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Abstract

The main objective of the present paper is to study the propagation of waves in the transversely
isotropic medium in the context of thermoelasticity with GN theory of type-II and III. By
imposing the boundary conditions on the components of displacement, stresses and temperature
distribution, wave equation have been solved. Numerically simulated results have been plotted
graphically with respect to frequency to evince the effect of anisotropy.
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1. Introduction

In last three decades, non-classical theories involving finite speed of heat transportation in elastic
solids have been developed to remove the paradox obtained in classical theory. These
generalized theories involve a hyperbolic-type heat transport equation, in contrast to the
conventional coupled thermo-elasticity theory (1967), which involves a parabolic-type heat
transport equation, and are supported by experiments exhibiting the actual occurrence of wave-
type heat transport in solids, called second sound effect. The extended thermo-elasticity theory
proposed by Lord and Shulman (1967), incorporates a flux-rate term into Fourier's law of heat

482



AAM: Intern. J., Vol. 6, Issue 2 (December 2011) 483

conduction, and formulates a generalized form that involves a hyperbolic-type heat transport
admitting finite speed of thermal signals. Green and Lindsay (1972) developed temperature-rate-
dependent thermo-elasticity theory by introducing relaxation time factors that does not violate
the classical Fourier law of heat conduction and this theory also predicts a finite speed for heat
propagation.

Chandrasekharaiah (1998), Hetnarski and Ignazack (1999) in their recent surveys, considered the
theory proposed by Green and Naghdi (1991,1992,1993,1995) as an alternate way of formulating
the propagation of heat. This theory is developed in a rational way to produce a fully consistent
theory that is capable of incorporating thermal pulse transmission in a very logical manner. They
make use of general entropy balance rather than an entropy inequality. The development is quite
general and the characterization of material response for the thermal phenomena is based on
three types of constitutive functions that are labeled as type I, type 11, and type III. When theory
of type I is linearized, the parabolic equation of heat conduction arises. Here, we are interested in
the theory of type II (a limiting case of the type III), which does not admit energy dissipation.
This theory is usually called "without energy dissipation". Following Green and Naghdi, the
theory of thermoelasticity without energy dissipation is a good model to explain the heat
conduction in continua.

Quintanilla (2002), proposed a model of the thermoelastic theory without energy dissipation for
materials with affine microstructure. In this article he obtained the equations for linear theory
and also obtained uniqueness theorem for materials with a centre of symmetry. Taheri et al.
(2004) and Puri et al. (2004) employed the Green-Naghdi linear theory of thermoelasticity of
types Il and III to study the thermal and mechanical waves in a layer of homogeneous
thermoelastic solid and plane waves in infinite medium respectively. Many researchers
investigated different type of problems in the theory of thermoelasticity of type III [Lazzari and
Nibbi (2008), Roychoudhuri and Bandyopadhyay (2007), Mukhopadhyay and Kumar (2008),
Quintanilla and Racke (2003), Quintanilla (2009), Quintanilla (2001), Quintanilla (2004),
Leseduarte and Quintanilla (2006)].

In the present paper, the propagation of waves in a transversely isotropic medium in the context
of thermoelasticity with GN theory of type-II and III has been studied. This study has many
applications in various field of science and technology, namely, atomic physics, industrial
engineering, thermal power plants, submarine structures, pressure vessel, aerospace, chemical
pipes and metallurgy. The graphical representation in given for amplitude ratios of various

reflected waves for different incident waves at different angle of incidence i.e., for@ = 307,45°.

2. Basic Equations

The constitutive relations and balance laws in general anisotropic thermoelastic medium,
possessing center of symmetry, in the absence of body forces following Green and Naghdi (1992)
are given by
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Constitutive relations

L, = Cijklekl _ﬂgTa

i (1)
The deformation tensor is defined by
u. . +u..
€ = Gy *0) >
‘ 2

Balance law

Ly = PU; (2)
Equation of heat conduction

KT, +K,T, =(T,p,ii,, +pc'T), i,j=123, (3)

where p is the mass density, 7, are components of stress tensor, u, the mechanical displacement,
e; are components of infinitesimal strain, T the temperature change of a material particle, 7| the
is the thermal conductivity, K ; are the
=C,y@, are the thermal elastic coupling tensor,

reference uniform temperature of the body, K,

characteristic constants of the theory, f;
a,, are the coefficient of linear thermal expansion, ¢ the specific heat at constant strain, Cy,, are
characteristic constants of  material following the symmetry  properties
Ciut =Cry =Clss K;. =K K,=K,,B;, =0, The comma notation is used for spatial

derivatives and superimposed dot represents time differentiation.

ji?

