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Abstract 
 
In this paper, we obtain multisoliton solutions of the Camassa-Holm equation and the Joseph-
Egri (TRLW) equation by using the formal linearization method. The formal linearization 
method is an efficient instrument for constructing multisoliton solution of some nonlinear partial 
differential equations. This method can be applied to nonintegrable equations as well as to 
integrable ones. 
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1.  Introduction 

The direct linearization of certain famous integrable nonlinear equations was carried out in 
[Rosales (1978)].  Solutions of the KdV equation were connected with solutions of the Hopf 
equation by using formal series in [Baikov et al. (1989)]. Convergent exponential series were 
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used in a variety of papers [Bobylev (1980), (1981), (1984); Vedenyapin (1981), (1988), 
Mischenko and Petrina (1988)] for constructing solutions of the Boltzmann equations. The 
possibility to adopt such series for some other equations was discussed in [Bobylev (1981)]. 
Fourier series were applied in the construction of solutions to the perturbed KdV equation in 
[Nikolenko (1980)]. In this paper we consider the class of equations and systems containing 
arbitrary linear differential operators with constant coefficients and arbitrary nonlinear analytic 
functions of dependent variables and their derivatives up to some finite order under the 
assumption that these equations possess a constant solution.  
 
The formal linearization method consists of linearizing a nonlinear partial differential equation to 
the system of linear ordinary differential equations, describing some finite-dimensional subspace 
of the solution space of the linearized equation. It allows us to develop a very simple technique 
of finding the linearizing transformation and to apply the method to nonintegrable equations as 
well as to integrable ones; the solutions are in the form of exponential or Fourier series. We note 
that a similar approach with a different technique was independently developed for the wide 
class of evolution equations and the convergence of the constructed exponential series 
investigated [Vedenyapin]. The multisoliton solution of the Klein-Gordon’s equation by using 
the formal linearization method was also done [Taghizadeh and Mirzazadeh (2008)]. The aim of 
this paper is to find multisoliton solutions of the Camassa-Holm equation and the Joseph-Egri 
(TRLW) equation. 
 
 
2.   Formal Linearization Method 
 
Let us consider equations of the following form 
 

1 2 3 1 2 3
ˆ( , , ) ( , , ) [ ],x x xL D D D u x x x N u                                                                           (1) 

 
where 
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is a linear differential operator with constant coefficients and 
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is an arbitrary analytic function of u and of its derivatives up to some finite order p . We suppose 
that Eq. (1) possesses the constant solution. Without loss of generality we assume that 
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We consider Eq. (1) in connection with the equation linearized near a zero solution: 
 

1 2 3 1 2 3
ˆ( , , ) ( , , ) 0.x x xL D D D w x x x                                                                                  (3) 

Let L  be the vector space of solutions of Eq. (3) and  NP L  be the N-dimensional 
 

exp( ),i i i iw W           3 1 2 ,i i ix a x b x          1,2,..., .i N  

 
Here ,i ia b and   iW  are some constants.  The constants  ( , )i i i ia b   are assumed to satisfy 

the dispersion relation  
 

ˆ( , , ) 0.i i i i iL a b      
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We use the following notation: 
 

 1 2
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It is obvious that the monomials ( )N
 are the eigenfunctions of the operator (2): 

 

1 2 3 ( ) ( )
ˆ( , , )x x x N NL D D D w w 

  

 
with the eigenvalues 
 



AAM: Intern. J., Vol. 6, Issue 1 (June 2011) [Previously, Vol. 6, Issue 11, pp. 2025 – 2032]                                  287 

 

31 2

31 2

1 2 3

1 2 30 0 0 1 1 1

( ) ( ) ( ) .
KK K N N N

kk k
k k k i i i i i i i i

k k k i i i

l a a      
     

         

 
 
Theorem: 
     
If 0   for every multiindex  with positive integer components , 1,..., ,i Z i N    

satisfying the condition | | 0,1,   then equation (1) possesses solutions connected with 

solutions form NP by the formal transformation 
 

1 2
1

( , ,...., ),n
n n

n

u w w w 
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                                                                                             (4) 

 
where 
 

( )
| |

( )n n N
n

A w 







                                                                                                              (5)     

 
are homogeneous polynomials of degree n in the variables .iw  This transformation is unique 

(for the first term 1
NP  fixed). 

 
Remark 1:   
 
Here  is the grading parameter, finally we can put 1.   
 
The proof of the theorem is constructive. Substituting (4) into (1) , expanding [ ]N u  into the 
power series in  , and then collecting  equal  powers of   , we obtain the determining equations 
for the functions n and show  that  if 0,   then these equations possess the solution  (5) with 

the coefficients ( )nA  uniquely determined through the coefficients 1( )A  by the recursion 

relation. Thus, the theorem gives us the method for constructing particular solutions of equation 
(1). 
 
 
3.   Application 
 
3.1. Camassa-Holm Equation 
 
Let us consider the Camassa-Holm equation [Kalisch and Lenells (2005)]: 
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For simplicity we look for a solution of (6) in the form 
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is the basis of the subspace 2P L  (let is and  iW be some real constants).  Substituting (7) 

into (6) and collecting  equal  powers  of  we obtain the determining equations for the functions 

n as follows 
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These equations possess the solution  (2)
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rewritten in this case in the following form 
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the coefficients n
kA  can be found through 1

0A  and  1
1A  (we can assume that either  1 1

0 1 1A A   

or 1 1
0 10, 1A A  ) by the recursion relation: 

 
If  2,n    0 k n  then 
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If  0k   or k n , then 0.n
kA   
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If 1 2 1 22 , 2 , 0, 0,a a a a      then  ( , ) 0k n k    for every pair ( , )k n k  with 

,k n Z  , 2,n    0 k n  . 

 
Remark  2:   
 

If  1
0 0,A   then 1

1 P   and we get from (7) the expansion for a 1-soliton solution.  For 

obtaining the N-soliton solutions, we must take 1 .NP   

 
3.2. Joseph-Egri (TRLW) Equation 
 
We next consider the Joseph-Egri (TRLW) equation [Hereman et al. (1986)]: 
 

2

ˆ( , ) ( , ) ,

ˆ( , ) .

t x x

t x t x x t

L D D u t x uu

L D D D D D D

 

  
                                                                                     (9) 

 

In this case, the subspace 2P is generated by the functions 
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Our procedure gives the solution 
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where if  2,n    0 ,k n   then 
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In (10), if 1
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In ( , )t x  variables we have 
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where 0x  is arbitrary constant. 
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Then, (10) is a 2-soliton solution of the Joseph-Egri equation and (11) is a 1-soliton solution of 
the Joseph-Egri equation. 
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