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Abstract

In this paper, we apply the Differential Transform Method (DTM) and Variational Iterative
Method (VIM) to develop algorithms for solving singularly perturbed volterra integral equations
(SPVIEs). The study outlines the significant features of the two methods. A comparison between
the two methods for the solution of SPVIs is given for three examples. The results show that both
methods are very efficient, convenient and applicable to a large class of problems.

Keywords: Differential Transform Method, Variational Iterative Method, Singularly
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1. Introduction

In recent years, much attention has been paid to finding solutions for singularly perturbed
volterra integral equations (SPVIESs). The aim of this paper is to continue this trend and consider

369
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new analytical techniques, the Differential Transform Method (DTM) and the Variational
Iterative Method (VIM) for solving SPVIEs of the form

(9= 900+ [Kexty®)dt,  0<x<, (L1)

where ¢ >0 is a small positive parameter called the ‘perturbation parameter’ that gives rise to
the singularly perturbed nature of the problem Alnaser (2000), Lange and Smith (1988), Angel
and Olmstead (1987). The kernel K and the function g(x) are given smooth functions. Under
appropriate condition on g and K, for every £ >0, (1.1) has a unique continuous solution on
[0,77] see Brunner (1986) and Alnaser (2000). It should be mentioned that in order to use the
DTM, the solution of (1.1) must be analytic.

The singularly perturbed nature of (1.1) arises when the properties of the solution with & >0 are
incompatible with those when ¢ =0. For £ >0, (1.1) is an integral equation of the second kind.
When £=0, (1.1) reduces to an integral equation of the first kind whose solution may be
incompatible with the case ¢ >0.

Problems of this nature imply incompatibility in the behavior of y near x = 0. This suggests the

existence of boundary layer near the origin where the solution undergoes a rapid transition
Brunner (1986).

Angel and Olmstead (1987), Lange and Smith (1988) developed a formal methodology to obtain
asymptotic solution for (1.1). Alnaser (2000) applied a multi-step method to solve singular
perturbation problem in Volterra integral equation. Finally, Alnaser and Momany (2008) used
Homotopy perturbation method to solve the presented problem.

In Section (2), we apply DTM to solve our problem. In Section (3), we use VIM to give
approximate solution for the proposed problem. Test examples with known exact solutions are
presented at the end of each section to discuss the accuracy and efficiency of the methods.
Finally, our conclusion will be given in Section (4).

2. Solving SPVIEs Using DTM

Consider the general form of SPVIE which is given in (1.1). Now, applying differential
transform to (1.1) we get

&Y (k) = G(K) + H(i‘l), k>1, 2.1)

where H (k) is the differential transform of the kernel K(x,t, y(t)). Thus, the recurrence formula
is
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Y(K) = %{G(k)+ H (i‘l)}, k>1. 2.2)

Substituting x =0 in (1.1), we get

_9(0)
yO==

Therefore, the transformed initial condition at x =0 is

Y(O):@.

Starting with Y (0) and the recurrence formula in (2.2), Y (1) can be determined. Now, using

Y(0), Y(1), then Y (2) is easily identified. Continuing in this manner, the first N -differential
transforms of y(x) can be identified. Finally, the inverse transform of Y (k) is

Y = 2Y (X" .3

Details about DTM and its properties can be found in Alquran and Al-Khaled (2010), Kanth and
Aruna (2009) and Erturk (2007).

2.1. Numerical Examples

In this section we discuss three different examples. The result will be compared with the exact
solution for various values of ¢.

Example 1.