3. Problem Formulation

Following Slaughter (2002), the appropriate transformation is used on the set of equations given
by equation (1), to derive equations for transversely isotropic medium and restricted our analysis
to the two dimensional problem. The origin of the coordinate system (x,,x,,x;)is taken at the

free surface of the half space. The x; —x, plane is chosen to coincide with the free surface and
x,axis pointing normally into the half-space, which is thus represented by x, > 0. We consider
plane waves in plane such that all particles on a line parallel to x, -axis are equally displaced.

Therefore, all the field quantities will be independent of x, coordinate. So, the component of the
displacement vector is taken in the form

U = (u,,0,u5) (4)
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and assume that the solutions are explicitly independent of x,, i.e. 0/0x, =0. Thus the field
equations and constitutive relations for such a medium reduces to:

0’u 62 0’u oT 0u
C L+ C L+(C; +C —p—= L,
1 8x12 55 8x3 (Cs 55)a ox, B ox, P o (5)
0’u, 0%u, 0’u oT 82u3
CSS ax12 +C33 6)(,'3 +(C13 +CSS)6 a 183 - atz s (6)
T o’ .o . o°T . 0T j i
K +K +K +K = 3),
laxlz 3 ax32 1 aXIQ 3 ax32 pC‘ Gt (ﬁl ﬂ} ) (7)

where f, =C,a,+Ca;,5,=C,;a,+Cy;a;, and we have wused the notations
11 > 1,13 —» 5,33 — 3, for the material constants.

For further considerations, it is convenient to introduce the non-dimensional quantities defined

(8)

where L,t ,T, are parameters having dimension of length, time and temperature respectively.

Solution of the Problem

Let p=(p,,0, p;) denote the unit propagation vector, ¢ and & are respectively the phase

velocity and the wave number of the plane waves propagating in x, — x, plane.

For plane wave solution of the equations of motion of the form

(ulau3’T) = (1/_[1,1/73,7_—')€i§(p1x1+p3x3*0f) )

9)
With the help of equations (8) and (9) in equations (5)-(7), three homogeneous equations in three
unknowns are obtained. Solving the resulting system of equations for non-trivial solution results

in

6 4 2 _
Ac’ +Bc"+Cc”+D =0, (10)

where
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A=g.,B=g. +wg, +g,0°,C=wg,-g,,D=g +0g,,g =(a;a, —d,d,p.pi)a,,

g, =ala,(d,+d,)— pid.d )+d,a.a, — p.pid,(d.d, +d.d )+ pld,(pidd,+pi(d,+dd.,)),
=—ila;(p/dd,, + p;a,d,)1+ pi ps (d, (P + p5 —dydp;) = dydd ), p3)) g = dydyds,
g, =ilpld, (dsa, +d,a))+ pid,(d,a; +dsa,)), g, =—id,d,(pid, + pid,).gs = pid,d.d,,,

g =d,dya,, +pld,(dd,+d,d,)+ pild,d,—d,)—d,d,d,],a, =(d p] + p:)i=1,5,10,
2
dl=C“,d2:(CI3+C55),d3—ﬂl",d4—pL d _Css d, =d,,d, ﬂl dS_PL

—_— = —_ ) 5 - b
CSS CSS CSS (-"551‘02 C33 C33 C33t3
d pC*LZ d _ Kl* d _ Kl d _ K3 ﬂle d ﬂ3L2
9 * 2 2Y10 T * Y1 T * s¥12 T * s¥13 *2’14_ * 9 °
K3t0 K3 K3t0 K3to K3to K3to

The roots of this equation give three values of ¢* . Three positive values of ¢ will be the
velocities of propagation of three possible waves. The waves with velocities c,,c,,c; correspond

to three types of quasi waves. We name these waves as quasi-longitudinal displacement (qLD)
wave, quasi thermal wave (qT) and quasi transverse displacement (qTD) wave.

