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Abstract 
  
In this paper an algorithm called SEM, which is a stochastic version of the EM algorithm, is used 
to analyze multivariate skew-normal data with intermittent missing values. Also, a multivariate 
selection model framework for modeling of both missing and response mechanisms is 
formulated. By the SEM algorithm missing values of responses are inputed by the conditional 
distribution of missing values given observed data and then the log-likelihood of the pseudo-
complete data is maximized. The algorithm is iterated until convergence of parameter estimates. 
Results of an application are also reported where a Bootstrap approach is used to compute the 
standard error of the parameter estimates.  
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1. Introduction 
 
The skew-normal is a class of distribution that includes the normal distribution as a special case. 
In this distribution an extra parameter,  , measures the skewness. A systematic treatment of the 
skew-normal distribution has been given in Azzalini (1985) and Henze (1986). Azzalini and 
Della-Valle (1996), and Azzalini and Capitano (1999), generalized this distribution to the 
multivariate case. Arellano-Valle et al. (2002) show that many of the properties of the 
multivariate skew-normal distribution hold for a general class of skewed distribution. Such 
classes obtained from asymmetric distribution, defined in terms of independence conditions on 
signs and absolute values and give a general formula to obtain skewed pdf's. From these results, 
Arellano-Valle and Genton (2005), introduced the class of fundamental skewed distributions, 
and gave a unified approach to obtain multivariate skew distributions starting with symmetric 
distributions.  
 
In this study, we use a version of multivariate skew-normal distribution, which was introduced 
by Azzalini and Dalla-Valle (1996), and is a special case of the fundamental skew-normal 
distribution proposed by Arellano-Valle and Genton (2005). 
 
In this way we consider a 1p  random vector Y  as a multivariate SN  random variable with 

1p  location vector μ , and pp  positive definite dispersion matrix Σ  and 1p  skewness 

parameter vector λ , and write ),,(~ λΣμY pSN . The standard multivariate skew-normal 

distribution will be denoted by )( λpSN .  

 
Longitudinal data are measurements of individual subjects over a period of time; these kinds of 
measurements  are frequently used in medical, public health and social sciences. The response 
variable may be continuous, categorical or ordinal. One of the main interests of these studies, is 
to investigate the change in the response variable over time.  
 
In this study, missing data occur whenever one or more of, measurement sequences are 
incomplete. Rubin (1976) and Little and Rubin (1987) provided a framework for the incomplete 
data by introducing a taxonomy of missing data mechanisms, consisting of missing completely at 
random (MCAR), missing at random (MAR) and missing not at random (MNAR). In the MCAR 
mechanism, the missing values are independent of both observed and unobserved data, in the 
MAR mechanism conditioning on the observed data, the missing mechanism is independent of 
missing values, and otherwise the missing process is named as MNAR, informative or non-
ignorable mechanisms, and ignoring the missing values with such data would lead to biased 
conclusions. Another important feature is whether the missing values pattern is dropout 
(monotone) or intermittent (non-monotone). In dropout pattern some subjects may withdraw 
permanently, i.e. a missing value is never followed by an observed value. In the intermittent 
pattern an observed value is available even after a missing value occurs. Diggle and Kenward 
(1994) defined the dropout process to be completely random dropout (CRD), random dropout 
(RD) and nonrandom dropout (NRD) with the same concepts as those mentioned for MCAR, 
MAR and MNAR, respectively.  
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Diggle and Kenward (1994) use a modeling framework for longitudinal data which decomposes 
the joint distribution of missing mechanism and responses into a marginal distribution for 
longitudinal continuous responses and a conditional distribution for missing mechanism given 
responses. Let iM  denote the associated vector of missingness indicator which is related to the  

standard multivariate skew-normal vector iY , such that 1=ijM  if ijY  (the thj  response of the 
thi  subject) is missing and otherwise 0=ijM . 

 
When the missing mechanism is MNAR, three modeling frameworks may be used to model the 
missing mechanism and responses jointly. These are the selection, the pattern-mixture and the 
shared parameter models. These models are defined by the conditional factorization of joint 
distribution of Y and M . The selection model factorization is as follows: 
  

),,|()|(=),|,( ψyyψy iiiii MffMf                                                                       (1) 

 
where   and   denote distinct parameter vectors of the measurements and missingness 
mechanisms, respectively. The first factor on the right of the equation (1) is the marginal density 
of the measurement process and the second one is the density of the missingness process, 
conditional on the outcomes. 
 