Consider the following linear problem

() = [ L+t-y(r)dt, (2.4)

which has the exact solution
y(X) = x+1-e* —g(l—ef} (2.5)

Equation (2.4) can be written in the form
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&y(x) = x+X—22— ony(t)dt. (2.6)
Applying DT to (2.6), we get
Y(k):l{a(k—1)+£5(k—2)—w}, k>1. (2.7)
£ 2 k

Since y(0) =0, then the transformed initial condition is Y (0)=0. Now, we coded (2.7) in
Mathematica and obtained

1 c-1 c-1
Y)==, Y@=, YO =-—%,
1) . 2) 272 3) 6
-1 -1 c-1
Y (4) = , Y(B)=- , Y (6) =
@) 245* ®) 120¢° ©) 720&°

Thus, the approximate solution around x, =0 can be expressed as:

e-1, -1, -1 , &e-1 o ¢&-1
S X ——— X"+ T X — =X+ =X+
2¢ 6 24¢ 120¢ 120¢

_1
yappr (X) - ;X""

Figure 1 represents the absolute errors between the exact solution and the approximate solution
for (0 < & <1) and considering 25 terms of the DT series.

A |
R

L
Figure 1. Absolute errors of equation (2.4) using DTM, for N =25
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Example 2.

Consider the following linear problem

&y(x) = jox(1+ x—t)1+t— y(t))dt, (2.8)

the exact solution is given by

—exy2 (71 _1+1j+ex71(72 _1+1J
& &

y(x) =1+ x+ , (2.9)
e
where
_Vl-4de -1
nE——
2¢
and
_—1-VJ1-4¢
Vo= ——F~
2¢

Equation (2.9) can be written as
X3 X X X
&(X) = X+ X2 o jo y(t)dt —x jo y(t)dt + joty(t)dt. (2.10)

Note that for f(x)= xj'oxy(t)dt , then its DT is

F(k) = Z o(k—i —1)Y (i- 1)

also, for g(x) = '[Oty(t) , then its DT is

G(k) = %kj&(i “1Y (k—i-1).

Accordingly, the differential transform for (2.10) is
Y(k-1)
K
k f—
-y ok=i- 1)Y U 1) L 25@ DY (k—i-1)} k>1 (2.11)

i=1

Y (k) = 1{5(k N —2)+15(k ~3)-
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and the transformed initial condition used is Y (0) =0. By coding (2.11) in Mathematica, we
obtain

1 -1+2¢ 1-3s+¢&°
Y(l):_’ Y(Z): 2 1 Y(S): 3 )
& & 6e
1-4g+3¢? —1456-6&%+&°
YA =——+—, YB)=- y e e
@ &t ®) 120&°

The approximate solution is

~1+2¢ , 1-3¢+¢&® , 1-4e+3s* ,
— X+ X — X

2¢& 6e 24¢

1
yappr (X) = ; X+

an2, 3
1+5¢ 6;9 +& b (2.12)
120¢

Figure 2 represents the absolute errors between the exact solution and the approximate solution
for (0.2 < ¢ <1) and considering 18 terms of the DT series.

1

Figure 2. Absolute errors of Equation (2.8) using DTM, for N =18

Example 3.

Consider the following non-linear problem
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() = [ (y? ) -1)t, (2.13)
which has the exact solution
2(L—e
y(x) = (X ) , (2.14)
l+y+e”(-1+y)e
where
_NA+é?
Y = .
&
Equation (2.13) can be written in the form
gy(x) =1-¢* +exj'oxe“y2(t)dt. (2.15)
Let f(x)=¢", then
1
F(k) = W
Also, let h(x) = e™"y?(t), then the differential transform of h(x) is
Lo (-nr .
H(K) = 3> =Y (i, i)Y (k=)
i=0i=0 k-
Applying DT to (2.15), we get
1 1 &1
Y(k)== 5(k)——+Z—G(k—k1)H(kl—1)  k>1, (2.16)
£ k! =k,

since the initial condition is y(0) =0, then its transform Y (0) =0. By using Y (0) =0 and the
recurrence formula in (2.16) we obtain

1 1 —2+¢&° —8+¢?
Y1)=-=, Y@ =-——, Y(@)=- Y@ =St
(1) . 2 2 (3) p (4) Y

16-22&%+&* 136 -52¢% +&*

Y(5) = - . Y(6)=-

120¢° 720¢°
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Thus, the approximate solution around x, =0 is