4. Reflection of Waves

Consider a homogeneous generalized thermoelastic transversely isotropic half-space occupying
the regionx, > 0. Incident qLD or qT or qTD wave at the interface will generate reflected qLD,

qT and qTD waves in the half space x, > 0. The total displacements and temperature distribution
are given by

(uy,u;,T) = ZA (Lr,,s,)e™, (11)
where
o(t—x sine, —x;cose;)/c;, j=1,2,3,
j = (12)
o(t — x, sin e; + X, cose_/.)/cj, j=4,5,6,

w 1s the angular frequency. Here subscripts 1,2,3 respectively denote the quantities
corresponding to incident qLD, qT and qTD wave whereas the subscripts 4,5 and 6 respectively
denote the corresponding reflected waves and
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A A,
i 2
rpE s =
/\j /\j
2 . -1 ) -1
as _dSCj id; p;& _ dyp,p; id, pi&

AW

dyep,p a, —dc’
Naj = 8. ; z 5 2 28 ' »dy :plzdn +p32d12.
_lc‘/f P, lcj§ P:d,

For incident
qLD-wave: p, =sine,, p, =cose,,
qT-wave: p, =sine,, p, =cose,,
qID-wave: p, =sine;, p, = cose;,
for reflected
qLD-wave: p, =sine,, p, =cose,,
qT-wave: p, =sines, p, =cose;,

qID-wave: p, =sine,, p, =cose;.

= N, =
J . . Y . 2g2 . 24/
lc?§2p3d14 $(ay, —iwa, _dgcjz‘) —ic;&"pds §(ay —ima, —dycy)
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Here ¢, =¢,,e, = e,,e; = ¢4, 1.e. the angle of incidence is equal to the angle of reflection in

generalized thermoelastic transversely isotropic, so that the velocities of reflected waves are
equal to their corresponding to their corresponding incident wave’s i.e. ¢, =c¢,,c, = ¢5,¢; = 4.

5. Boundary Conditions

The boundary conditions at the thermally insulated surface x, =0 are given by

t;, =01, = O’STT =0,
3

where

(13)
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ou ou ou, Ou
_1+C33_3_ﬁ3T’t31:C55( Ly—

t,, =C ukad §
. P o, Ox,4 Ox; Ox,

)- (14)

The wave numbers &, j =1,2,.....6 and the apparent velocity ¢, j =1,2,.....6 are connected by
the relation

& =85 =i =c s =, (15)
at the surface x, =0. Relation (14) may also be written in order to satisfy the boundary
conditions (12) as

sine, sine sine 1
e = 6§ =2, (16)

c c, Cs c

Making use of equations (7), (10), (13) and (15) into thermally insulated boundary conditions
(12), we obtain

6
D A4, =0, i=123, (17)
=
where
C. sine, C.. cose, S C.. cose, sin e,
Cute,, Caf28 BN ias, ol =123,
o ¢; g ¢ G, OF ¢; ¢
Alj = . . H Az; = ‘ . A s
Sine; C,, cos e, S . ' C.. cose; sSin e
& / -7 33 ! —ﬂ3 L, j=456, =33 / +7; L j=45,6,
C, ¢; C, ¢ C, Ch ¢ G
CcoSe.
s L, =123,
¢;
A3j =
cose;
_SJ c s J :455365

Incident qLD-wave:
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In case of incident qLD- wave, 4, = 4, =0. Dividing set of eqns. (16) throughout by 4,, we

obtain a system of three non-homogeneous equations in three unknowns which can be solved by
Gauss elimination method and we have

A, A
Z =28 =00 2123, (18)
4, A

Incident qT-wave:

In case of incident qT- wave, 4, = 4, = 0 and thus we have

A A’
Z =5 =00 123, (19)
4, A

Incident qTD-wave:

In case of incident qTD- wave, 4, = 4, = 0 and thus we have

A, A
Z, =" =00 =123, (20)
4, A
where A = ‘AIM s and A” (i =1,2,3, p=1,2.3,) can be obtained by replacing, respectively, the

1,27, 3% column of A by [~ 4,, —4,, - 4,,[.

6. Numerical Results and Discussion

In order to illustrate the theoretical results obtained in the preceding sections, we now present
some numerical results. The following relevant physical constants for Cobalt material are taken
from Dhaliwal et. al. (1980) for a thermoelastic transversely isotopic material,

C,, =3.071x10" Nm?,C,, =1.650x10" Nm~>,C,, =1.027x10" Nm?,C,, =3.581x10" Nm >,
C,, =1.51x10" Nm ™=, 8, =7.04x10° Nm K, B, =6.98x10° Nm K, p=8.836x10°Kgm ",
K, =690x10°Wm 'K, K, =7.01x10°Wm'K,K, =1.313x10°W sec,K; =1.54x10°W sec,

¢ =427x10°JKgK, T =298K.

