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Abstract 
 
In this paper, we apply the Differential Transform Method (DTM) and Variational Iterative 
Method (VIM) to develop algorithms for solving singularly perturbed volterra integral equations 
(SPVIEs). The study outlines the significant features of the two methods. A comparison between 
the two methods for the solution of SPVIs is given for three examples. The results show that both 
methods are very efficient, convenient and applicable to a large class of problems.  
 
Keywords:  Differential Transform Method, Variational Iterative Method, Singularly   
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1.  Introduction 
 
In recent years, much attention has been paid to finding solutions for singularly perturbed 
volterra integral equations (SPVIEs). The aim of this paper is to continue this trend and consider 
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new analytical techniques, the Differential Transform Method (DTM) and the Variational 
Iterative Method (VIM) for solving SPVIEs of the form  
 

,<<0,))(,,()(=)(
0

 xdttytxKxgxy
x

                                                            (1.1) 

 
where 0>  is a small positive parameter called the ‘perturbation parameter’ that gives rise to 
the singularly perturbed nature of the problem Alnaser (2000), Lange and Smith (1988), Angel 
and Olmstead (1987). The kernel K  and the function )(xg  are given smooth functions. Under 
appropriate condition on g  and K , for every 0> , (1.1) has a unique continuous solution on 

][0, see Brunner (1986) and Alnaser (2000). It should be mentioned that in order to use the 
DTM, the solution of (1.1) must be analytic.  
  
The singularly perturbed nature of (1.1) arises when the properties of the solution with 0>  are 
incompatible with those when 0= . For 0> , (1.1) is an integral equation of the second kind. 
When 0= , (1.1) reduces to an integral equation of the first kind whose solution may be 
incompatible with the case 0> .  
  
Problems of this nature imply incompatibility in the behavior of y  near 0=x . This suggests the 
existence of boundary layer near the origin where the solution undergoes a rapid transition 
Brunner (1986).  
 
Angel and Olmstead (1987), Lange and Smith (1988) developed a formal methodology to obtain 
asymptotic solution for (1.1). Alnaser (2000) applied a multi-step method to solve singular 
perturbation problem in Volterra integral equation. Finally, Alnaser and Momany (2008) used 
Homotopy perturbation method to solve the presented problem.  
 
In Section (2), we apply DTM to solve our problem. In Section (3), we use VIM to give 
approximate solution for the proposed problem. Test examples with known exact solutions are 
presented at the end of each section to discuss the accuracy and efficiency of the methods. 
Finally, our conclusion will be given in Section (4). 
  
 
2.  Solving SPVIEs Using DTM 
 
Consider the general form of SPVIE which is given in (1.1). Now, applying differential 
transform to (1.1) we get 
  

1,,
1)(

)(=)( 


 k
k

kH
kGkY                                                                              (2.1) 

 
where )(kH  is the differential transform of the kernel ))(,,( tytxK . Thus, the recurrence formula 
is  
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1.,
1)(

)(
1

=)( 






 

 k
k

kH
kGkY


                                                                             (2.2) 

  
Substituting 0=x  in (1.1), we get  
 

(0)
(0) = .

g
y


 

 
 Therefore, the transformed initial condition at 0=x  is  
 

.
(0)

=(0)


g
Y  

 
Starting with (0)Y  and the recurrence formula in (2.2), (1)Y  can be determined. Now, using 

(0)Y , (1)Y , then (2)Y  is easily identified. Continuing in this manner, the first N -differential 
transforms of )(xy  can be identified. Finally, the inverse transform of )(kY  is  
 

.)(=)(
0=

k

k

xkYxy 


                                                                                                     (2.3) 

 
Details about DTM and its properties can be found in Alquran and Al-Khaled (2010), Kanth and 
Aruna (2009) and Erturk (2007). 
  
 
2.1. Numerical Examples 
 
In this section we discuss three different examples. The result will be compared with the exact 
solution for various values of  . 
  
Example 1.  
 