Another factorization so called pattern-mixture model (Little 1993, 1994), is as follow: 
  

).|(),|(=),|,( ψyψy iiiii MfMfMf                                                                       (2) 

  
The third model referred to as shared-parameter model is: 
  

),,|(),,|(=),,|,( iiiiiiii MfMfMf bψbybψy                                                          (3) 

 
where we explicitly include a vector of unit-specific latent (or random) effects ib  of which one 

or more components are shared between both components in the joint distribution, some 
references to such modeling approach include Wu and Carroll (1988), and Crouchley and Ganjali 
(2002). 
 
In this study we consider the selection model framework for multivariate skew-normal with a 
probit regression as the missingness mechanism. 
 
The EM algorithm, Dempester et al. (1977), is a very useful tool for the iterative computation of 
maximum likelihood estimates, in missing or incomplete data problems, where algorithms such 
as the Newton-Raphson method may turn out to be more complicated. In each iteration of the 
EM algorithm, there are two steps called the expectation step or the E-step and the maximization 
step or the M-step. Because of this, the algorithm is called the EM algorithm. 
 
The main problem of the EM algorithm is that the expectation step may be infeasible, especially 
when this expectation is a high dimensional integral or a large sum or an integral over an 
irregular region, thus it can not be calculated explicitly. Many authors have tried to introduce 



AAM: Intern. J., Vol. 6, Issue 2 (December 2011)                                                                                                 415                                 
       

   

new variants of the EM algorithm that can overcome the complexity of the problem. A possible 
solution for intractable E-step is to use a stochastic version of the EM algorithm, (Celux and 
Diebolt, 1985; Delyon et al. 1999; Diebolt and Ip, 1996; Zhu and Lee, 2002).  
 
A brief history of the EM algorithm can be found in Mclachlan and Krishnan (1997), and 
references therein. The stochastic EM (SEM) algorithm is a stochastic version of the EM 
algorithm which was introduced by Celux and Diebolt (1985), and Diebolt and Ip (1996), as a 
way for executing the E-step using simulation.  
 
When some subjects leave the study temporarily and subsequently return, i.e. an observed value 
is available even after a missing value occurs, then the missing data pattern is defined as 
intermittent or non-monotone. Gad and Ahmed (2006) proposed the SEM algorithm to handle 
intermittent missing data patterns, in selection models for multivariate normal responses. In 
Section 2 we will present our extended model which may be used for a vector of response with 
multivariate skew-normal distribution. In Section 3 we will discuss the EM algorithm and 
explain the SEM algorithm for analyzing multivariate skew-normal responses. In Section 4 
simulation study and in Section 5 an application of the model will be presented. The conclusion 
will be discussed in Section 6.  
 

 2. Selection Model for Longitudinal Data with Intermittent Missing  
  Responses Using Multivariate Skew-Normal Distribution  

 
 A random variable Z , has a skew-normal distribution if its density function is given by 
  
      ,,2=; Rzzzzf                                                                                               (4) 

 
where in brief we write (0,1)SNZ  , here   and  , respectively denote density and 
distribution functions of the standard normal distribution. It is clear that when 0,= Z has a 
standard normal distribution, and the sign of   gives the direction of the skewness. 
 
If we use location and scale parameters   and  , for more flexibility, then the density of the 
new random variable Y , in brief written as ),,( SNY  , is 
  

  .
2

=,,; 





 







 








 yy

yf
                                                                              (5) 

 
If ),,( λΣμpSNY , its probability density function is given by:  

 

    ,'),|(2=,,; 2

1












μyΣλΣμyλΣμy pf                                                                     (6) 
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where ),|(. Σμp  stands for the pdf of a p-variate normal distribution with mean vector  and 

covariance matrix  . Note that if in expression (6)  we let 0=μ , pI=Σ , we have a standard 

multivariate skew-normal distribution with skewness parameter vector λ . 
 
Suppose that we have n  independent subjects with repeated measurements. Each subject i  is 
introduced by a skew outcome ijY  designed to be measured at times  = 1, 2, ,j j T . Assume 

that the observed and missing components of iY  are denoted as obsi,Y and misi,Y , respectively. 

Let iM  be a vector of the missingness indicator, such that for a particular realization of 

),( ii MY , each element of )( iji MM  gets one or zero if its corresponding element of iY  is 

missing or observed. 
 