The variations of amplitude ratio of reflected qLD, qT and qTD waves, for incident qLD, qT
and qTD waves at the free surface are represented graphically to compare the results obtained in
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two cases, viz., for the waves incident from transversely isotropic medium in the context of
thermoelasticity with energy dissipation model (TIWED) and other from isotropic thermoelastic
(IWED) half space. In figures 1-3, the graphical representation is given for the variation of

amplitude ratios |Z .

ZZ| and |Z3| for incident qLD wave. Figures 4-6 and 7-9, respectively

5

represent the similar situation, when qT and qTD waves are incident.

Here |Z1

Zz|and |Z3| are, respectively, the amplitude ratios of reflected qLD, qT and qTD

2

waves. These variation are shown for two angles of incidence viz, 8 =30°,45° . In these figures
the solid curves lines correspond to the case of TIWED, while broken curves correspond to the
case of IWED. Also, the curves without centre symbol correspond to the case, when 6 =30° and
with centre symbol (-0-0-) represents the variation corresponding to the case of 6 =45°.

Incident qLD-wave:

It is evident from figure 1 that the amplitude ratio |Z 1| of reflected qLD-wave, for 8 =30°and for

TIWED, first decreases within the interval (0, 2), then sharply increases to attain a peak value,
then decreases and flatten to become steady at the end. However, for the case of & =457, its
value remains steady at initial stage, then decreases over the interval (10, 30) to become constant
at the end with increase in frequency. For IWED, its value initially oscillates and then become
steady with increase in frequency for both values of theta.

Figures 2 and 3 indicates the variation of amplitude ratio |Z 2| and |Z 3| of reflected qT and qTD-

waves, which shows that for the case of TIWED, their value represents the similar behavior as
depicted in the case of |Z1

, with difference in their initial region of decrease. In the present case,

its value decrease for a small interval and then attain a peak value within the intervals (7, 30) and
Z,| with

(5, 30) respectively. However, for IWED the variation is almost similar as depicted for
difference in their amplitude.

Incident qT-wave:

The variation in the amplitude ratio of various reflected wave for incident qT-wave is shown in
figures 4-6. It is depicted from figure 4 that the value of amplitude ratio of |Z 1| decreases with
increase in frequency to attain a constant value at the end. However, as the angle of inclination
gets increased, its value gets increased within the interval 0 < @ <50, and then decreases with
further increase in frequency. For IWED and @ =307, the value increase within the range (0, 30)
and then decrease, while for 8 =45° its value decrease with increase in frequency. Figure 5

shows that the value of amplitude ratio of |Z2 , represent the similar behavior as depicted in

figure 4 for all the cases, except for the case TIWED at € =45, where its value decrease with
increase in frequency. It is illustrated from figure 6 that the value of amplitude of |Z3| for IWED,

its value sharply increases over the interval (0, 30) and then decreases with increase in frequency.
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While at 8 = 45° the interval of sharp increase changes to (0, 50) and remaining have the same
variation.

Incident qTD-wave:

Figures 7-9 illustrates the variation of amplitude ratios of |Zi

,i =1,2,3, with frequency for

incident qTD-wave. It can be seen from these figures that the variation pattern of the amplitudes
ratios for the case of IWED and for both angle of inclination almost similar with slight difference
in their amplitude, while for the case of TIWED, its value represent reverse behavior. The

amplitude ratio of|Z,|, for 8 =30 initially decreases within the interval0 <@ <70, and then

increase. While, for € =45° it decreases with increase in frequency. However, the value of

amplitude ratio

Z3| goes on increasing with increase in frequency for both angle of inclination. It

is evident from figure 8§ that the value of amplitude ratio of |Z 2|represen‘[s similar behavior for

all the cases, with slight difference in their amplitudes.
7. Conclusion

The importance of thermal stresses in causing structural damages and changes in functioning of
the structure is well recognized whenever thermal stress environments are involved. Plane wave
reflection from the free surface of transversely isotropic medium in the context of
thermoelasticity with GN theory of type-II and III has been discussed. It is concluded from the

graphs that the value of amplitude ratio |Zl| shows oscillation at initial frequencies for incident

qLD wave, as compared to qT and qLD incident waves. An appreciable effect of anisotropy and
angle of incidence is observed on amplitude ratios of various reflected waves.
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