16-22s*+&* . 136-52¢°+¢&"
- X +- X° +

120&° 720&°

—2+&° —8+¢&?
2 X3 x4

6s°

2483
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The following table shows the absolute error of (2.13) for different values of &

Table 1: The absolute error of Equation (2.13) using DTM for N =32

X e=1 =09 £=0.8 =05
x =0.0 0 0 0 0
x=021] 122x10™" 1.49x107% | 3.32x107? 1.23x10™
x =041 1.25x10™" 2.53x107° | 5.83x107 1.52x107"
x =06 | 756x10° 2.91x107% | 5.80x107% | 1.19x10™
x=08| 7.05x10° | 2.72x107 5.11x107% | 6.99x10™"

3. Solving SPVIEs Using VIM

Consider the general form of SPVIE given in (1.1). To apply the VIM to this problem, we have
to differentiate (1.1) to get

y(0=900+ | [K(xuty@t|  0<x<n @)

To solve (3.1) we assume that the kernel function K(x,t, y(t)) is nonlinear with respect to y(x).
According to VIM we can construct the following correction functional

OESACE jjﬂ(x,t)[aynr ©-g0O-| [Kts.y, (s»dstt, (32)

where A(x,t) is the general lagrange multiplier, which can be identified using the variational

theory, and n denoted the n" iteration. Now, making this correction functional stationary,
oy,(0) =0, we obtain:

Hoa ()= 3, (X) 46 j;z(x,t)[eynr ©-90 -] [KEs.y, (s»dstt ,
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= &, (%) +&[ A )y, ©)dt =0, (3.3)

where g'(t) and %U;K(t,s, Y, (s))ds} are restricted variations i.e., 8y'(t) =0 and

d[ _

5a[jor<(t,s, yn(s))ds} -0,

Integrating (3.3) by parts yields
x 0
B () = 3, (9 + 206 OF, (1) oy — ], — 20,0, (Ot
x 0
= L+ 220 D), O 2] - A D, (e =0.

Therefore, the general lagrange multiplier satisfies

0

—A(x,1)=0,

p (x1)
subject to

/1(th) |t=x =——

Solving the above equation, we get

A(x,t) = 1 (3.4)
&
Thus, the correction functional becomes
(0= Y, 00— (ey (t)- g'(t)—i[ [Kt.s.y, (s))dstt, (3.5)
N+ n e 0 n dt 0
and the considered initial guess is the initial condition for the problem, i.e.,

(50 = y0) = £

Details about the VIM can be found in He (1997), Alawneh and Al-Khaled (2010), Biazar and
Ghazuini (2007), Tatari and Dehghan (2007) and Khaleghi, Ganji and Sadighi (2007).
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3.1. Numerical Examples

In this section we apply the VIM to the same examples considered in section2 and compare the
results with the exact solution.

Example 4.

Consider the problem in Example 1, and differentiate the equation to get
&y'(x) =1+ x-y(x).

According to VIM, the correction functional is

Yous (00 = ¥, 00+ [ 206Dty (0)+ v, (0 -t =L,

and the correction functional stationary is
Hps () = 3, (0 + 5[ A0,V ley (0) + ¥, () ~t -1t
= @n (X) + é‘ﬁ,(X,t)é]n (t) |t=x -
x[ 0
— A(x,t t) — A(X,t t) pdt,
o[/ 400,00~ k00,00
= é)/n (t)(1+‘c’%(xit))|t:x -
£ X{ﬁz(x,t) —ﬂ(x,t)}&y (t)dt=0.
oot "
Therefore, the general lagrange multiplier satisfies
gg/i(x t)-A(x,t)=0
o ’ '
subject to
ﬂ(X,t) |t=x: -

Solving the above equation yields
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t—-x

At =2 (3.6)
&

Thus, the correction functional becomes

t—x

X e7
Vot00 =¥, 00 =[] = [{e¥s O+ y, @0 ~t-1}dt (37)
Starting with the initial condition y(0) =0 as the initial guess y,(x) = 0. Then, by (3.7)

y,(X)=x+1-e* —g[l—eg}

which is the exact solution.
Example 5.