In a selection model, the joint distribution of iY  and iM  is factorized as product of the 

marginal distribution of iY  and the conditional distribution of iM  given iY  as in (1), which 

in our study we assumed ),,(~ λΣμY SNi  and for the conditional distribution of iM given 

iY , a probit model is considered as 

  
   ijijiij YYMP 2110=,1=   ψY

 
 
where ),,(= 210 ψ . The special case of the above model corresponding to MAR and MCAR 

are obtained from setting 0=2  and 0,== 21   respectively. 
 
Let ),,(= λΣμ , the joint likelihood of the observed data ),( , iobsi MY  is: 

 

),|()|(=),|,(=),|,( ,
1=

,
1=

ψyMyψyYψ iiobsi

n

i
iobsi

n

i
obs ffMfML  

 

                                 
misiiii

n

i
dMff ,

1=
),|()|(= yψyy     

                                 
misiiiiip

n

i
dMf ,

1/2

1=
),|())('(),|(2= yψyμyΣλΣμy   

 
 
Parameter estimates of this observed likelihood can be found using numerical method such as 
Newton-Raphson, but because of flatness of this likelihood function and complexity in obtaining 
the parameter estimates, we shall propose the use of the SEM method. 
 
If there are some explanatory variables for individual ,  = 1, 2,...,i i n , then 

,),,(~ λΣμY ipi SN where βxμ '
ii= , ix  is a pq  explanatory matrix and β  is a 1q  

regression coefficient vector. In this situation one has to estimate β  instead of μ  in (6). 
 
The following proposition is fundamental in our study. 
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Proposition 1: Let ),,(~ λΣμY pSN , such that Y  is partitioned into two sub-vectors of 

interest, 1Y  and 2Y , where 1Y  is 11p  and 2Y  is 1)( 1  pp , then 
  

 ,,,~ *
111111 λΣμY pSN

 
 
where  
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where  
 

    .= 11
1
111222.1 μyΣΣμμ    

 
   
The distribution of 1Y  is obtained by integrating out 2Y , under expressions given in 
proposition, we have  
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In our study to generate skew-normal random number, we will use a stochastic representation of 
the multivariate skew-normal as  
 

  





  12

1

0
2

1

'= TδδIδΣμy pT
                                                                                          (7) 

 
with  
 

λλ

λ
δ

'1
=

  
 

where || 0T  denotes the absolute value of 0T ,  ,0,1~0 NT  and ),(~1 ppN I0T . For more details 

on this approach, see Arellano-Valle and Genton (2005) and Arrellano-Valle et al. (2005). 
 
 
3.  The EM Algorithm and its Stochastic Version 
 
At first we briefly review the basic idea of the EM algorithm (Dempsterer et al., 1977). The EM 
algorithm is an iterative procedure to find the maximum of likelihood function in incomplete 
data problems. In each iteration, the EM algorithm performs an expectation and a maximization 
step. Let ),(= ψθ   and 1)( tθ  denote the current parameter value. Then in the tht  iteration of 
algorithm, given the observed data and current parameter value, the E-step computes the 
conditional expectation of the complete data log-likelihood: 
  

      . ,,;,= 11)( MMlogfEQ t
obs

t  θYθYθθ
 

 
Then in the M step by maximizing the  )|( 1tQ θθ , )(tθ , is computed. Given an initial value 

,(0)θ the EM algorithm generates a sequence  ,,, (2)(1)(0) θθθ  that under regularity condition (Wu, 
1983), converges . Since the conditional expectation plays an important role in the EM algorithm, 
it is often referred to as the Q-function. The EM algorithm has a basic property that, in every 
iteration guarantees an increase in the likelihood function. But when there are several stationary 
points (local maxima and minima, saddle points), the EM does not necessarily converge to a 
significant maxima. In addition, when the likelihood surface is littered with saddle points and 
sub-optimal maxima, the limiting position of the EM greatly depends on its initial points. 
In order to go around the above problems of EM algorithm, we describe how the SEM algorithm 
works. It has been shown that this algorithm is computationally less burdensome and more 
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appropriate than the EM algorithm for missing data (Ip, 1994). In addition this algorithm can 
cover the problem of likelihood multimodality surface (Ip, 1994).  
 
 
3.1.  Stochastic EM Algorithm 
 
 The stochastic version of the EM algorithm has three steps:  
  

 •  Simulation and approximation: in SEM the E-step of the EM algorithm is replaced by   
            a single draw from conditional distribution of the missing data given the observed  
            data. 
 