Consider the following linear problem  
 

  ,)(1=)(
0

dttytxy
x

                                                                                                      (2.4) 

 
which has the exact solution  
 

.11=)( 










 
xx

eexxy                                                                                          (2.5) 

 
 Equation (2.4) can be written in the form  
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.)(
2

=)(
0

2

dtty
x

xxy
x

                                                                                                      (2.6) 

 
Applying DT to (2.6), we get  
 

1.,
1)(

2)(
2

1
1)(

1
=)( 







 

 k
k

kY
kkkY 


                                                     (2.7) 

 
Since 0=(0)y , then the transformed initial condition is 0=(0)Y . Now, we coded (2.7) in 
Mathematica and obtained  
  

,
1

=(1)


Y      ,
2

1
=(2)

2
 

Y       ,
6

1
=(3)

3
 

Y  

  

,
24

1
=(4)

4
 

Y     ,
120

1
=(5)

5
 

Y        ...,
720

1
=(6)

6
 

Y . 

  
 
Thus, the approximate solution around 0=0x  can be expressed as:  

 

...
720

1

120

1

24

1

6

1

2

11
=)( 6

6
5

5
4

4
3

3
2

2















 xxxxxxxyappr 
















. 

  
Figure 1 represents the absolute errors between the exact solution and the approximate solution 
for ( 1<<0  ) and considering 25  terms of the DT series. 
 

 
Figure 1. Absolute errors of equation (2.4) using DTM, for 25=N  
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Example 2. 
 
Consider the following linear problem  
 

   ,)(11=)(
0

dttyttxxy
x

                                                                              (2.8) 

 
 the exact solution is given by  
 

,

1
1

1
1

1=)(
21

2
1

1
2







 









 






 



xx
ee

xxy                                                      (2.9) 

  
where  

,
2

141
=1 

 
 

  
and  

.
2

411
=2 

 
 

  
Equation (2.9) can be written as  
 

.)()()(
6

=)(
000

3
2 dtttydttyxdtty

x
xxxy

xxx

                                                     (2.10) 

 

 Note that for dttyxxf
x

)(=)(
0 , then its DT is   

 

,
1)(1)(

=)(
1= i

iYik
kF

k

i


 

also, for )(=)(
0

ttyxg
x

 , then its DT is  

 

1).(1)(
1

=)(
1

0=




ikYi
k

kG
k

i

  

 
 Accordingly, the differential transform for (2.10) is  
 

k

kY
kkkkY

1)(
3)(

6

1
2)(1)({

1
=)(


 


 

             11)},(1)(
11)(1)( 1

0=1=




 


kikYi
ki

iYik k

i

k

i


                                     (2.11) 
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and the transformed initial condition used is 0=(0)Y . By coding (2.11) in Mathematica, we 
obtain  
 

,
1

=(1)


Y    ,
2

21
=(2)

2


Y    ,
6

31
=(3)

3

2


 

Y  

 

,
24

341
=(4)

4

2


 

Y    ...,
120

651
=(5)

5

32


 

Y . 

  
 The approximate solution is  










 4
4

2
3

3

2
2

2 24

341

6

31

2

211
=)( xxxxxyappr 










  

                      

                 ...
120

651 5
5

32




x



                                                                                 (2.12) 

  
Figure 2  represents the absolute errors between the exact solution and the approximate solution 
for ( 1<<0.2  ) and considering 18  terms of the DT series. 
 
  

 
 

Figure  2. Absolute errors of Equation (2.8) using DTM, for 18=N  
   
 
Example 3.  
 
Consider the following non-linear problem  
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  ,1)(=)( 2

0
dttyexy txx

                                                                                        (2.13) 

 
 which has the exact solution  
 

 
,

)1(1

12
=)(

 





x

x

e

e
xy                                                                                        (2.14) 

 
 where  
 

24
= .





 

 
 Equation (2.13) can be written in the form  
 

.)(1=)( 2

0
dttyeeexy txxx                                                                                         (2.15) 

 
Let xexf =)( , then  
 

.
!

1
=)(

k
kF  

  
Also, let )(=)( 2 tyexh t , then the differential transform of )(xh  is  
 

.)()(
!

1)(
=)( 212

1

12

0=10=2

ikYiiY
i

kH
ii

i

k

i


  

 
 Applying DT to (2.15), we get  
 

1,,1)()(
1

!

