expressions can easily be used to compute the Best Linear Unbiased Predictor 
(BLUP) of record values for some selected values of   and n . 
  
 
5.   Concluding Remarks 
 
In this paper, we have discussed the distribution of record values when the parent distribution is 
the ratio of two independently distributed random 1X    )(Exp  and 2X    )(Gamma . The 
expressions for the cumulative distribution functions, moments, hazard function and Shannon 
entropy have been derived. The maximum likelihood, method of moments and minimum 
variance linear unbiased estimators of the parameters, using record values and the expressions to 
calculate the best linear unbiased predictor of record values, are obtained. The findings of this 
paper can be useful for the practitioners in various fields of studies and further enhancement of 
research in record value theory and its applications. 
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