 •    Maximization: in the maximization step, after filling the empty cells (inputing  
            missing data), the log-likelihood function will be maximized using the usual  
            maximization procedures, for instance Newton-Raphson. 
 
 •   Iteration and convergence: this step decides how long the algorithm is to be run and  
           determines the stoping rule. 

 
 If the iterations converge, the final output of the SEM algorithm is a sample from the stationary 
distribution of the parameter, the mean of this sample, after turning in the first early point, is 
considered an SEM estimate for θ . 
 
A relatively recent overview of simulation types was given in Jank (2005) and references there in.  
In order to simulate from conditional distribution, we use the most flexible and generally 
applicable approach, Gibbs sampler (see Robert and Casella, 2002).  
 
Assume that the missing components of iY  are denoted as misi,Y  and assume that this vector is 

of dimension ra 1 , i.e.,  .,,= ,1,, rmisimisimisi YYY   To implement the SEM algorithm, a 

sample is drawn from the conditional distribution of the missing data,  
rmisimisimisi ,1,, ,,= YYY  , 

given the observed data,  .,, iobsi MY  At the tht 1)(   iteration     ),,(= 1
,

1

1,
1)(

,
 t

rmisi
t
misi

t
misi YYY   is 

simulated from the full conditional distributions. This iteration is executed in the r  sub-step. 
First,  1

1,
t
misiY  is simulated from the conditional distribution 

     ),,,,,|( ,,2,1,
t
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t
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t
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2,
t
misiY  is simulated 
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In the third sub-step,  1
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In the last sub-step, the last missing value  1

,
t

rmisiY  is simulated from the conditional distribution 
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Now, the steps of the SEM algorithm can be developed in the current setting as follows: 
 
S-Step: At the tht 1)(   iteration, a sample is drawn from the conditional distribution of the 

missing value,  
rmisimisimisi ,1,, ,,= YYY  , given the observed data iobsi M,,Y , and the current 

parameter estimate,  tθ . The full conditional distribution does not have a standard form, hence it 
is not possible to simulate directly from it. An accept-reject procedure is proposed for generating 
the missing values. The procedure is as follows:  
  
1.  Generate a candidate value, *y , from the conditional distribution  
 

          ,,,,,,, ,1,
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


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 for  
 

.,1,2,= rj   
 
2.  Calculate the probability of missingness for the candidate value, *y , according to the missing 
data mechanism, (which in our study is a probit model), with the parameter ψ  fixed at the 

current values )(tψ . Let us denote the resulting value as iP . The probability of missingness will 

be assumed to depend only on the current and the previous response values. 
 
3.  Simulate a random variate U  from the uniform distribution on the interval [0,1] then take        

jmisi,Y = *y  if iPU  ; otherwise go to step 1.  

 
M-Step: with the pseudo-complete data which is defined as psY , a likelihood maximization 

routine is then used to obtain updated parameters  1tθ . The likelihood of the pseudo-complete 
data for each subject can be written as  
 

        .,=, 111  tps
i

tps
ii

t
i

ps
i fMPMf θYθYθY

                                                         (8) 
 
where   1tps

if θY  is a multivariate skew-normal distribution by which the ML estimates are 

obtained using an appropriate approach, and for missingness mechanism, i.e.   1, tps
iiMP θY , 

the ML estimates can also be obtained by a GLM with the probit link procedure.  When we use 
the SEM algorithm, it is needed to check the convergence of the resulting chain. Several methods 
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have been proposed in the literature. We will use the Gelman-Rubin method (Gelman and Rubin, 
1992). Based on this method, multiple, 2k , chains are generated in parallel for ptn 2=  
iterations. For each chain, this method suggests starting from different points for which the 
starting distribution is over-dispersed compared to the target distribution. This method separately 
monitors the convergence of each scalar parameter of interest by evaluating the Potential Scale 

Reduction Factor, (PSRF), R̂  as  
 

W

B

nn

n
R

11
=ˆ 



                                                                                                         (9) 
 

where nB/  is the between sequence variance andW  is the average of within sequence variances. 
The convergence is achieved if the PSRF is close to one.  
 