1
)(

1
=)( 11

11=1














  kkHkkG
kk

kkY
k

k




                                                    (2.16) 

 
since the initial condition is 0=(0)y , then its transform 0=(0)Y . By using 0=(0)Y  and the 
recurrence formula in (2.16) we obtain  
 

,
1

=(1)


Y    ,
2

1
=(2)


Y    ,

6

2
=(3)

3

2




Y    ,
24

8
=(4)

3

2




Y  

 

,
120

2216
=(5)

5

42


 

Y     ...,
720

52136
=(6)

5

42


 

Y . 
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Thus, the approximate solution around 0=0x  is  

 







 4
3

2
3

3

2
2

24

8

6

2

2

11
=)( xxxxxyappr 






                     

 

               ...
720

52136

120

2216 6
5

42
5

5

42







 xx






  .                                                (2.17) 

 
The following table shows the absolute error of (2.13)  for different values of   
 

Table 1: The absolute error of Equation (2.13) using DTM for 32N   
x 1 9.0 8.0 5.0 

0.0x  0 0 0 0 
0.2x  151.22 10 21.49 10 23.32 10 11.23 10 
0.4x  101.25 10 22.53 10 25.83 10 11.52 10 
0.6x  87.56 10 22.91 10 25.80 10 11.19 10 
0.8x  87.05 10 22.72 10 25.11 10 16.99 10 

 
   
3.   Solving SPVIEs Using VIM 
 
Consider the general form of SPVIE given in (1.1). To apply the VIM to this problem, we have 
to differentiate (1.1) to get  
 

.<<0,))(,,()(=)(
0

 xdttytxK
dx

d
xgxy

x





                                                      (3.1) 

 
To solve (3.1) we assume that the kernel function ))(,,( tytxK  is nonlinear with respect to )(xy . 
According to VIM we can construct the following correction functional  

 

,))(,,()()(),()(=)(
001 dtdssystK

dt

d
tgtytxxyxy n

t

n

x

nn 











                                 (3.2) 

 
where ),( tx  is the general lagrange multiplier, which can be identified using the variational 

theory, and n  denoted the thn  iteration. Now, making this correction functional stationary, 
0=(0)ny , we obtain:  

 

dtdssystK
dt

d
tgtytxxyxy n

t

n

x

nn 











   ))(,,()()(),()(=)(

001  , 
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             0,=)(),()(=
0

dttytxxy n

x

n                                                                     (3.3) 

  

where )(tg  and 



 dssystK

dt

d
n

t
))(,,(

0
 are restricted variations i.e., 0=)(tg  and 

 

0=))(,,(
0 



 dssystK

dt

d
n

t
 .  

 
Integrating (3.3) by parts yields 
  

dttytx
t

tytxxyxy n

x

xtnnn )(),(|)(),()(=)(
0=1 



   

           0.=)(),(|)(),(1=
0= dttytx

t
tytx n

x

xtn 



   

 
 Therefore, the general lagrange multiplier satisfies  
 

,0=),( tx
t





 

 
 subject to  
 

.
1

=|),( = 
 xttx  

 
 Solving the above equation, we get  
 

.
1

=),(


 tx                                                                                                                  (3.4) 

  
Thus, the correction functional becomes  
 

,))(,,()()(
1

)(=)(
001 dtdssystK

dt

d
tgtyxyxy n

t

n

x

nn 











  


                             (3.5) 

 
 and the considered initial guess is the initial condition for the problem, i.e.,  
 

(

(0)

=(0)=)(0

g
yxy ).  

 
Details about the VIM can be found in He (1997), Alawneh and Al-Khaled (2010), Biazar and 
Ghazuini (2007),  Tatari and Dehghan (2007) and Khaleghi, Ganji and Sadighi (2007). 
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3.1.  Numerical Examples 
 
In this section we apply the VIM to the same examples considered in section 2  and compare the 
results with the exact solution.  
 
Example 4.  
 
Consider the problem in Example 1, and differentiate the equation to get  
 

.)(1=)( xyxxy   
  
According to VIM, the correction functional is  
 

  ,1)()(),()(=)(
01 dtttytytxxyxy nn

x

nn      

  
and the correction functional stationary is  
 

 dtttytytxxyxy nn

x

nn 1)()(),()(=)(
01      

  
                    xtnn tytxxy =|)(),()(=   

  

                   ,)(),()(),(
0

dttytxtytx
t nn

x







 



   

  
                      xtn txty =|),(1)(=   

  

                   0=)(),(),(
0

dttytxtx
t n

x







 



 . 

  
Therefore, the general lagrange multiplier satisfies  
 

,0=),(),( txtx
t

 



 

  
subject to  
 

.
1

=|),( = 
 xttx  

  
Solving the above equation yields  
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,=),(





xt

e
tx



                                                                                                                  (3.6) 

  
Thus, the correction functional becomes  
 

 1 0
( ) = ( ) ( ) ( ) 1 .

t x

x

n n n n

e
y x y x y t y t t dt










 
      
 

                                                      (3.7) 

 
Starting with the initial condition 0=(0)y  as the initial guess 0=)(0 xy . Then, by (3.7)  

 

,11=)(1 










 
xx

eexxy  

 
 which is the exact solution.  
  