Consider the problem in Example 2, which can be written in the form
3
_ 2 X X X X
()= x4 X"+ jo y(t)dt —x jo y(t)dt + joty(t)dt. (3.8)

We differentiate (3.8) to get

2

&y'(X) =1+ 2x+X?— v - [ y(t)t. (3.9)
The correction functional is

Yo (¥) = ¥, (X) + oni(x,t){ayn, )+, )+ [y, ()ds —%— 2t —1}dt,
and the correction functional stationary is

30 (X) = 3, (1) + [ {206 D, () + A(x D, (B )dt =0.

The obtained Lagrange multiplier is
t—x
A0t) = —2
&
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Thus, the correction functional becomes

t—x

Yot () = Vo () + [ e {synr +y,®+]y, (s)ds_ﬁ_m_l} dt. (3.10)
0 c 0 2

Starting with (y,(x) = 0). Then, by using (3.10) and with the help of Mathematica, we get

y&x)=%{x2—2x02+¢3+204A1ﬂ2—2e£(—1+5fJ,
recursively,
yAx):%e£{4X—1+gX—l+x@1+g)—g+452
+e[=x® + x*(=3+6&) + X(6 +185 —1857) + 6(1— 5% + 4£°)]}.
Continuing in this manner y,(x) is determined as
yG(x):-—JL—e_E(—42(x5(—14—5)24—5x4(14—4g——1352—r853)+

5040
20x%(1+ 35 +10s* —49¢° +365*) +.... . (3.11)

Figure 3 shows the absolute error between the exact solution and the approximate solution for
(0.2< ¢ <1) and considering six iterations of the VIM sequence.

L =107

5. w10~ F

S

L
e

Figure 3. Absolute errors of equation (2.8) using VIM for N =5
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Example 6.

Consider the problem in Example 3, and differentiate to get

gy'(x) = %onex‘t (y2 (t) —1)dt}

The correction functional is
Yo (X) = Y, (X) + j A(X, t){eyn (t)——[ j e S y 2(s) - 1)ds]}dt

Now, by using the obtained result in (3.4), then the general lagrange multiplier is

A(x,t) = —E.
&

Thus, the correction functional becomes

COESAGR j:@{eynf(t)——[j e (y¥(9)- 1ds}}d

Starting with (y,(x) =0), then

X

l1-e

Y, (x) =

and, then after

g2 —e*(2x+ &% )+ 2e*Sinh[x
yz(X) - ( 83) [ ] )

Continuing in this manner, y,(x) is determined as

1

W (:|.800€8)< —4200e"* (—4 +6X+ 36‘2) +
&

Y (X) =

113400(-1+4s* — 65" +65° —55% + 26 + &™) +.....

The following table shows the absolute error of (2.13) for different values of &

381
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Table 2. The absolute error of equation (2.13) using VIM for N =5

X c=1 =09 =028 =05
x =00 | 1.48x10™" 25x107™ | 1.71x10™° | 4.28x10™
x=02] 515x10™ | 1.49x107%| 3.32x107%| 1.23x10*
x =04 1.53x10”" 2.53x107 | 5.38x107° 1.46x107
x =0.6 1.79x10° | 2.91x102 | 5.82x107 | 1.37x10°
x=08| 524x10* | 2.86x107 5.44x1072 | 3.44x10™

4. Conclusion

In this paper, a comparative study of VIM and DTM has been conducted. These methods were
applied to solve linear and nonlinear SPVIEs. The three examples considered in this work
support our belief that the results of these methods are in excellent agreement with exact
solutions. The comparison revealed that, although the numerical results are similar, VIM is much
easier, more convenient, and more efficient; it does not require intermediate complex
calculations, such as finding Taylor series expansion ininvolved in the DTM.
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