 
4.   Simulation Study 
 
 In this section, the usefulness of the proposed methodology has been evaluated using a 
simulation study where we compare its performance with that of the ordinary EM algorithm. As 
we will generate data by a MNAR mechanism and the EM algorithm can only be used on the 
assumption of MAR, one expects to see the lack of fit of the ordinary EM algorithm. For this 
purpose, a sample of size 250 was used, generated from a bivariate skew-normal distribution 
with the following parameters: 
  

 

  
We consider the following missing mechanism for generating incomplete data set: 
  

),(=),|1=( 221102 iiii yyMp  ψy

 
where 0.4=0 , 0.9=1   and 1.5=2  are chosen such that a mechanism with an expected 

missing rate of 30% can be produced. Results of using SEM and EM algorithms (see Baghfalaki 
and Ganjali, 2011, for using the EM algorithm) are given in tables 1 and 2, respectively. In our 
simulation, we estimate the above parameters through the SEM algorithm for 500 times, and 
considered the mean of the parameter estimates as the final parameter estimates. The standard 
errors are computed using Bootstrap. 
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Table  1: Results of simulation study using SEM algorithm for a sample 
size of 250 where data are simulated from a bivariate skew-normal 
distribution under MNAR, (Abs. B: absolute bias of the estimate).  
Parameter   True   Estimate   Std. E   Abs. B  
 1μ    0.000   0.015   0.084   0.015  

 2μ    0.000   0.009   0.078   0.009  

 1λ    4.500    4.738    1.304   0.238  

 2λ    4.500    4.849    1.386   0.349  

 11σ    1.000   0.976    0.143    0.024  

 12σ    0.600   0.571   0.113   0.029  

 22σ    1.000   0 .984    0 .144    0.016  

  
    

Table  2: Results of simulation study using the EM algorithm for a sample 
size of 250 where data are simulated from a bivariate skew-normal 
distribution under MNAR, (Abs. B: absolute bias of the estimate).  
Parameter   True   Estimate   Std. E   Abs. B  
 1μ    0.000   0.258   0.047   0.258  

 2μ    0.000   0.690   0.060   0.690  

 1λ    4.500   3.081   0.136   1.419  

 2λ    4.500   2.161   0.082   2.339  

 11σ    1.000   0.967   0.051   0.033  

 12σ    0.600   0.131   0.027   0.469  

 22σ    0.000   0.258   0.047   0.258  

  
The criterion used for comparison is the absolute bias of the estimates. A closer examination of 
absolute bias shows that the SEM estimates result in smaller absolute bias as compared to the 
EM algorithm. As results of table 2 show, the EM algorithm is not the best approach to be used 
for data with MNAR.  
 
 
5. Application  
 
 As an application, we shall make use of a the well-known data set called the Mastitis data. These 
data, concerning the occurrence of the infectious disease called Mastitis in dairy cows, was 
introduced in Diggle and Kenward (1994). Data were available of the milk yields of 107 dairy 
cows from a single herd in two consecutive years. In the first year all animals were safe, in the 
next year 27 became infected. Mastitis typically reduces milk yield and these are considered as 
missing data. In addition, Molenberghs et al. (2001) and Crouchley and Ganjali (2002) found 3 
outliers (cows 4, 5 and 66) in these data. Using bivariate skew-normal and bivariate normal 
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distributions, we analyze the Mastitis data in two situations, the first with full data, and the 
second without outliers. Parameter estimates and their standard errors (computed by Bootstrap 

method) are given in tables 3 and 4. The R̂ 's, (PSRF's), have been calculated for all parameters. 
Minimum and maximum of these values are .986 and 1.073 respectively, which means the 
generated sequences have been converged properly. Also we give the contour plots of bivariate 
skew-normal and bivariate normal distributions in both situations of whole data and data without 
outliers in figures 1 and 2, respectively. It is obvious in both with and without outliers that the fit 
of Skew-Normal case is better than that of Normal case. Also we test 0.0= λλ ver  to check 
the usefulness of SN distribution for this application. 
 
From these results, we see that using a bivariate skew-normal distribution for these data, 
missingness is ignorable and the mechanism which is obtained from our study is MCAR. This is 
not obtained by using normal one (Diggle and Kenward, 1994). These different results can be a 
consequence of the existence of a significant skewness parameter. This result (ignorable 
missingness under bivariate skew-normal model) is obtained in both situations where outliers are, 
or are not considered as a part of the data, but when we deleted the outliers from the study, the 
estimates of 1  and 2  are closer to zero by the skew-normal model. 
   