Example 5. 
 
Consider the problem in Example 2, which can be written in the form  
 

.)()()(
6

=)(
000

3
2 dtttydttyxdtty

x
xxxy

xxx

                                                       (3.8) 

  
We differentiate (3.8) to get  
 

.)()(
2

21=)(
0

2

dttyxy
x

xxy
x

                                                                              (3.9) 

  
The correction functional is  
 

 )(=)(1 xyxy nn ,12
2

)()()(),(
2

00
dtt

t
dssytytytx n

t

nn

x









    

  
and the correction functional stationary is  
 

  0.=)(),()(),()(=)(1 dttytxtytxxyxy nnnn     

 
 The obtained Lagrange multiplier is  

( , ) = .

t x

e
x t








  
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Thus, the correction functional becomes  
 

 )(=)(1 xyxy nn

2

0 0
( ) ( ) ( ) 2 1 .

2

t x

x t

n n n

e t
y t y t y s ds t dt










 
           

 
                          (3.10) 

Starting with ( 0=)(0 xy ). Then, by using (3.10) and with the help of Mathematica, we get  

 

2 2 2
1

1
( ) = 2 ( 2 ) 2( 1 ) 2 ( 1 ) ,

2

x

y x x x e   
 

         
 

 

recursively,  

2
2

1
( ) = { 6( 1 )( 1 ( 1 ) 4

6

x

y x e x    


            

                                / 3 2 2 2 3[ ( 3 6 ) (6 18 18 ) 6(1 5 4 )]}xe x x x                . 
  
Continuing in this manner )(6 xy  is determined as  




)8134(15)1(42((
5040

1
=)( 32425

6  xxexy
x

 

                    ....)3649103(120 4323  x  .                                                             (3.11) 
  
Figure 3 shows the absolute error between the exact solution and the approximate solution for 
(0.2 <    < 1) and considering six iterations of the VIM sequence. 
 

 
 

Figure 3. Absolute errors of equation (2.8) using VIM for N = 5 
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Example 6. 
 
Consider the problem in Example 3, and differentiate to get  

 

  .1)(=)( 2

0 



   dttye

dx

d
xy txx

                                                                                        (3.12) 

 
The correction functional is  
 

 )(=)(1 xyxy nn  2

0 0
( , ) ( ) ( ) 1 .

x t t s
n

d
x t y t e y s ds dt

dt
  


          

  
Now, by using the obtained result in (3.4), then the general lagrange multiplier is  

 
1

( , ) = .x t


  

  
Thus, the correction functional becomes  
 

 2
1 0 0

1
( ) = ( ) ( ) ( ) 1 .

x t t s
n n n

d
y x y x y t e y s ds dt

dt






                

  
Starting with ( 0=)(0 xy ), then  

 

1

1
( ) =

xe
y x




 

  
and, then after  
 

 
3

22

2

][Sinh22
=)(


 xexe

xy
xx 

. 

  
Continuing in this manner, )(4 xy  is determined as 
 

 )364(4200(1800
113400

1
=)( 278

154 


xeexy xx     

                    
                   ....)256641113400( 14108642   . 
  
The following table shows the absolute error of (2.13)  for different values of   
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Table 2. The absolute error of equation (2.13) using VIM for 5N   

x 1 9.0 8.0 5.0 
0.0x  131.48 10 112.5 10 101.71 10 44.28 10 
0.2x  115.15 10 21.49 10 23.32 10 11.23 10 
0.4x  71.53 10 22.53 10 25.38 10 11.46 10 
0.6x  51.79 10 22.91 10 25.82 10 11.37 10 
0.8x  45.24 10 22.86 10 25.44 10 13.44 10 

 
 
4.   Conclusion 
 
In this paper, a comparative study of VIM and DTM has been conducted. These methods were 
applied to solve linear and nonlinear SPVIEs. The three examples considered in this work 
support our belief that the results of these methods are in excellent agreement with exact 
solutions. The comparison revealed that, although the numerical results are similar, VIM is much 
easier, more convenient, and more efficient; it does not require intermediate complex 
calculations, such as finding Taylor series expansion ininvolved in the DTM.  
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