Table  3: Parameter estimates and their standard errors under MNAR 
mechanism for analyzing the whole mastitis data using skew-normal and 
normal assumptions. 
   Bivariate skew-normal    Bivariate normal model   
Parameter   Estimate   S.D.   Estimate   S.D.  
 1μ    5.971   0.248   5.765   0.000  

 2μ    5.532   0.320   6.146   0.008  

 1λ    -0.901   0.425   0.000   -  

 2λ    1.706   0.774   0.000   -  

 11σ    0.971   0.109   0.867   0.003  

 12σ    0.502   0.177   0.525   0.031  

 22σ    2.060   0.545   1.447   0.144  

 0ψ    -0.494   1.227   0.775   0.715  

 1ψ    0.840   0.556   1.052   0.294  

 2ψ    -0.875   0.736   -1.206   0.407  

logL2  618.598 626.748 
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Table  4: Parameter estimates and their standard errors under MNAR 
mechanism for analyzing the mastitis data without outliers using skew-
normal and normal assumptions. 

    Bivariate skew-normal  Bivariate normal model 
Parameter   Estimate   S.D   Estimate   S.D  
 1μ    5.181   0.074   5.798   0.000  

 2μ    6.566   0.183   6.339   0.053  

 1λ    2.726   0.638   0.000   -  

 2λ    -1.419   0.525   0.000   -  

 11σ    1.147   0.088   0.761   0.000  

 12σ    0.548   0.161   0.576   0.030  

 22σ    1.280   0.332   0.949   0.036  

 0ψ    -1.374   1.290   -0.980   0.535  

 1ψ    -0.067   0.754   0.320   0.183  

 2ψ    0.002   0.888   -0.430   0.246  

 logL2   611.110 617.448 
  
 
   

 
Figure  1: Superimposed  “scatter plot of the milk yield in first year versus that of the second 

year” and “contour plot” of the whole Mastitis data. The left panel is due to bivariate 
skew-normal and the right panel is due to bivariate Normal model. 
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Figure  2: Superimposed “scatter plot of the milk yield in first year versus that of the second  
                  year” and “contour plot” of the whole Mastitis data. The left panel is due to bivariate  
                  skew-normal and the right panel is due to bivariate Normal model. 
   
Comparing two tables and results, (with and without outliers), we see that the signs of skewness 
parameters have been changed. The outliers points are (2.93, 7.28), (3.84, 8.10) and (7.11, 10.57). 
If we focus on outlier values, we see, the first elements are lower than mean value of the first 
year, and the second ones are greater than the mean value of the second year, which, after 
deleting them from analysis, can change the sign of skewness parameter, from negative to 
positive in first year, and positive to negative in second year. Also the expectation of ,Y  if 

 ,,,~ 2 λΣμY SN  is given by  
 

 

2

= 1/2 δΣμY E
 

 
(Arellano- Valle and Genton, 2005). So, when we use the whole data,     ,'6.2085.737,=YE  

and when we use data without outliers,     .05.755,6.21= YE  As missing data are CAR based 
on joint model of bivariate skew-normal and missing mechanism, one may ignore missing 
mechanism and use a complete case (80 cases) analysis to find unbiased estimates of parameters. 
Table 5 gives results of such analysis. These results also show a significant skew parameters 
which change sign in analyzing the whole data and the data without outliers. Due to using fewer 
data points, the standard errors of the estimates are larger than those using the whole data.  
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Table  5: Parameter estimates using complete case analyzing of the mastitis 
data under skew-normal assumption using data with and without outliers. 
    Whole data Without outliers 
Parameter   Estimate   S.E.   Estimate   S.E.  
 1μ    5.927   0.280   5.069   0.104  

 2μ    5.726   0.309   6.375   0.218  

 1λ    -1.051   0.556   2.722   0.840  

 2λ    1.724   0.653   -0.941   0.655  

 11σ    0.960   0.107   1.237   0.111  

 12σ    0.491   0.156   0.660   0.217  

 22σ    1.833   0.491   1.096   0.340  

  
6. Conclusion 
 
In this paper a stochastic version of the EM algorithm (SEM) was used to analyze for 
intermittent missing response data. SEM, previously was used for longitudinal response data. In 
this paper, we extended the use of SEM for analyzing data with multivariate skew-normal 
responses. We conducted a simulation study. We also used a selection model framework to 
reanalyze mastitis data, using a bivariate skew-normal response.  
 
For these data in both cases (with and without outliers), we rejected symmetry ( 0λ =  versus 

0λ   with 0.016=valuep   for data including outliers and 0.042=valuep   for data 
without outliers). This emphasized the importance of using skew-normal distribution. 
Considering the skewness nature of the process generating the data we found an ignorable 
missing data mechanism for the mastitis data.  
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